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Abstract

Products of independent identically distributed random stochastic 2 × 2 matrices are known
to converge in distribution under a trivial condition. Rates for this convergence are estimated
in terms of the minimal Lp-metrics and the Kolmogorov metric and applications to convergence
rates of related interval splitting procedures are discussed.
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1 Introduction and Main Result

Let {(Vi,Wi) : i ∈ N} be an independent family of random vectors on the unit square [0, 1]2 with
common joint distribution µ. Let Ti denote the random stochastic 2× 2 matrices

Ti :=
[

1− Vi Vi
1−Wi Wi

]
, i ≥ 1,

and [
1−An An
1−Bn Bn

]
:= Tn · · ·T1, n ≥ 1. (1)

It is well-known that (An, Bn) converges weakly if and only if µ is not concentrated on {(0, 1), (1, 0)}
and that the limit is concentrated on the diagonal {(x, x) ∈ [0, 1]2 : 0 ≤ x ≤ 1}, i.e. is of the form
L(Y, Y ), where the distribution function of Y can be characterized as the solution of an integral
equation; see Rosenblatt [9], Sun [10].

The aim of this paper is to derive (geometric) rates of convergence for the distributions of (An, Bn)
and to discuss applications to interval splitting problems.
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LetMd denote the space of probability measures on Rd. The minimal Lp-metric `p is defined on
the subspace Md

p ⊂Md of measures with finite p-th moment for p ≥ 1 by

`p(λ, ν) := inf{‖X − Z‖p : L(X) = λ,L(Z) = ν}, λ, ν ∈Md
p, (2)

where ‖ · ‖p denotes the Lp-norm; the notation `p(X,Z) := `p(L(X),L(Z)) is used as well.

Theorem 1.1 Let (An, Bn) be given as in (1) with a distribution µ = L(V,W ) on [0, 1]2 not being
concentrated on {(0, 1), (1, 0)}. Then it holds for all p ≥ 1 and n ∈ N

`p((An, Bn), (Y, Y )) ≤ ‖(Y, 1− Y )‖pRn

and for the marginals

`p(An, Y ) ≤ ‖Y ‖pRn, `p(Bn, Y ) ≤ ‖1− Y ‖pRn,

with R := ‖W − V ‖p < 1 and L(Y ) being the unique fixed-point of the map

T :M1 →M1, ν 7→ L((W − V )Z + V ), (3)

where (V,W ) and Z are independent and L(Z) = ν.

Since `p-convergence is equivalent to weak convergence plus convergence of the pth absolute
moments (see Bickel and Freedman [2]) Theorem 1.1 implies the result stated above (the ’only if’
part there being trivial) and endows it with a rate of convergence. The characterization of the limit
distribution as the fixed-point of T is well-known. Other rates of convergence in terms of the random
variables Nδ = max{n ∈ N : |An −Bn| ≥ δ} were discussed by van Assche [1].

From (1) the distributions L(An, Bn) are obtained by iterating the map

S1 :M2 →M2, ν 7→ L
([

1− V V
1−W W

](
Z1

Z2

))
, (4)

where (V,W ) and Z = (Z1, Z2) are independent with L(Z) = ν. More formally, it is L(An, Bn) =
Sn1 (δ(0,1)) := S1 ◦ · · · ◦ S1(δ(0,1)), the n-th iteration of S1 applied to the Dirac measure δ(0,1) in (0, 1).
The present approach is based on the fact (Lemma 3.1) that the L(An, Bn) can also be obtained as
the iteration Sn2 (δ(0,1)) with

S2 :M2 →M2, ν 7→ L
(

(W − V )
(
Z1

Z2

)
+
(
V
V

))
, (5)

where (V,W ) and Z = (Z1, Z2) are independent with L(Z) = ν. The key point is that the map S2 is
a contraction on the complete metric space (M2

p, `p) under the conditions of Theorem 1.1, so that its
proof breaks essentially down to the application of Banach’s fixed-point theorem. Clearly, S1 cannot
be a contraction on any M2

p in any metric since the map has many fixed-points. For each random
variable X, L(X,X) is a fixed-point of S1.

As a standard metric for the quantification of weak convergence the Kolmogorov (or uniform)
metric % may be considered,

%(λ, ν) := sup
x∈R
|Fλ(x)− Fν(x)|,
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where Fλ, Fν denote the distribution functions of one-dimensional probability measures λ, ν re-
spectively; the notation %(X,Z) := %(X,L(Z)) := %(L(X),L(Z)) is also used. A change from the
`p-metric to % is provided by an inequality related to Markov’s inequality,

%(Yn, Y ) ≤ `pp(Yn, Y )ξ−p + ∆Y (ξ), (6)

valid for all p ≥ 1 and ξ > 0, where

∆Y (ξ) := sup
x∈R
|F (x+ ξ)− F (x)| (7)

denotes the modulus of continuity of Y , F being the distribution function of Y . Therefore the rates
of Theorem 1.1 can be transposed into a rate for the Kolmogorov metric if the modulus of continuity
of the limit L(Y ) can be estimated. However, L(Y ) is only known explicitly for a few choices of µ.
For some µ related to interval splitting procedures we follow this line in the next section (Corollary
1 and 2) leading to explicit rates in the Kolmogorov metric. The last section contains the proofs.

2 Applications to interval splitting

Sequences of nested random intervals ([An, Bn]) which are defined by [A0, B0] := [0, 1] and some
randomized recursive procedure may be covered by a formulation as in (1). Then one is interested in
the limit Y to which the intervals shrink almost surely. Theorem 1.1 implies corresponding rates of
convergence for the end-points An, Bn. We give two examples for such an interval splitting procedure
and obtain rates of convergence. When the modulus of continuity of the limit Y is available the rates
can be given as well in the Kolmogorov metric.

2.1 Chen, Goodman, and Zame’s splitting procedure

Chen, Goodman, and Zame [3] and Chen, Lin, and Zame [4] considered the following recursive
interval splitting procedure: Fix r ∈ [0, 1] and set [A0, B0] := [0, 1]. If [An, Bn] is already defined,
then split [An, Bn] by an independent and uniformly on [An, Bn] distributed random variable X
and choose independently the larger of the two subintervals [An, X], [X,Bn] with probability r to be
[An+1, Bn+1], otherwise the smaller one.

In the papers mentioned it is proved that ([An, Bn]) shrinks to a limit Y almost surely, where Y
has the beta(2, 2) distribution if r = 1 and the arcsin(= beta(1/2, 1/2)) distribution if r = 1/2 (see
also Devroye, Letac, and Seshadri [5]).

For the analysis of this interval splitting procedure it is convenient to represent a uniform [0, 1]
random variable in the form

G
1 + U

2
+ (1−G)

1− U
2

with independent G,U with L(U) = unif[0, 1] and L(G) = B(1, 1/2), the Bernoulli distribution with
probability 1/2 on the point 1. Using such a representation for the splitting random variable in the
definition of [An+1, Bn+1] one may find that (An, Bn) is given by (1) choosing µ = L(V,W ) with

V = G′(1−G)
1− U

2
+ (1−G′)G1 + U

2
, (8)

W = 1−G′G1− U
2
− (1−G′)(1−G)

1 + U

2
, (9)
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where G,G′, U are independent with L(G′) = B(1, r),L(G) = B(1, 1/2),L(U) = unif[0, 1]. From
Theorem 1.1 we obtain

Corollary 2.1 Let ([An, Bn]) be the interval splitting procedure of Chen, Goodman and Zame with
r ∈ [0, 1]. Then it holds for all p ≥ 1 and n ∈ N0

`p(An, Y ) = `p(Bn, Y ) ≤ ‖Y ‖p
(

2(r + (1− 2r)(1/2)p+1)
p+ 1

)n/p
,

where L(Y ) is the unique fixed-point of (3) with (V,W ) given by (8), (9).
In the case r = 1 it holds

%(An,beta(2, 2)) = %(Bn,beta(2, 2)) ≤ 1.5661 · (0.8268)n.

In the case r = 1/2 it holds

%(An, arcsin) = %(Bn, arcsin) ≤ 1.6321 · (0.793)n.

The case r = 0 leads to a distribution with a density, which is not infinitely differentiable on a dense
subset of [0, 1]. Properties of this distribution were studied in Chen, Goodman, and Zame [3] and
(in a more general situation) by Herz [6]. For all r ∈ [0, 1] the limit Y has the representation

Y
D=
∞∑
j=0

((
Gj(1−G′j)

1 + Uj
2

+ (1−Gj)G′j
1− Uj

2

) j−1∏
k=0

1 + SkUk
2

)

with the family {Gn, G′n, Un : n ∈ N0} of independent random variables with L(G′n) =
B(1, r),L(Gn) = B(1, 1/2),L(Un) = unif[0, 1] and the random sign Sk := 2G′k − 1. This follows
since the series converges almost surely, e.g., by the Borel-Cantelli Lemma, and satisfies the fixed-
point relation. For the case r = 1 Chen et al. [3] gave this representation for a beta(2, 2) distributed
random variable. The case r = 1/2 gives a corresponding representation for the arcsin distribution.

In Herz [6] generalizations of the cases r ∈ {0, 1} of this splitting procedure were investigated,
which could also be endowed with a rate of convergence by the present approach.

2.2 Kennedy’s splitting procedure

The analysis of a randomized algorithm for locating local maxima led Kennedy [7] to the following
splitting procedure: Let k ∈ N, k ≥ 2 and r, s, t ∈ [0, 1] with r + s + t = 1 be given and define
[A0, B0] := [0, 1]. If [An, Bn] is already defined, then draw X1, . . . , Xk independently and uniformly
from [An, Bn] and denote Cn := min1≤i≤kXi and Dn := max1≤i≤kXi. Then [An+1, Bn+1] is inde-
pendently chosen from the three intervals [Cn, Bn], [An, Dn], and [Cn, Dn] with probabilities r, s, t
respectively.

Kennedy showed that ([An, Bn]) shrinks almost surely to a limit with beta(k(r + t), k(s + t))
distribution. Let G denote a random variable with

P(G = 0) = r, P(G = 1) = s, P(G = 2) = t.

Then (An, Bn) is given by (1) choosing µ = L(V,W ) with

V = 1[G ∈ {0, 2}] min
1≤i≤k

Ui, W = 1− 1[G ∈ {1, 2}](1− max
1≤i≤k

Ui), (10)

where U1, . . . , Uk, G are independent, L(Ui) = unif[0, 1] for i = 1 . . . , k and 1[A] denotes the indicator
function of a set A. From Theorem 1.1 we obtain:
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Corollary 2.2 Let ([An, Bn]) be Kennedy’s interval splitting procedure with k ≥ 2 and r, s, t ∈ [0, 1]
with r + s+ t = 1. Then it holds for all p ≥ 1 and n ∈ N0

`p(An,beta(k(r + t), k(s+ t))

≤
[
B(k(r + t) + p, k(s+ t))
B(k(r + t), k(s+ t))

]1/p( k

k + p

(
r + s+ t

k − 1
k − 1 + p

))n/p
,

`p(Bn,beta(k(r + t), k(s+ t))

≤
[
B(k(r + t), k(s+ t) + p)
B(k(r + t), k(s+ t))

]1/p( k

k + p

(
r + s+ t

k − 1
k − 1 + p

))n/p
,

where B( · , · ) denotes the Eulerian beta integral.

Transformations to rates in the Kolmogorov metric can be given for this splitting procedure as well,
since the modulus of continuity of the beta distributions can be estimated. However, numerical
solutions required to determine optimal values for p can only be obtained if the parameters k, r, s, t
are given explicitly. For example for the case k = 2, t = 1, r = s = 0, which occurred also as a special
case in van Assche [1] and Letac and Scarsini [8], we obtain

%(An,beta(2, 2)) = %(Bn,beta(2, 2)) ≤ 1.6643 · (0.5503)n. (11)

3 Proofs

In this section we use throughout the representation µ = L(V,W ) for the measure µ in the definition
(1) as well as the family {(Vi,Wi) : i ∈ N} occurring there.

Lemma 3.1 With (An, Bn) given by (1) it holds L(An+1, Bn+1) = S2(L(An, Bn)) for all n ≥ 1,
where S2 is given by (5).

Proof: Using (1) we obtain

(A1, B1) = (V1,W1), (A2, B2) = (V1 + V2(W1 − V1), V1 +W2(W1 − V1)),

and by induction for n ≥ 1

An =
n∑
i=1

(
Vi

i−1∏
k=1

(Wk − Vk)

)
, (12)

Bn =
n−1∑
i=1

(
Vi

i−1∏
k=1

(Wk − Vk)

)
+Wn

n−1∏
k=1

(Wk − Vk),

where empty sums and products are defined to be 0 and 1 respectively. Thus, with (V,W ) being
independent of {(Vi,Wi) : i ∈ N} we obtain the recursion stated.

Lemma 3.2 The restriction S2 :M2
p →M2

p of S2 given in (5) is Lipschitz continuous w.r.t. `p for
all p ≥ 1:

`p(S2(λ), S2(ν)) ≤ ‖W − V ‖p `p(λ, ν) (13)

for all λ, ν ∈M2
p.
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Proof: Let ν ∈M2
p and (V,W ), Z be independent with L(Z) = ν. Since (V,W ) has also a finite p-

th moment and by independence also S2(ν) has a p-th moment, so S2 :M2
p →M2

p is well-defined. A
property of the `p-metric is that for all λ, ν ∈M2

p there exist random variables Z,Z ′ with L(Z) = λ,
L(Z ′) = ν, and `p(λ, ν) = ‖Z − Z ′‖p, i.e. the infimum in (2) is in fact a minimum (see Bickel and
Freedman [2]). We can choose (Z,Z ′) to be independent of (V,W ). Then it follows

`p(S2(λ), S2(ν)) ≤ ‖(W − V )(Z − Z ′)‖p
= ‖W − V ‖p‖Z − Z ′‖p
= ‖W − V ‖p`p(λ, ν),

valid for all λ, ν ∈M2
p.

Proof of Theorem 1.1: The assumption µ({(0, 1), (1, 0)}) < 1 implies R := ‖W − V ‖p < 1,
hence by Lemma 3.2 the restriction of S2 to M2

p is a contraction. Since (M2
p, `p) is a complete

metric space (see Bickel and Freedman [2]), Banach’s fixed-point theorem yields a unique fixed-point
L(Y1, Y2) ∈M2

p for the map S2 onM2
p and that Sn2 (ν) converges to L(Y1, Y2) in `p for every ν ∈M2

p.
Choosing ν = µ we obtain with L(A1, B1) = µ and (by Lemma 3.1)

L(An, Bn) = Sn−1
2 (µ), n ∈ N,

that (An, Bn) converges in `p to the fixed-point L(Y1, Y2).
On the other hand it is E |An − Bn| = E |

∏n
k=1(Wk − Vk)| → 0 at an exponential rate, thus by

the Borel-Cantelli Lemma it holds |An − Bn| → 0 almost surely. Since the intervals [An, Bn] resp.
[Bn, An] are nested it follows that (An), (Bn) converge to the same limit almost surely; this implies
Y1 = Y2 almost surely, thus the fixed-point is of the form L(Y, Y ).

By the definitions of S2 and T in (3) and (5) it follows that L(Y ) is a fixed-point of T . It holds
E ln |W−V | ≤ ln E |W−V | ∈ [−∞, 0), thus Lemma 1.4 (a) and Theorem 1.5 (i) in Vervaat [11] imply
that T has a unique fixed-point in M1. Therefore L(Y, Y ) and L(Y ) are the unique fixed-points of
S2 and T on the whole spaces M2 and M1 respectively.

With the Dirac measure δ(0,1) in (0, 1) it holds S2(δ(0,1)) = µ, hence iterated application of
Lemmas 3.1 and 3.2 implies

`p((An, Bn), (Y, Y )) = `p(S2(An−1, Bn−1), S2(Y, Y ))
≤ R`p((An−1, Bn−1), (Y, Y ))
≤ `p(µ, (Y, Y ))Rn−1

= `p(S2(δ(0,1)), S2(Y, Y ))Rn−1

≤ `p(δ(0,1), (Y, Y ))Rn

= ‖(Y, 1− Y )‖pRn.

The estimates for the marginals in Theorem 1.1 can be deduced the same way using the map T
defined in (3) instead of S2.

Note that we could have also used the representations

L(Y ) = L

( ∞∑
i=1

(
Vi

i−1∏
k=1

(Wk − Vk)

))
,
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and (12) for L(An, Bn) to obtain an estimate for `p((An, Bn), (Y, Y )). This would have led to a
worse rate of convergence.

Proof of Corollary 2.1: A direct computation shows that V,W given in (8), (9) satisfy

‖W − V ‖p =
(

2(r + (1− 2r)(1/2)p+1)
p+ 1

)1/p

, (14)

which by Theorem 1.1 implies the estimate for the `p metric.
In the case r = 1 it is L(Y ) = beta(2, 2), thus ∆Y defined in (7) is given by ∆Y (ξ) = (3ξ− ξ3)/2

for ξ ∈ [0, 1], in particular it holds ∆Y (ξ) ≤ (3/2)ξ for ξ > 0. This implies with r = 1 in (14) and (6)

ρ(An,beta(2, 2)) ≤ inf
p≥1

inf
ξ>0

cpp

(
2(1− (1/2)p+1)

p+ 1

)n
ξ−p +

3
2
ξ

with

cpp := ‖Y ‖pp =
6

(p+ 2)(p+ 3)
.

To optimize the bound we choose

ξ = ξn = α

(
2(1− (1/2)p+1)

p+ 1

)n/(p+1)

with α > 0. This implies

ρ(Yn,beta(2, 2)) ≤ inf
p≥1

inf
α>0

((cp
α

)p
+

3
2
α

)(
2(1− (1/2)p+1)

p+ 1

)n/(p+1)

= inf
p≥1

((
cp
αp

)p
+

3
2
αp

)(
2(1− (1/2)p+1)

p+ 1

)n/(p+1)

with

αp :=
(

2pcpp
3

)1/(p+1)

.

An approximation of the optimal choice of p is given by p0 = 3.4969. This leads to the constants
given in the corollary. By symmetry, %(Bn,beta(2, 2)) = %(An,beta(2, 2)).

For r = 1/2 the modulus of continuity ∆Y of the arcsin distribution is given by ∆Y (ξ) =
(2/π) arcsin(

√
ξ) for ξ ∈ [0, 1]. Using arcsin(x) = arctan(x/

√
1− x2) for |x| < 1 and the power

series representation of the arctan-function we estimate ∆Y (ξ) ≤ (2/π)
√
ξ/(1− ξ) for 0 < ξ < 1.

Proceeding as in the case r = 1 with

ξ = ξn = α

(
1

p+ 1

)2n/(1+2p)

we derive

ρ(An, arcsin) ≤ inf
p≥1

inf
0<α<1

((cp
α

)p
+

2
π

√
α

1− α

)(
1

p+ 1

)n/(1+2p)
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with

cpp := ‖Y ‖pp =
B(p+ 1/2, 1/2)

π
.

With p = 1.155 and α = 0.601 we obtain the constants given in the corollary.

Proof of Corollary 2.2: With V,W given in (10) it holds

W − V = 1[G = 0](1− min
1≤i≤k

Ui) + 1[G = 1] max
1≤i≤k

Ui

+ 1[G = 2]( max
1≤i≤k

Ui − min
1≤i≤k

Ui).

Using L(maxUi − minUi) = beta(k − 1, 2) and L(1 − minUi) = L(maxUi) = beta(k, 1) leads
to the value stated for ‖W − V ‖p. Theorem 1.1 finishes the proof of Corollary 2.2. In the case
k = 2, t = 1, r = s = 0 the transformation to the Kolmogorov metric can be done as in the case r = 1
in the proof of Corollary 2.1 leading to the numerical values in (11).
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