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Abstract

We consider the problem of recovering items matching a

partially specified pattern in multidimensional trees (quad

trees and k-d trees). We assume the traditional model where

the data consist of independent and uniform points in the

unit square. For this model, in a structure on n points, it

is known that the number of nodes Cn(ξ) to visit in order

to report the items matching an independent and uniformly

on [0, 1] random query ξ satisfies E[Cn(ξ)] ∼ κnβ , where κ

and β are explicit constants. We develop an approach based

on the analysis of the cost Cn(x) of any fixed query x ∈
[0, 1], and give precise estimates for the variance and limit

distribution of the cost Cn(x). Our results permit to describe

a limit process for the costs Cn(x) as x varies in [0, 1]; one

of the consequences is that E[maxx∈[0,1] Cn(x)] ∼ γnβ ; this

settles a question of Devroye [Pers. Comm., 2000].

1 Introduction

Multidimensional databases arise in a number of con-
texts such as computer graphics, management of geo-
graphical data or statistical analysis. The question of
retrieving the data matching a specified pattern is then
of course of prime importance. If the pattern specifies
all the data fields, the query can generally be answered
in logarithmic time, and a great deal of precise analyses
are available in this case [11, 13, 15, 18, 19]. We will be
interested in the case when the pattern only constrains
some of the data fields; we then talk of a partial match
query.

The first investigations about partial match queries
by Rivest [28] were based on digital structures. In a
comparison-based setting, a few general purpose data
structures generalizing binary search trees permit to an-
swer partial match queries, namely the quadtree [10],
the k-d tree [1] and the relaxed k-d tree [7]. Aside of
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the interest that one might have in partial match for it-
self, there are numerous reasons that justify the precise
quantification of the cost of such general search queries
in comparison-based data structures. The high dime-
sional trees are indeed a data structure of choice for ap-
plications that range from collision detection in motion
planning to mesh generation that takes advantage of the
adaptive partition of space that is produced [17, 35]. For
general references on multidimensional data structures
and more details about their various applications, see
the series of monographs by Samet [32, 33, 34]. The
cost of partial match queries also appears in (hence in-
fluences) the complexity of a number of other geomet-
rical search questions such as range search [6] or rank
selection [8].

In spite of its importance, the complexity results
about partial match queries are not as precise as one
could expect. In this paper, we provide novel analyses
of the costs of partial match queries in some of the
most important two dimensional data structures. In
this document we focus on the special case of quadtrees
but the results may be generalized to the cases of k-d
tree [1] and relaxed k-d trees [7]. These generalizations
will be included in the long version.

Quad trees and multidimensional search. The
quadtree [10] allows to manage multidimensional data
by extending the divide-and-conquer approach of the
binary search tree. Consider the point sequence
p1, p2, . . . , pn ∈ [0, 1]2. As we build the tree, regions
of the unit square are associated to the nodes where
the points are stored. Initially, the root is associated
with the region [0, 1]2 and the data structure is empty.
The first point p1 is stored at the root, and divides the
unit square into four regions Q1, . . . , Q4. Each region
is assigned to a child of the root. More generally, when
i points have already been inserted, we have a set of
1 + 3i (lower-level) regions that cover the unit square.
The point pi+1 is stored in the node (say u) that cor-
responds to the region it falls in, divides it into four
new regions that are assigned to the children of u. See
Figure 1.

Analysis of partial match retrieval. For the
analysis, we will focus on the model of random
quadtrees, where the data points are independent and
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Figure 1: An example of a (point) quadtree: on the left
the partition of the unit square induced by the tree data
structure on the right (the children are ordered according
to the numbering of the regions on the left). Answering the
partial match query materialized by the dashed line on the
left requires to visit the points/nodes coloured in red. Note
that each one of the visited nodes correspond to a horizontal
line that is crossed by the query.

uniformly distributed in the unit square. In the present
case, the data are just points, and the problem of partial
match retrieval consists in reporting all the data with
one of the coordinates (say the first) being s ∈ [0, 1].
It is a simple observation that the number of nodes of
the tree visited when performing the search is precisely
Cn(s), the number of regions in the quadtree that in-
sersect a vertical line at s. The first analysis of partial
match in quadtrees is due to Flajolet et al. [14] (after
the pioneering work of Flajolet and Puech [12] in the
case of k-d trees). They studied the singularities of a
differential system for the generating functions of partial
match cost to prove that, for a random query ξ, being
independent of the tree and uniformly distributed on
[0, 1],

E[Cn(ξ)] ∼ κ nβ(1.1)

where

κ =
Γ(2β + 2)

2Γ(β + 1)3
, β =

√
17− 3

2
,

and Γ(x) denotes the Gamma function Γ(x) =∫∞
0
tx−1e−tdt. This has since been strengthened by

Chern and Hwang [3], who provided the order of the
error term (together with the values of the leading con-
stant in all dimensions). The most precise result is (6.2)
there, saying that

(1.2) E[Cn(ξ)] = κ nβ − 1 +O(nβ−1).

To gain a refined understanding of the cost beyond
the level of expectations we pursue two directions.
First, to justify that the expected value is a reasonable
estimate of the cost, one would like a guarantee that
the cost of partial match retrieval are actually close to
their mean. However, deriving higher moments turns
out to be more subtle than it seems. In particular,
when the query line is random (like in the uniform
case) although the four subtrees at the root really are
independent given their sizes, the contributions of the
two subtrees that do hit the query line are dependent !
The relative location of the query line inside these two
subtrees, is again uniform, but unfortunately it is same
in both regions. This issue has not yet been addressed
appropriately, and there is currently no result on the
variance of or higher moments for Cn(ξ).

The second issue lies in the very definition of the
cost measure: even if the data follow some distribution
(here uniform), should one really assume that the query
also satisfies this distribution? In other words, should
we focus on Cn(ξ)? Maybe not. But then, what
distribution should one use for the query line?

One possible approach to overcome both problems
is to consider the query line to be fixed and to study
Cn(s) for s ∈ [0, 1]. This raises another problem: even
if s is fixed at the top level, as the search is performed,
the relative location of the queries in the recursive calls
varies from a node to another! Thus, in following
this approach, one is led to consider the entire process
Cn(s), s ∈ [0, 1] ; this is the method we use here.

Recently Curien and Joseph [4] obtained some
results in this direction. They proved that for every
fixed s ∈ (0, 1),

E[Cn(s)] ∼ K1(s(1− s))β/2nβ ,(1.3)

with

K1 =
Γ(2β + 2)Γ(β + 2)

2Γ(β + 1)3Γ (β/2 + 1)
2 .

On the other hand, Flajolet et al. [14, 15] prove that,

along the edge one has E[Cn(0)] = Θ(n
√
2−1) = o(nβ)

(see also [4]). The behaviour about the x-coordinate
U of the first data point certainly resembles that along
the edge, so that one has E[Cn(U)] = o(nβ). It suggests
that Cn(s) should not be concentrated around its mean,
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and that n−βCn(s) should converge to a non-trivial ran-
dom variable as n → ∞. This random variable would
of course carry much information about the asymp-
totic properties of the cost of partial match queries in
quadtrees. Below, we identify these limit random vari-
ables and obtain refined asymptotic information on the
complexity of partial match queries in quadtrees from
them.

2 Main results and implications

Our main contribution is to prove the following conver-
gence result:

Theorem 2.1. Let Cn(s) be the cost of a partial match
query at a fixed line s in a random quadtree. Then,
there exists a random continuous function Z such that,
as n→∞,

(2.4)

(
Cn(s)

K1nβ
, s ∈ [0, 1]

)
d→ (Z(s), s ∈ [0, 1]).

This convergence in distribution holds in the Banach
space (D[0, 1], ‖ · ‖) of right-continuous functions with
left limits (càdlàg) equipped with the supremum norm
defined by ‖f‖ = sups∈[0,1] |f(s)|.

Note that the convergence in (2.4) above is stronger
than the convergence in distribution of the finite dimen-
sional marginals(

Cn(s1)

K1nβ
, . . . ,

Cn(sk)

K1nβ

)
d→ (Z(s1), . . . , Z(sk))

as n → ∞, for any natural number k and points
s1, s2, . . . , sk ∈ [0, 1] [see, e.g., 2]. Theorem 2.1 has
a myriad of consequences in terms of estimates of the
costs of partial match queries in random quadtrees. Of
course, Theorem 2.1 would be of less practical interest if
we could not characterize the distribution of the random
function Z (see Figures 2 and 3 for a simulation):

Proposition 2.1. The distribution of the random
function Z in (2.4) is a fixed point of the following re-
cursive functional equation, as process in s ∈ [0, 1],

Z(s)
d
=1{s<U}

[
(UV )βZ(1)

( s
U

)
+ (U(1− V ))βZ(2)

( s
U

)]
+ 1{s≥U}

[
((1− U)V )βZ(3)

(
s− U
1− U

)
(2.5)

+ ((1− U)(1− V ))βZ(4)

(
s− U
1− U

)]
,

where U and V are independent [0, 1]-uniform random
variables and Z(i), i = 1, . . . , 4 are independent copies

of the process Z, which are also independent of U and
V . Furthermore, Z in (2.4) is the only solution of (2.5)
such that E[Z(s)] = (s(1 − s))β/2 for all s ∈ [0, 1] and
E[‖Z‖2] <∞.
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Figure 2: A random quadtree decomposition on 1000
points; the corresponding normalized partial match
process is shown on Figure 3.
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Figure 3: The normalized partial match process corre-
sponding to the quadtree in Figure 2; in red we have
shown the expected value.

This is indeed relevant since the convergence that
implies Theorem 2.1 is strong enough to guarantee
convergence of the variance of the costs of partial match
queries. The following theorem for uniform queries
ξ is the direct extension of the pioneering work of
Flajolet and Puech [12], Flajolet et al. [14] for the cost
of partial match queries at a uniform line in random
multidimensional trees.

Theorem 2.2. If ξ is uniformly distributed on [0, 1],
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independent of (Cn) and Z, then

Cn(ξ)

K1nβ
d→ Z(ξ),

in distribution with convergence of the first two mo-
ments. In particular

Var (Cn(ξ)) ∼ K4n
2β

where K4 := K2
1 ·Var(Z(ξ)) ≈ 0.447363034.

In particular, Theorem 2.2 identifies the asymptotic
order of Var(Cn(ξ)) which is to be compared with
studies that neglected the dependence between the
contributions of the subtrees mentioned above [20, 21,
23]. We also have an asymptotic for the variance of the
cost at a fixed query:

Theorem 2.3. We have for all s ∈ (0, 1), as n→∞,

Var (Cn(s)) ∼ K5(s(1− s))βn2β ,(2.6)

where

K5 = 2B(β + 1, β + 1)
2β + 1

3(1− β)
− 1.

Here, B(a, b) :=
∫ 1

0
xa−1(1 − x)b−1 dx denotes the

Eulerian beta integral (a, b > 0).

Some of the most striking consequence concerns the
cost of the worst query in a random plane quadtree.
Note in particular that the supremum does not induce
any extra logarithmic terms in the asymptotic cost.

Theorem 2.4. Let Sn = sups∈[0,1] Cn(s). Then, as
n→∞,

n−βSn
d→ S := sup

s∈[0,1]
Z(s),

with E[Sn] ∼ nβE[S] and Var(Sn) ∼ n2βVar(S).

Finally we note that the one-dimension marginals
of the limit process (Z(s), s ∈ [0, 1]) are all the same up
to a multiplicative constant.

Theorem 2.5. There is a random variable Z ≥ 0 such
that for all s ∈ [0, 1],

Z(s)
d
= (s(1− s))β/2Z.(2.7)

The distribution of Z is characterized by its moments
cm := E [Zm], m ∈ N. They are given by c1 = 1 and
the recurrence, for m ≥ 2,

(m− 1)(m+ 1− 3βm/2)cm

= (βm+ 1)

m−1∑
`=1

(
m

`

)
B(β`+ 1, β(m− `) + 1)c`cm−`.

Plan of the paper. Our approach requires to work
with random functions; as one might expect, proving
convergence in a space of functions involves a fair
amount of unavoidable technicalities. Here, we try to
keep the discussion at a rather high level, to avoid
diluting the main ideas in an ocean of intricate details.
In Section 3, we give an overview of our main tool,
the contraction method. In Section 4, we identify
the variance and the supremum of the limit process
Z, and deduce the large n asymptotics for Cn(s) in
Theorems 2.2 and 2.4.

3 Contraction method: from the real line to
functional spaces

3.1 Overview The aim of this section is give an
overview of the method we employ to prove Theo-
rem 2.1. The idea is very natural and relies on a con-
traction argument in a certain space of probability dis-
tributions. In the context of the analysis of perfor-
mance of algorithms, the method was first employed
by Rösler [29] who proved convergence in distribution
for the rescaled total cost of the randomized version of
quicksort. The method was then further developed by
Rachev and Rüschendorf [27], Rösler [30], and later on
in [5, 9, 22, 24, 25, 31] and has permitted numerous
analyses in distribution for random discrete structures.

So far, the method has mostly been used to analyze
random variables taking real values, though a few
applications on functions spaces have been made, see
[5, 9, 16]. Here we are interested in the function space
D[0, 1] with the uniform topology, but the main idea
persists: (1) devise a recursive equation for the quantity
of interest (here the process(Cn(s), s ∈ [0, 1])), and (2)
prove that a properly rescaled version of the quantity
converges to a fixed point of a certain map related to
the recursive equation ; (3) if the map is a contraction
in a certain metric space, then a fixed point is unique
and may be obtained by iteration. We now move on to
the first step of this program.

Write I
(n)
1 , . . . , I

(n)
4 for the number of points falling

in the four regions created by the point stored at the
root. Then, given the coordinates of the first data point
(U, V ), we have, cf. Figure 1,

(I
(n)
1 , . . . , I

(n)
4 )

d
=

Mult(n− 1;UV,U(1− V ), (1− U)(1− V ), (1− U)V ).

Observe that, for the cost inside a subregion, what
matters is the location of the query line relative to the
region. Thus a decomposition at the root yields the
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following recursive relation, for any n ≥ 1,

Cn(s)
d
= 1+1{s<U}

[
C

(1)

I
(n)
1

( s
U

)
+ C

(2)

I
(n)
2

( s
U

)]
+1{s≥U}

[
C

(3)

I
(n)
3

(
1− s
1− U

)
+ C

(4)

I
(n)
4

(
1− s
1− U

)]
,(3.8)

where U, I
(n)
1 , . . . , I

(n)
4 are the quantities already in-

troduced and (C
(1)
k ), . . . , (C

(4)
k ) are independent copies

of the sequence (Ck, k ≥ 0), independent of

(U, V, I
(n)
1 , . . . , I

(n)
4 ). We stress that this equation does

not only hold true pointwise for fixed s but also as
càdlàg functions on the unit interval. The relation in
(3.8) is the fundamental equation for us.

Letting n → ∞ (formally) in (3.8) suggests that,
if n−βCn(s) does converge to a random variable Z(s)
in a sense to be precised, then the distribution of the
process (Z(s), 0 ≤ s ≤ 1) should satisfy the following
fixed point equation

Z(s)
d
=1{s<U}

[
(UV )βZ(1)

( s
U

)
+ (U(1− V ))βZ(2)

( s
U

)]
+ 1{s≥U}

[
((1− U)V )βZ(3)

(
s− U
1− U

)
(3.9)

+ ((1− U)(1− V ))βZ(4)

(
s− U
1− U

)]
,

where U and V are independent [0, 1]-uniform random
variables and Z(i), i = 1, . . . , 4 are independent copies
of the process Z, which are also independent of U and
V .

The last step leading to the fixed point equation
(3.9) needs now to be made rigorous. It is at this point
that the contraction method enters the game. The
distribution of a solution to our fixed-point equation
(3.9) lies in the set of probability measures on the
Banach space (D[0, 1], ‖ · ‖), which is the set we have
to endow with a metric. The recursive equation (3.8)
is an example for the following, more general setting of
random additive recurrences: Let (Xn) beD[0, 1]-valued
random variables with

(3.10) Xn
d
=

K∑
r=1

A(n)
r

(
X

(r)

I
(n)
r

)
+ b(n), n ≥ n0,

where (A
(n)
1 , . . . , A

(n)
K ) are random linear and

continuous operators on D[0, 1], b(n) is a

D[0, 1]-valued random variable, I
(n)
1 , . . . , I

(n)
K

are random integers between 0 and n − 1 and

(X
(1)
n ), . . . , (X

(K)
n ) are distributed like (Xn). Moreover

(A
(n)
1 , . . . , A

(n)
K , b(n), I

(n)
1 , . . . , I

(n)
K ), (X

(1)
n ), . . . , (X

(K)
n )

are independent.
To establish Theorem 2.1 as a special case of this

setting we use Proposition 3.1 below. Proposition 3.1
is covered by the forthcoming paper [26]. We first state
conditions needed to deal with the general recurrence
(3.10); we will then justify that it can indeed be used
in the case of cost of partial match queries. Consider
the following assumptions, where, for a random linear
operatorA we write ‖A‖2 := E[‖A‖2op]1/2 with ‖A‖op :=
sup‖x‖=1 ‖A(x)‖. Suppose (Xn) obeys (3.10) and

(A1) Convergence and contraction. We have

‖A(n)
r ‖2, ‖bn‖2 <∞ for all r = 1, . . . ,K and n ≥ 0

and there exist random operators A1, . . . , AK on
D[0, 1] and a D[0, 1]-valued random variable b with,
for some positive sequence R(n) ↓ 0, as n→∞,

K∑
r=1

(
‖A(n)

r −Ar‖2 +
∥∥∥1{I(n)

r ≤n0}
A(n)
r

∥∥∥
2

)
(3.11)

+ ‖b(n) − b‖2 = O(R(n))

and for all ` ∈ N,

E
[
1{I(n)

r ∈{0,...,`}∪{n}}‖A
(n)
r ‖2op

]
→ 0

and

(3.12) lim sup
n→∞

E

[
K∑
r=1

‖A(n)
r ‖2op

R(I
(n)
r )

R(n)

]
< 1.

(A2) Existence and equality of moments.
E[‖Xn‖2] <∞ for all n and E[Xn1

(t)] = E[Xn2
(t)]

for all n1, n2 ∈ N0, t ∈ [0, 1].

(A3) Existence of a continuous solution. There
exists a solution X of the fixed-point equation

(3.13) X
d
=

K∑
r=1

Ar(X
(r)) + b

with continuous paths, E[‖X‖2] < ∞ and
E[X(t)] = E[X1(t)] for all t ∈ [0, 1]. Again
(A1, . . . , AK , b), X

(1), . . . , X(K) are independent
and X(1), . . . , X(K) are distributed like X.

(A4) Perturbation condition. Xn = Wn + hn
where ‖hn − h‖ → 0 with hn ∈ D[0, 1], h is
continuous, and the random variables Wn in D[0, 1]
such that there exists a sequence (rn) with, as
n→∞,

P (Wn /∈ Drn [0, 1])→ 0.

Here, Drn [0, 1] ⊂ D[0, 1] denotes the set of func-
tions on the unit interval, continuous at t = 1, for
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which there is a decomposition of [0, 1] into inter-
vals of length as least rn on which they are con-
stant.

(A5) Rate of convergence.

R(n) = o
(
log−2(1/rn)

)
.

The crucial part that makes everything work con-
sists in choosing a probability metric in such a way that
the limiting map is indeed a contraction. The con-
traction method presented here for the Banach space
(D[0, 1], ‖ · ‖) is based on the Zolotarev metric ζs and,
for our fixed-point equation, we indeed obtain contrac-
tion with s = 2. This follows by our modified assump-
tion (A1) since

E

[
K∑
r=1

‖Ar‖2
]

= lim
n

E

[
K∑
r=1

‖A(n)
r ‖2

]

≤ lim sup
n

E

[
K∑
r=1

‖A(n)
r ‖2

R(I
(n)
r )

R(n)

]
< 1.

The amounts of details to be verified prevents us to
provide a complete proof of all the assumptions in the
present case. In the remainder of the section, we will not
come back on the method and Proposition 3.1 itself but
show how it can be applied; we will however, discuss and
outline the proof of the main assumptions (A1), (A2),
(A3) and (A5).

Proposition 3.1. Let Xn fulfill (3.10). Provided that
Assumptions (A1)–(A3) are satisfied, the solution X of
the fixed-point equation (3.13) is unique.

i. For all t ∈ [0, 1], Xn(t)→ X(t) in distribution, with
convergence of the first two moments;

ii. If U is independent of (Xn), X and distributed on
[0, 1] then Xn(U) → X(U) in distribution again
with convergence of the first two moments.

iii. If also (A4) and (A5) hold, then Xn → X in
distribution in (D[0, 1], ‖ · ‖).

3.2 Existence of a continuous solution In this
section, we outline the proof of existence of a continuous
process Z that satisfies the distributional fixed point
equation (3.9) as it is needed for assumption (A3).
We construct the process Z as the pointwise limit
of martingales. We then show that the convergence
is actually almost surely uniform, which allows us to
conclude that Z is actually continuous with probability
one. Write C[0, 1] for the space of continuous functions
on [0, 1].

Consider the infinite 4-ary tree T =⋃
n≥0{1, 2, 3, 4}n. For a node u ∈ T , we write |u|

for its depth, i.e. the distance between u and the
root ∅. The descendants of u ∈ T correspond to
all the words in T with prefix u. Let {Uv, v ∈ T }
and {Vv, v ∈ T } be two independent families of i.i.d.
[0, 1]-uniform random variables.

Construction by iteration. Define the operator
G : (0, 1)2 × C[0, 1]4 → C[0, 1] by

G(x, y,f1, f2, f3, f4)(s)

=1{s<x}

[
(xy)βf1

( s
x

)
+ (x(1− y))βf2

( s
x

)]
+ 1{s≥x}

[
((1− x)y)βf3

(
s− x
1− x

)
(3.14)

+ ((1− x)(1− y))βf4

(
s− x
1− x

)]
.

Let h be the map defined by h(s) = (s(1−s))β/2, where
2β =

√
17− 3. For every node u ∈ T , let Zu0 = h. Then

define recursively

Zun+1 = G(Uu, Vu, Z
u1
n , Zu2n , Zu3n , Zu4n ).(3.15)

Finally, define Zn = Z∅
n to be the value observed at the

root of T when the iteration has been started with h in
all the nodes at level n.

A series representation for Zn. For s ∈ [0, 1],
Zn(s) is the sum of exactly 2n terms, each one being
the contribution of one of the boxes at level n that is
cut by the line at s. Let {Qni (s), 1 ≤ i ≤ 2n} be the set
of rectangles at level n whose first coordinate intersect
s. Suppose that the projection of Qni (s) on the first
coordinate yields the interval [`ni , r

n
i ]. Then

(3.16) Zn(s) =

2n∑
i=1

Leb(Qni (s))β · h
(
s− `ni
rni − `ni

)
,

where Leb(Qni (s)) denotes the volume of the rectangle
Qni (s). The difference between Zn and Zn+1 only relies
in the functions appearing the boxes Qni (s): We have

Zn+1(s)− Zn(s) =

2n∑
i=1

Leb(Qni (s))β ·∆n
i

(
s− `ni
rni − `ni

)(3.17)

with ∆n
i (x) = G(U ′i , V

′
i , h, h, h, h)(x)− h(x) and U ′i , V

′
i ,

1 ≤ i ≤ 2n are i.i.d. [0, 1]-uniform random variables.
In fact, U ′i and V ′i are some of the variables Uu, Vu for
nodes u at level n. Observe that, although Qni (s) is
not a product of n independent terms of the form UV
because of size-biasing, U ′i , V

′
i are in fact unbiased, i.e.

uniform. Let Fn denote the σ-algebra generated by
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{Uu, Vu : |u| < n}. Then the family {U ′i , V ′i : 1 ≤ i ≤
2n} is independent of Fn.

A martingale. Let s ∈ [0, 1] be fixed. We show that
the sequence (Zn(s), n ≥ 0) is a non-negative discrete
time martingale ; so it converges with probability one
to a finite limit Z(s). To prove that Zn(s) is a indeed a
martingale, it suffices to prove that, for 1 ≤ i ≤ 2n,

E

[
G(U ′i , V

′
i , h, h, h, h)

(
s− `ni
rni − `ni

)∣∣∣∣Fn

]
= h

(
s− `ni
rni − `ni

)
.

Since U ′i , V
′
i , 1 ≤ i ≤ 2n are independent of Fn, this

clearly reduces to the following lemma.

Lemma 3.1. For the operator G defined in (3.14) and
U, V two independent [0, 1]-uniform random variables,
and any s ∈ [0, 1], we have E [G(U, V, h, h, h, h)(s)] =
h(s).

Almost sure continuity. Assume for the moment
that there exist constants a, b ∈ (0, 1) and C such that

(3.18) P

(
sup
s∈[0,1]

|Zn+1(s)− Zn(s)| ≥ an
)
≤ C · bn.

Then, by the Borel–Cantelli lemma, the sequence (Zn)
is almost surely cauchy with respect to the supremum
norm. Completeness of (C[0, 1], ‖ · ‖) yields the exis-
tence of a random process Z with continuous paths such
that Zn → Z uniformly on [0, 1]. We now move on to
showing that there exist constants a and b such that
(3.18) is satisfied. We start by a bound for a fixed value
s ∈ [0, 1].

Lemma 3.2. For every s ∈ [0, 1], any a ∈ (0, 1), and
any integer n large enough, we have the bound

P (|Zn+1(s)− Zn(s)| ≥ an) ≤ 4(16e log(1/a))n.

Then, in order to handle the supremum over s ∈
[0, 1], in (3.18) note that the number of values taken
by Zn is at most the number of boxes at level n,
i.e. 4n. To avoid unnecessary technicalities, we use
fixed points (much more than 4n) to control the extent
of sups∈[0,1] |Zn+1(s) − Zn(s)|. Consider the set Vn
of x-coordinates of the vertical boundaries of all the
rectangles at level n. We have

sup
s∈[0,1]

|Zn+1(s)− Zn(s)|

≤ sup
1≤i≤bγ−nc

|Zn+1(iγn)− Zn(iγn)|

+ 2 max
m∈{n,n+1}

sup
|s−t|≤γn

|Zm(s)− Zm(t)|.

Let Ln = inf{|x− y| : x, y ∈ Vn} and Wn = inf{rni (s)−
`ni (s)}. Then, on the event that Ln+1 ≥ (4γ)n, one
can show that |Zm(s) − Zm(t)| ≤ 3W β

n , for any m ∈
{n, n+ 1} and |s− t| ≤ γn. In particular, it follows by
the union bound that, for any γ ∈ (0, 1),

P

(
sup
s∈[0,1]

|Zn+1(s)− Zn(s)| ≥ an
)

≤ γ−n sup
s∈[0,1]

P (|Zn+1(s)− Zn(s)| ≥ an)

+ P (Ln < (4γ)n) + P
(
12W β

n > an
)
.

The following lemmas then yields (3.18) which com-
pletes the proof.

Lemma 3.3. For any positive real number γ small
enough, it exists an integer n1(γ) with

P (Ln < γn) ≤ 6 · 4nγn/201, n ≥ n1(γ).

Lemma 3.4. The maximum width Wn of a cell at level
n satisfies, for any c > 0,

P (Wn ≥ cn) ≤ (4e log(1/c))n.

3.3 Uniform convergence of the mean The proof
of Theorem 2.1 requires to show uniform convergence
of the first moment n−βE [Cn(s)] towards µ1(s) =
K1(s(1 − s))β/2 uniformly on [0, 1] in order to verify
assumption (A1), in particular the rate R(n) in (3.11).
Note that, since Cn(s) is continuous in any fixed s
almost surely, the function s→ E [Cn(s)] is continuous
for any n. Curien and Joseph [4] only show pointwise
convergence, and proving uniform convergence requires
a good deal of additional arguments.

The first step is to prove a Poissonized version, the
fixed-n version is then obtained by a routine Tauberian
argument. Consider a Poisson point process with unit
intensity on [0, 1]2 × [0,∞). The first two coordinates
represent the location inside the unit square; the third
one represents the time of arrival of the point. Let Pt(s)
denote the partial match cost for a query at x = s in
the quad tree built from the points arrived by time t.

Proposition 3.2. There exists ε > 0 such that

sup
s∈[0,1]

|t−βE[Pt(s)]− µ1(s)| = O(t−ε).

The proof of Proposition 3.2 relies crucially on
two main ingredients: first, a strengthening of the
arguments developed by Curien and Joseph [4], and the
speed of convergence E[Cn(ξ)] to E[µ1(ξ)] for a uniform
query line ξ, see (1.2), by Chern and Hwang [3]. By
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symmetry, and for any δ ∈ (0, 1/2), we may bound the
supremum in Proposition 3.2 by

sup
s≤δ

∣∣t−βEPt(s)− µ1(s)
∣∣+ sup
δ<s≤1/2

∣∣t−βEPt(s)− µ1(s)
∣∣.

The two terms above are then controlled by the follow-
ing two lemmas.

Lemma 3.5. (Behavior on the edge) There exists
a constant C1 such that

(3.19) sup
t>0

sup
s≤δ

∣∣t−βE[Pt(s)]− µ1(s)
∣∣ ≤ C1δ

β/2.

Lemma 3.6. (Behavior away from the edge)
There exist constants C2, C3, η with 0 < η < β and
γ ∈ (0, 1) such that, for any integer k, and real number
δ ∈ (0, 1/2) we have, for any t > 0,

sup
s≥δ
|t−βE[Pt(s)]− µ1(s)|

≤ C2δ
−1(1− γ)k + C3k2k(β − η)−2kt−η.

Behaviour along the edge. The behaviour
away from the edge is rather involved and we do not
describe how the bound in Lemma 3.6 is obtained. To
deal with the term for involving the values of s ∈ [0, δ],
we relate the value E[Pt(s)] to E[Pt(δ)]. Note that
the limit first moment µ1(s) = limn→∞E[Pt(s)] is
monotonic for s ∈ [0, 1/2]. It seems, at least intuitively,
that for any fixed real number t > 0, E[Pt(s)] should
also be monotonic for s ∈ [0, 1/2], but we were unable
to prove it. The following weaker version is sufficient
for our purpose.

Proposition 3.3. (Almost monotonicity) For
any s < 1/2 and ε ∈ [0, 1− 2s), we have

E[Pt(s)] ≤ E

[
Pt(1+ε)

(
s+ ε

1 + ε

)]
.

4 Second moment and supremum

In this section, we obtain explicit expressions about the
limit, proving that our general approach also turns out
to yield effective and computable results.

Variance of the cost. We first focus on the result in
Theorem 2.2. Our main result implies the convergence
n−2βE[Cn(s)2] → E[Z(s)2]. Write h(s) = E[Z(s)] =
(s(1 − s))β/2. Taking second moments in (3.9) and
writing it as an integral in terms of µ2(s) = E[Z(s)2]
yields that we have the following integral equation, for

every s ∈ [0, 1],

µ2(s) =
2

2β + 1

{∫ 1

s

x2βµ2

( s
x

)
dx

+

∫ s

0

(1− x)2βµ2

(
1− s
1− x

)
dx

}
+ 2B(β + 1, β + 1) · h(s)2

β + 1
.

One easily verifies that the function f given by f(s) =
c2h(s)2 solves the above equation provided that the
constant c2 satisfies

c2 =
2

(2β + 1)(β + 1)
c2 + 2

B(β + 1, β + 1)

β + 1

that is

c2 = 2B(β + 1, β + 1)
2β + 1

3(1− β)
,

since β2 = 2 − 3β. So if we were sure that µ2(s) is
indeed c2h(s)2, we would have by integration

Var(Z(ξ)) = c2B(β + 1, β + 1)− B(β/2 + 1, β/2 + 1)2.

To complete the proof, it suffices to show that
the integral equation satisfied by µ2 actually admits a
unique solution. To this aim, we show that the map K
defined below is a contraction for the supremum norm
(the details are omitted)

Kf(s) =
2

2β + 1

{∫ 1

s

x2βf
( s
x

)
dx

+

∫ s

0

(1− x)2βf

(
1− s
1− x

)
dx

}
+ 2B(β + 1, β + 1)

[s(1− s)]β

β + 1
.

Cost of the worst query. The uniform convergence
of n−βCn(·) to the process Z(·) directly implies (contin-
uous mapping theorem) the first claim of Theorem 2.4,

(4.20)
Sn
K1nβ

d→ S := sup
s∈[0,1]

Z(s).

The convergence in the Zolotarev metric ζ2 on which
the contraction method is based here, is strong enough
to imply convergence of the first two moments of Sn to
the corresponding moments of S.

5 Concluding remarks

The method we exposed here to obtain refined results
about the costs of partial match queries in quadtrees
also applies to other geometric data structures based on
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the divide-and-conquer approach. In particular, similar
results can be obtained for the k-d trees of Bentley [1]
or the relaxed k-d trees of Duch et al. [7].

We conclude by mentioning some open questions.
The supremum of the process is of great interest since
it upperbounds the cost of any query. Can one identify
the moments of the supremum sups∈[0,1] Z(s) (first and
second)? In the course of our proof, we had to construct
a continuous solution of the fixed point equation. We
prove convergence in distribution, but conjecture that
the convergence actually holds almost surely.
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