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Abstract

The normalized number of key comparisons needed to sort a list of randomly permuted items by
the Quicksort algorithm is known to converge in distribution. We identify the rate of convergence
to be of the order Θ(ln(n)/n) in the Zolotarev metric. This implies several ln(n)/n estimates
for other distances and local approximation results as for characteristic functions, for density
approximation, and for the integrated distance of the distribution functions.
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1 Introduction and main result

The distribution of the number of key comparisons Xn of the Quicksort algorithm needed to sort
an array of n randomly permuted items is known to converge after normalization in distribution as
n→∞; see Régnier [9], Rösler [10]. Recently, some estimates for the rate were obtained by Fill and
Janson [4], who roughly speaking get upper estimates O(n−1/2) for the convergence in the minimal
Lp-metrics `p, p ≥ 1, and O(n−1/2+ε) for the Kolmogorov metric for all ε > 0 as well as the lower
estimates Ω(ln(n)/n) for the `p metrics, p ≥ 2, and Ω(1/n) for the Kolmogorov metric.

After presenting their results at “The Seventh Seminar on Analysis of Algorithms” on Tatihou
in July, 2001, some indication was given at the meeting that Θ(ln(n)/n) might be the right order
of the rate of convergence for many metrics of interest. In this note we confirm this conjecture for
the Zolotarev metric ζ3. Since ζ3 serves as an upper bound for several other distance measures this
implies ln(n)/n bounds as well for some local metrics, for characteristic functions, and for weighted
global metrics. For the proof we use a form of the contraction method as developed in Rachev and
Rüschendorf [8] and Cramer and Rüschendorf [1]. We establish explicit estimates to identify the rate
of convergence.

The paper is organized as follows: In this section we recall some known properties of the sequence
(Xn), introduce the Zolotarev metric ζ3, and state our main theorem, which is proved in section 2.

1Research supported by NSERC grant A3450 and the Deutsche Forschungsgemeinschaft.
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In the last section implications of the ζ3 convergence rate are drawn based on several inequalities
between probability metrics.

The sequence of the number of key comparisons (Xn) needed by the Quicksort algorithm to sort
an array of n randomly permuted items satisfies X0 = 0 and the recursion

Xn
D= XIn +X ′n−1−In + n− 1, n ≥ 1, (1)

where D= denotes equality in distribution, (Xk), (X ′k), In are independent, In is uniformly distributed
on {0, . . . , n − 1}, and Xk ∼ X ′k, k ≥ 0, where ∼ also denotes equality of distributions. The mean
and variance of Xn are exactly known and satisfy

EXn = 2n ln(n) + (2γ − 4)n+O(ln(n)), Var(Xn) = σ2n2 − 2n ln(n) +O(n),

where γ denotes Euler’s constant and σ :=
√

7− 2π2/3 > 0. We introduce the normalized quantities
Y0 := 0 and

Yn :=
Xn − EXn

n
, n ≥ 1,

which satisfy, see Régnier [9], Rösler [10], a limit law Yn → Y in distribution as n→∞. Rösler [10]
showed that Y satisfies the distributional fixed-point equation

Y
D= UY + (1− U)Y ′ + g(U), (2)

where Y, Y ′, U are independent, Y ∼ Y ′, U is uniform [0, 1] distributed, and g(u) := 1 + 2u ln(u) +
2(1 − u) ln(1 − u), u ∈ [0, 1]. Moreover this identity, subject to EY = 0, characterizes Y , and
convergence and finiteness of the moment generating functions hold (see Rösler [10] and Fill and
Janson [2]). We will use subsequently that Var(Y ) = σ2 and ‖Y ‖3 <∞, where ‖Y ‖p := (E |Y |p)1/p,
1 ≤ p <∞, denotes the Lp-norm.

The purpose of the present note is to estimate the rate of the convergence Yn → Y . Our basic
distance is the Zolotarev metric ζ3 given for distributions L(V ),L(W ) by

ζ3(L(V ),L(W )) := sup
f∈F3

|E f(V )− E f(W )| ,

where F3 := {f ∈ C2(R,R) : |f ′′(x) − f ′′(y)| ≤ |x − y|} is the space of all twice differentiable
functions with second derivative being Lipschitz continuous with Lipschitz constant 1. We will use
the short notation ζ3(V,W ) := ζ3(L(V ),L(W )). It is well known that convergence in ζ3 implies weak
convergence and that ζ3(V,W ) < ∞ if EV = EW , EV 2 = EW 2, and ‖V ‖3, ‖W‖3 < ∞. The
metric ζ3 is ideal of order 3, i.e., we have for T independent of (V,W ) and c 6= 0

ζ3(V + T,W + T ) ≤ ζ3(V,W ), ζ3(cV, cW ) = |c|3ζ3(V,W ).

For general reference and properties of ζ3 we refer to Zolotarev [12] and Rachev [6].
Our main result states:

Theorem 1.1 The number of key comparisons (Xn) needed by the Quicksort algorithm to sort an
array of n randomly permuted items satisfies

ζ3

(
Xn − EXn√

Var(Xn)
, X

)
= Θ

(
ln(n)
n

)
, (n→∞),

where X := Y/σ is a scaled version of the limiting distribution given in (2).

For related results with respect to other distance measures see section 3.
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2 The proof

In the following lemma we state two simple bounds for the Zolotarev metric ζ3, for which we do not
claim originality. The upper bound involves the minimal L3-metric `3 given by

`p(L(V ),L(W )) := `p(V,W ) := inf{‖V̄ − W̄‖p : V̄ ∼ V, W̄ ∼W}, p ≥ 1. (3)

Lemma 2.1 For V,W with identical first and second moment and ‖V ‖3, ‖W‖3 <∞, we have

1
6

∣∣EV 3 − EW 3
∣∣ ≤ ζ3(V,W ) ≤ 1

2
(
‖V ‖23 + ‖V ‖3‖W‖3 + ‖W‖23

)
`3(V,W ).

Proof: The left inequality follows from the fact that we have f ∈ F3 for f(x) := x3/6, x ∈ R. For
the right inequality we use the estimate ζ3(V,W ) ≤ (1/2)κ3(V,W ), see Zolotarev [11, p. 729], where
κ3 denotes the third difference pseudomoment, which has the representation (see Rachev [6, p. 271])

κ3(V,W ) = inf
{
E |V̄ 3 − W̄ 3| : V̄ ∼ V, W̄ ∼W

}
.

From
∣∣V̄ 3 − W̄ 3

∣∣ =
∣∣V̄ 2 + V̄ W̄ + W̄ 2

∣∣ ∣∣V̄ − W̄ ∣∣ and Hölder’s inequality we obtain

E

∣∣V̄ 3 − W̄ 3
∣∣ ≤ ∥∥V̄ 2 + V̄ W̄ + W̄ 2

∥∥
3/2

∥∥V̄ − W̄∥∥
3

≤
(∥∥V̄ ∥∥2

3
+
∥∥V̄ ∥∥

3

∥∥W̄∥∥
3

+
∥∥W̄∥∥2

3

)∥∥V̄ − W̄∥∥
3
.

Taking the infimum we obtain the assertion.

Proof of Theorem 1.1: First we prove the easier lower bound, where only information on the
moments of (Xn) is needed. Throughout we use constants σ(n) ≥ 0 defined by

σ2(n) := Var(Yn) = σ2 − 2
ln(n)
n

+O

(
1
n

)
. (4)

Lower bound: By Lemma 2.1 we have the basic estimate

ζ3

(
Xn − EXn√

Var(Xn)
, X

)
≥ 1

6

∣∣∣∣∣E
(

1
σ(n)

Yn

)3

− E
(

1
σ
Y

)3
∣∣∣∣∣ .

The third moment of Yn satisfies

EY 3
n =

1
n3
E (Xn − EXn)3 =

1
n3
κ3(Xn) = M +O

(
1
n

)
,

with M = EY 3 = 16ζ(3)− 19 > 0, where we use the expansion of the third cumulant κ3(Xn) of Xn

given by Hennequin [5, p. 136]. From (4) we obtain

1
σ3(n)

=
1
σ3

+
3
σ5

ln(n)
n

+O

(
1
n

)
,

thus

1
6

∣∣∣∣∣E
(

1
σ(n)

Yn

)3

− E
(

1
σ
Y

)3
∣∣∣∣∣ =

M

2σ5

ln(n)
n

+O

(
1
n

)
,

which gives the lower estimate of the theorem.
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Upper bound: The scaled variates Yn satisfy the modified recursion

Yn
D=
In
n
YIn +

n− 1− In
n

Y ′n−1−In + gn(In), n ≥ 1, (5)

where, as in (1), (Yk), (Y ′k), In are independent, Yk ∼ Y ′k for all k ≥ 0, and

gn(k) :=
1
n

(µ(k) + µ(n− 1− k)− µ(n) + n− 1) ,

with µ(n) := EXn, n ≥ 0. Furthermore, we define Z0 := Z ′0 := 0 and

Zn :=
σ(n)
σ

Y, Z ′n :=
σ(n)
σ

Y ′, n ≥ 1,

where Y, Y ′ are independent copies of the limit distribution also independent of In. Finally, we define
the accompanying sequence (Z∗n) by Z∗0 := 0,

Z∗n
D
:=

In
n
ZIn +

n− 1− In
n

Z ′n−1−In + gn(In), n ≥ 1. (6)

Note that Yn, Zn, Z∗n have identical first and second moment and finite third absolute moment for all
n ≥ 0, thus ζ3-distances between these quantities are finite. We will show

ζ3(Yn, Zn) = O

(
ln(n)
n

)
. (7)

From this estimate the upper bound follows immediately since we have (Xn − EXn)/
√

Var(Xn) =
Yn/σ(n), X ∼ Zn/σ(n), and therefore

ζ3

(
Xn − EXn√

Var(Xn)
, X

)
=

1
σ3(n)

ζ3(Yn, Zn) = O

(
ln(n)
n

)
,

since (σ(n)) has a nonzero limit.
For the proof of (7) we use the triangle inequality:

ζ3(Yn, Zn) ≤ ζ3(Yn, Z∗n) + ζ3(Z∗n, Zn). (8)

To estimate the first summand note that for any random variables V,W, T we obtain |E f(V ) −
E f(W )| ≤ E |E (f(V ) | T ) − E (f(W ) | T )| and that for (V,W ) independent of (S, T ) we have
ζ3(V + S,W + T ) ≤ ζ3(V,W ) + ζ3(S, T ). This implies using (5),(6), that ζ3 is ideal of order 3, and
conditioning on In,

ζ3(Yn, Z∗n)

≤
n−1∑
k=0

1
n
ζ3

(
k

n
Yk +

n− 1− k
n

Y ′n−1−k + gn(k),
k

n
Zk +

n− 1− k
n

Z ′n−1−k + gn(k)
)

≤
n−1∑
k=0

1
n

(
ζ3

(
k

n
Yk,

k

n
Zk

)
+ ζ3

(
n− 1− k

n
Y ′n−1−k,

n− 1− k
n

Z ′n−1−k

))

=
n−1∑
k=0

1
n

((
k

n

)3

ζ3(Yk, Zk) +
(
n− 1− k

n

)3

ζ3(Yn−1−k, Zn−1−k)

)

=
2
n

n−1∑
k=1

(
k

n

)3

ζ3(Yk, Zk). (9)
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We will show below that ζ3(Z∗n, Zn) = O(ln(n)/n). Thus (noting that ζ3(Z∗1 , Z1) = 0) there exists a
constant c > 0 with

ζ3(Z∗n, Zn) ≤ c ln(n)
n

, n ≥ 1. (10)

Then we prove (7) by induction using the constant c from (10):

ζ3(Yn, Zn) ≤ 3c
ln(n)
n

, n ≥ 1. (11)

Assertion (11) holds for n = 1. With (8),(9),(10) and the induction hypothesis we obtain

ζ3(Yn, Zn) ≤ 2
n

n−1∑
k=1

(
k

n

)3

3c
ln(k)
k

+ c
ln(n)
n

≤ 6c
ln(n)
n

n−1∑
k=1

k2

n3
+ c

ln(n)
n

≤ ln(n)
n

(
6c

1
3

+ c

)
= 3c

ln(n)
n

.

The proof is completed by showing (10): Since Y has a finite third absolute moment and (σ(n)) is
bounded, we obtain that the third absolute moments of (Zn), (Z∗n) are uniformly bounded, thus by
Lemma 2.1 there exists a constant L > 0 with

ζ3(Z∗n, Zn) ≤ L`3(Z∗n, Zn), n ≥ 1. (12)

By definition of Zn and the fixed-point property of Y we obtain the relation

Zn
D= UZn + (1− U)Z ′n +

σ(n)
σ

g(U), (13)

with U independent of (Zn, Z ′n) and U uniform [0, 1] distributed. We may choose In = bnUc; hence
it holds that |In/n − U | ≤ 1/n pointwise. Replacing Zn, Z∗n by their representations (13) and (6)
respectively we have

`3(Zn, Z∗n)

≤
∥∥∥∥Inn ZIn +

n− 1− In
n

Z ′n−1−In + gn(In)−
(
UZn + (1− U)Z ′n +

σ(n)
σ

g(U)
)∥∥∥∥

3

≤
∥∥∥∥Inn ZIn − UZn

∥∥∥∥
3

+
∥∥∥∥n− 1− In

n
Z ′n−1−In − (1− U)Z ′n

∥∥∥∥
3

+
∥∥∥gn(In)− σ(n)

σ
g(U)

∥∥∥
3
. (14)

The first and second summand are identical. We have∥∥∥∥Inn ZIn − UZn
∥∥∥∥

3

=
∥∥∥∥Inn σ(In)

σ
Y − σ(n)

σ
UY

∥∥∥∥
3

=
‖Y ‖3
σ

∥∥∥∥σ(In)
In
n
− σ(n)U

∥∥∥∥
3

and ∥∥∥∥σ(In)
In
n
− σ(n)U

∥∥∥∥
3

≤
∥∥∥∥(σ(In)− σ(n))

In
n

∥∥∥∥
3

+ σ(n)
∥∥∥∥Inn − U

∥∥∥∥
3

. (15)
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The second summand in (15) is O(1/n) since (σ(n)) is bounded and |In/n − U | ≤ 1/n. For the
estimate of the first summand we use

σ2(n) = σ2 +R(n), R(n) = O

(
ln(n)
n

)
,

and obtain for n sufficiently large such that σ(n) ≥ σ/2 > 0∥∥∥∥(σ(In)− σ(n))
In
n

∥∥∥∥
3

=
∥∥∥∥(σ2(In)− σ2(n)

) In
n

1
σ(n) + σ(In)

∥∥∥∥
3

≤ 2
σ

∥∥∥∥(σ2(In)− σ2(n)
) In
n

∥∥∥∥
3

=
2
nσ

∥∥In (σ2 +R(In)− σ2 −R(n)
)∥∥

3

= O

(
ln(n)
n

)
.

For the proof of the latter equality we use the triangle inequality for the L3-norm as well as the
finiteness of ‖ lnU‖3. This gives the O(ln(n)/n) bounds for the first and second summand in (14).
The third summand in (14) is estimated by∥∥∥∥gn(In)− σ(n)

σ
g(U)

∥∥∥∥
3

≤ ‖gn(In)− g(U)‖3 +
∣∣∣∣1− σ(n)

σ

∣∣∣∣ ‖g(U)‖3.

We have ‖gn(In) − g(U)‖3 = O(ln(n)/n) since the maximum norm satisfies ‖gn(In) − g(U)‖∞ =
O(ln(n)/n), see, e.g., Rösler [10, Prop. 3.2]. Finally, ‖g(U)‖3 <∞ since g(U) is bounded and∣∣∣∣1− σ(n)

σ

∣∣∣∣ ≤ ∣∣∣∣1− σ2(n)
σ2

∣∣∣∣ =
2
σ2

ln(n)
n

+O

(
1
n

)
.

Thus we have `3(Z∗n, Zn) = O(ln(n)/n) which by (12) implies ζ3(Z∗n, Zn) = O(ln(n)/n).

3 Related distances

In the following we compare several further distances to ζ3 and obtain similar convergence rates for
these distances. We denote the normalized version of Xn by

X̃n :=
Xn − EXn√

Var(Xn)
, n ≥ 3,

and X as in Theorem 1.1. Furthermore let C > 0 be a constant such that, by Theorem 1.1,
ζ3(X̃n, X) ≤ C ln(n)/n for n ≥ 3.

3.1 Density approximation

Let ϑ be a random variable with support on [0, 1] or [−1/2, 1/2] and with a density fϑ being three
times differentiable on the real line and suppose

Cϑ,3 := sup
x∈R
|f (3)
ϑ (x)| <∞.
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For random variables V,W with densities fV , fW let the sup-metric ` of the densities be denoted by

`(V,W ) := ess sup
x∈R

|fV (x)− fW (x)| .

For any distributions of V and W , the random variables V + hϑ and W + hϑ have densities with
bounded third derivative. The smoothed sup-metric

µϑ,4(V,W ) := sup
h∈R
|h|4`(V + hϑ,W + hϑ),

with ϑ independent of V,W , is ideal of order 3 and

µϑ,4(V,W ) ≤ Cϑ,3ζ3(V,W ),

see Rachev [6, p. 269]. Therefore, from Theorem 1.1 we obtain the estimate

µϑ,4(X̃n, X) ≤ CCϑ,3
ln(n)
n

, n ≥ 3.

This implies the following local approximation results for the densities of the smoothed random
variates:

Corollary 3.1 For any sequence (hn) of positive numbers and any n ≥ 3 we have

ess sup
x∈R

∣∣∣fX̃n+hnϑ
(x)− fX+hnϑ(x)

∣∣∣ ≤ CCϑ,3 ln(n)
nh4

n

.

In particular for hn ≡ 1 we obtain an ln(n)/n approximation bound.

For a related approximation result for the density fX see Theorem 6.1 in Fill and Janson [4].
A global density approximation result holds in the following form. Assume

C̄ϑ,2 :=
∥∥∥f (2)

ϑ

∥∥∥
1

:=
∫ ∞
−∞

∣∣∣f (2)
ϑ (x)

∣∣∣ dx <∞ (16)

for some random variable ϑ with density fϑ twice differentiable on the line and with support of length
bounded by one, which is independent of X̃n, X. Then the following holds:

Corollary 3.2 For any sequence (hn) of positive numbers and any n ≥ 3 we have∥∥∥fX̃n+hnϑ
− fX+hnϑ

∥∥∥
1
≤ CC̄ϑ,2

ln(n)
nh3

n

. (17)

Proof: Consider the smoothed total variation metric

νϑ,3(V,W ) := sup
h∈R
|h|3 ‖fV+hϑ − fW+hϑ‖1 ,

with ϑ independent of V,W , which is a probability metric, ideal of order 3, satisfying νϑ,3(V,W ) ≤
C̄ϑ,2ζ3(V,W ), see Rachev [6, p. 269]. Therefore, Theorem 1.1 implies the estimate (17).

In particular, we obtain an ln(n)/n convergence rate for hn ≡ 1. Note that the left-hand side of (17)
is the total variation distance between the smoothed variables X̃n + hnϑ,X + hnϑ.
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3.2 Characteristic function distances

For a random variable V denote by φV (t) := E exp(itV ), t ∈ R, its characteristic function and by

χ(V,W ) := sup
t∈R
|φV (t)− φW (t)|

the uniform distance between characteristic functions. We obtain the following approximation result.

Corollary 3.3 For all t ∈ R and for any n ≥ 3 we have∣∣∣φX̃n(t)− φX(t)
∣∣∣ ≤ Ct3 ln(n)

n
. (18)

Proof: We define the weighted χ-metric χ3 by

χ3(V,W ) := sup
t∈R
|t|−3 |φV (t)− φW (t)| .

Then χ3 is a probability metric, ideal of order 3, satisfying χ3 ≤ ζ3, see Rachev [6, p. 279]. Therefore,
(18) follows from Theorem 1.1.

3.3 Approximation of distribution functions

In this section we consider the local and global approximation of the (smoothed) distribution func-
tions. We denote by FV the distribution function of a random variable V . Note that for integrable
V,W we have the well-known representation of the `1-metric as defined in (3) due to Dall’Aglio (see
Rachev [6, p. 153])

`1(V,W ) = ‖FV − FW ‖1 .

The Kolmogorov metric is denoted by

%(V,W ) := sup
x∈R
|FV (x)− FW (x)| .

Let ϑ be a random variate, independent of X̃n, X, with density fϑ twice continuously differentiable
and support of length bounded by one, and C̄ϑ,2 as in (16). It is known that X has a bounded density,
see Fill and Janson [3]. We obtain:

Corollary 3.4 For any sequence (hn) of positive numbers we have for any n ≥ 3

`1(X̃n + hnϑ,X + hnϑ) ≤ CC̄ϑ,2
ln(n)
nh2

n

, (19)

%(X̃n + hnϑ,X + hnϑ) ≤ CC̄ϑ,2 (1 + ‖fX‖∞)
ln(n)
nh2

n

. (20)

Proof: Note that ζ1 = `1 by the classical Kantorovich-Rubinstein duality theorem (see Rachev [6,
p. 109]). Furthermore, between ζ1 = `1 and ζ3 we have the relation

ζ1(V + ϑ,W + ϑ) ≤ C̄ϑ,2ζ3(V,W ),
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see Zolotarev [12, Theorem 5], if V,W have identical first and second moments. This implies that
for all h 6= 0

`1(V + hϑ,W + hϑ) ≤ C̄hϑ,2ζ3(V,W ) =
C̄ϑ,2
h2

ζ3(V,W ). (21)

The inequality in (21) implies that the smoothed `1 metric

¯̀
1

(2)(V,W ) := sup
h∈R
|h|2`1(V + hϑ,W + hϑ)

is bounded from above by ¯̀
1

(2)(V,W ) ≤ C̄ϑ,2ζ3(V,W ). With Theorem 1.1 this implies (19).
For the proof of (20) first note that ‖fX+hϑ‖∞ ≤ ‖fX‖∞ < ∞ for all h 6= 0. With the stop loss

metric

d1(V,W ) := sup
t∈R

∣∣E (V − t)+ − E (W − t)+
∣∣

we obtain from Rachev and Rüschendorf [7, (2.30),(2.26)] and Rachev [6, p. 325]

%(Xn + hϑ,X + hϑ) ≤ (1 + ‖fX‖∞) d1(Xn + hϑ,X + hϑ)
≤ C̄hϑ,2 (1 + ‖fX‖∞) ζ3(Xn, X)

=
C̄ϑ,2
h2

(1 + ‖fX‖∞) ζ3(Xn, X),

which implies the assertion.

Concluding remark

Our results indicate that ln(n)/n is the relevant rate for the convergence Yn → Y for several natural
distances. We do however have no argument to decide the order of the rate of convergence in the
Kolmogorov metric %(Yn, Y ) (without smoothing) nor in the `p-metrics as considered in Fill and
Janson [4].
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[7] Rachev, S. T. and L. Rüschendorf (1990). Approximation of sums by compound Poisson distri-
butions with respect to stop-loss distances. Adv. in Appl. Probab. 22, 350–374.
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