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Abstract

We characterize all limit laws of the quicksort type random variables defined recursively by

Xn

d
= XIn

+ X∗
n−1−In

+ Tn when the “toll function” Tn varies and satisfies general conditions,

where (Xn), (X∗
n
), (In, Tn) are independent, Xn

d
= X∗

n
, and In is uniformly distributed over

{0, . . . , n − 1}. When the “toll function” Tn (cost needed to partition the original problem into
smaller subproblems) is small (roughly lim sup

n→∞
logE(Tn)/ logn ≤ 1/2), Xn is asymptotically

normally distributed; non-normal limit laws emerge when Tn becomes larger. We give many new
examples ranging from the number of exchanges in quicksort to sorting on broadcast communi-
cation model, from an in-situ permutation algorithm to tree traversal algorithms, etc.
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1 Quicksort recurrence

Quicksort, invented by Hoare [36], is one of the most widely used general-purpose sorting algorithms
and was selected to be among the top ten most influential algorithms in Science and Engineering
in the 20th century; see JaJa [40]. For more information on practical implementation and recent
development of quicksort, see for example [5, 48, 74]. Assume that the input comes from a sequence
of independent and identically distributed random variables with a common continuous distribution,
the cost measures, say Xn, on quicksort can generally be described by X0 = 0 and for n ≥ 1

Xn
d
= XIn +X∗

n−1−In
+ Tn, (1)

where (Xn), (X∗
n), (Tn, In) are independent,Xn

d
= X∗

n, and In is uniformly distributed over {0, . . . , n−
1}. Here the symbol “

d
=” denotes equivalence in distribution and Tn is either a deterministic function
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the School for hospitality and support.
2Partially supported by the Deutsche Forschungsgemeinschaft.
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of n or a random variable depending on In or not. Throughout this paper, we call Tn the toll
function. Note that this description implicitly assumes that the randomness is preserved for each
subfile after partitioning, a property enjoyed by many partitioning schemes but easily violated if
carelessly implemented; see Sedgewick [70] for a detailed discussion. Our aim in this paper is to
develop a distribution theory for Xn based on the stochastic behavior of Tn.

The motivation of such a study is multifold. First, the model is simple yet prototypical of
many sophisticated divide-and-conquer schemes. Viewing this recurrence from an equally important
binary search tree perspective, a large number of extensions and variants (see Devroye [18] and
Gonnet and Baeza-Yates [30]) can be studied. Second, the inherent phase change of the limit laws
from normal to non-normal is a new, interesting phenomenon, which should also occur in many other
structures. Third, how sensitive is the limit law of the cost with respect to the toll function? For
such a simple structure, a certain “robustness” is expected. Also the extent to which the normal
law persists is helpful in giving a deeper understanding of the associated algorithms; roughly, the
variance is increasing as the toll function grows, and the algorithms become less useful in practice
if the variance is too large. Fourth, a complete characterization of the limit law under varying toll
functions is still lacking in the literature. Fifth, the diverse examples we collected were the catalysts
that stimulated our study.

The most studied special case is Tn = n+O(1), which corresponds to the number of comparisons
used by quicksort to sort a random input, or, equivalently, to the total path length of a random
binary search tree. It is known that

Xn −E(Xn)

n

d−→ Y,

where “
d−→ ” denotes convergence in distribution. Here Y satisfies

Y
d
= UY + (1− U)Y ∗ + 2U logU + 2(1− U) log(1− U) + 1, (2)

where Y
d
= Y ∗, U is a uniform random variable over the unit interval, and Y , Y ∗, and U are

independent; see Rösler [65], Régnier [63], and Fill and Janson [25].
Other known cases leading to a normal limit law are

– the number of leaves in a random binary search tree for which Tn = δn1, the Kronecker symbol;
see Devroye [17, 19], Flajolet et al. [27];

– the log-product of subtree sizes for which Tn = log n; see Fill [24];

– the number of occurrences of any fixed pattern with Tn equal to the probability of the pattern
when n is equal to the size of the pattern; see Flajolet et al. [27];

– the number of occurrence of subtrees of a given fixed size; see Aldous [1], Devroye [17, 19];

– the number of nodes whose subtree sizes are larger than a given page size b ≥ 1; see Flajolet et
al. [27].

The case when Tn = nα, where α > 1, was studied by Neininger [52]; this case leads again to
non-normal limit laws.

The rough picture reflected by these sporadic examples is that if the toll function is small such
as log n or O(1) then the limit law of the total cost is normal, and that for large toll function such as
n it is non-normal. But when does the limit law of the total cost fail to be normal? We show, under
general conditions, that

√
n is roughly the separating line between normal and non-normal limit

laws; this is intuitively in accordance with the classical law of errors. For, from a structural point of
view, if the toll function is small, then the contribution from each subproblem is not dominating, so
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that the normal limit law is quite expected (in vivid terms, the situation resembles the democratic
system). On the other hand, if the toll function is large, then the main contribution comes from
a few subproblems of large size, rendering large variance and thus non-normal law in the limit
(totalitarian system?). An even more intuitive guess is that if Var(Tn) = o(Var(Xn)) then Xn would
be asymptotically normally distributed; otherwise, the limit law would be non-normal. This guess,
although false in general, is true for the conditions we consider.

These examples will turn out to be special cases of our general results. We will discuss more new
examples in Section 6.

We give two different approaches, based, respectively, on the contraction method (see Rösler and
Rüschendorf [68]) and the method of moments, to prove the different limit laws for several reasons.
First, we propose the two approaches in a consistent and synthetic way so that they are likely to
be applied to other algorithmic problems. Indeed, almost all asymptotic properties of the moments
are encapsulated into an “asymptotic transfer” lemma, which relates the asymptotic behavior of
the toll function Tn to that of the total cost Xn. Such a transfer also clarifies the sensitivity of
the total cost with respect to the toll function (see also Devroye [19]). Second, each approach has
its own advantages and inconveniences; we give them for more methodological interests. Third,
both approaches can more or less be classified as “computational,” in contrast to the “probabilistic”
approach used by Devroye in the companion paper [19].

The contraction method, first introduced by Rösler [65] for the analysis in distribution of the
quicksort algorithm (namely, (1) with Tn = n− 1), starts from a recursive equation satisfied by the
random variable in question. Then one computes the first or the second moments, scales properly,
proves that the scaled recurrence stabilizes in the limit and chooses a suitable probability metric
so that the stabilized equation defines a map of measures that is a contraction in this metric and
has a unique fixed-point in some space of probability measures. The weak convergence of the scaled
random variables to this fixed-point then follows from the contraction properties; see Rösler [66],
Rachev and Rüschendorf [61], Rösler [67] for more information and Rösler and Rüschendorf [68] for
a survey. This approach is especially simple if the limiting map has contraction properties in the
minimal L2 metric. In this case only knowledge on the first moment is required for the application
of the method. This property will become clear in the case of “large” toll functions (very roughly
E(Tn) � √

n). For “small” toll functions, the limiting equation necessitates the use of a probability
metric that is ideal of order larger than two as well as information on the variance. In either case
a feature of the contraction method is that the dependence between Tn and In can be succinctly
handled. For other applications of the contraction method, see [16, 49, 51, 55].

The method of moments, one of the most classical ways of deriving limit distributions, has been
widely applied to problems in diverse fields (see for example Billingsley [8, Section 30], Diaconis
[20]). It consists in first computing the mean and variance, scaling properly the random variable,
computing by induction the higher moments of the scaled random variable, applying Carleman’s
criterion to justify the unicity of the limit law, and then concluding the convergence in distribution
and of all moments (or convergence in Lp for all p > 0) by the Frechet-Shohat moment convergence
theorem (see Loève [43]). While the method of moments is usually used as the “last weapon” for
proving limit laws, it does have some advantages: first, it provides more information than weak
convergence; second, it is more transparent, self-contained, and requires less advanced theory. We
systematize the use of this method, so that all major task boils down to the asymptotic transfer
from the toll function to the total cost. Previously, this method was applied by Hennequin in his
Ph. D. Thesis [35, Sec. IV.4] to characterize the limit laws of his generalized quicksort (covering
in particular the quicksort with median-of-(2k + 1)). His proof is, however, incomplete in that his
Abelian lemma [35, p. 79] gives only an estimate inside the unit circle for the generating function
in question, so that his application of the singularity analysis (see Flajolet and Odlyzko [28]) is not
fully justified. We use a different approach, more elementary in nature, to link the asymptotics of
the toll function and that of the total cost. For recent applications of the method of moments to

3



similar problems, see Fill [24], Flajolet et al. [29], Dobrow and Fill [21], Schachinger [69].
A schematic diagram illustrating the two approaches is given in Figure 1.

Contraction Method Method of Moment

Recurrence of RV Recurrence of MGF

Asymptotics of Mean
and/or Variance

Proper Scaling

Recurrence of Scaled RV Recurrence of Scaled MGF

Guess Limit Law

Contraction Property Asymptotics of Higher Moments

Limit Law

Figure 1: Main steps used by the contraction method and the method of moments. Here RV denotes
“random variable” and MGF denotes “moment generating function”.

Typically, the method of moments requires more assumptions on the moments of the toll func-
tion than the contraction method, and the results obtained are stronger. On the other hand, it is
also possible to obtain the convergence of all moments by the contraction method based on moment
generating functions, see Rösler [65] for details. For another approach to recursive random vari-
ables, which we might term “inductive approximation approach”, see Pittel [57] and the references
therein. See also [13, 55] for an interesting example for which the method of moments applies but
the contraction method fails (the space requirement of random m-ary search trees when m > 26).

Viewing our results as bridging the transition from normal to “the quicksort law” (2), we can
investigate other kind of transitions by looking at different recurrences (or algorithms). A closely
related recurrence to (1) is the one-sided quicksort recurrence

Xn
d
= XIn + Tn, (3)

for which we can vary the toll function to bridge the normal law and the Dickman distribution; see
[39]. Roughly, our results say that if the toll function is of logarithmic order then the limit law is
normal; the limit law is non-normal for larger toll functions; see Section 7 for more precise results
and examples.

For the class of problems we study in this paper and many others, an important feature dis-
tinguishing normal and non-normal limit laws is the effect of cancellation caused by centering the
random variable. Roughly, the more cancellations of higher moments, the more likely the limit law is
normal. Since our settings cover almost all practical variations of the toll functions, the cancellation
effect will be more “visible” in different cases, especially in the method of moments.

We give the main asymptotic transfer results in the next section. Then we prove the phase change
of the limit laws in Sections 3 and 4. We first give a more straightforward proof by the method of
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moments under stronger assumptions; then we apply the contraction method under more general
settings. Continuities of the variation of the limit laws are discussed in Section 5. We discuss many
examples in Section 6. In particular, the number of exchanges used by quicksort gives an intriguing
example of Tn depending on In. Section 7 addresses a similar distribution theory for the recurrence
(3); this is included because it is closely related.

Notations. Throughout this paper, Xn and Tn are related by (1). We use consistently the following
notations: xn := E(Xn), tn := E(Tn), Pn(y) := E(eXny), Qn(y) := E(eTny), Hn :=

∑

1≤k≤n 1/k.
The symbols U and N(0, 1) always represent a uniform [0, 1] and a standard normal random variable,
respectively. The symbol n0 denotes a suitable nonnegative integer whose value may vary from one
occurrence to another. All unspecified limits (including O, o, ∼) are taken to be n→∞.

Slowly varying functions. A nonnegative function L(n) defined for n ≥ n0 ≥ 0 and not identically
zero, is called slowly varying if for all real λ > 0

L(n) ∼ L(bλnc) (n→∞).

If n0 > 0, we define L(n) = 0 for 0 ≤ n < n0. Typical slowly varying functions include any powers

of log n and log log n, e(log n)α(log log n)β
, where 0 ≤ α, β < 1 and elog n/ log log n.

2 Mean and asymptotic transfers

We develop the main elementary tools in this section that will be used later. While the same results
can be obtained via differential equations and suitable analytic tools, we contend ourselves with the
elementary approach due to the simplicity of the recurrence. See [14] for more general recurrences
of quicksort type.

The mean xn := E(Xn) satisfies, by (1), x0 = 0 and

xn =
2

n

∑

0≤k<n

xk + tn (n ≥ 1), (4)

where tn := E(Tn).

Lemma 1. Let {bn}n≥1 be a give sequence and define an by a0 := 0, and

an =
2

n

∑

0≤k<n

ak + bn (n ≥ 1). (5)

Then for n ≥ 1

an = bn + 2(n+ 1)
∑

1≤k<n

bk
(k + 1)(k + 2)

. (6)

Proof. Take the difference (n+ 1)an − nan and then iterate the resulting recurrence.
From this lemma, we obtain the exact solution for E(Xn)

E(Xn) = tn + 2(n+ 1)
∑

1≤k<n

tk
(k + 1)(k + 2)

, (7)

for n ≥ 1; see Devroye [19] for a concrete interpretation of each term on the right-hand side of (7).
The main tool we need is the following lemma linking the asymptotic behavior of the toll function

to that of the total cost.
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Lemma 2 (Asymptotic transfers). Assume that an satisfies (5). (i) The conditions bn = o(n)
and

∑

k bk/k
2 <∞ are both necessary and sufficient for

an ∼ Υ[b]n, Υ[b] := 2
∑

k≥1

bk
(k + 1)(k + 2)

;

(ii) if bn ∼ nL(n), then

an ∼











Υ[b]n, if
∑

k≥1 L(k)/k <∞;

2n
∑

k≤n

L(k)

k
, if

∑

k≤nL(k)/k →∞;

(iii) if bn ∼ nαL(n), where α > 1, then

an ∼
α+ 1

α− 1
nαL(n).

Proof. The sufficiency part of (i) follows directly from the exact solution (6). For the necessary part,
assume that an ∼ cn for some constant c. Then by (4),

bn = an −
2

n

∑

0≤k<n

ak = o(n).

From this and (6), we deduce that c = Υ[b] <∞.
Part (ii) also results from (6) and the estimate (see Bingham et al. [9, Proposition 1.5.9a])

L(n) = o





∑

k≤n

L(k)

k



 . (8)

For part (iii), we have

an ∼ nαL(n) + 2n
∑

1≤k≤n

kα−2L(k).

But
∑

1≤k≤n

kα−2L(k) ∼ L(n)
∑

1≤k≤n

kα−2 ∼ nα−1

α− 1
L(n);

see Proposition 1.5.8 of Bingham et al. [9, p. 26].

Remarks. 1. If bn = o(
√
n), then an = Υ[b]n+ o(

√
n).

2. If bn ∼ nαL(n), where α ≥ 1/2, α 6= 1, then

an = Υ[b]n+
α+ 1

α− 1
nαL(n)(1 + o(1)). (9)

3. If we replace the two ∼’s for bn in the lemma by O(.) (or o(.)) in cases (ii) and (iii), then the
same results hold by replacing ∼ for an by O(.) (or o(.)).

3 Limit laws. I. Method of moments

We study the limit laws of Xn. Briefly, we derive weak convergence and convergence of all moments
of Xn (properly normalized) to some Y when estimates for moments of Tn are available. We con-
sider mainly the case when Tn is independent of In. The case when Tn depends on In requires a
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straightforward extension of the method; we will discuss briefly the dependence extension for small
toll functions; the large toll functions will be discussed via examples in Section 6.

Let Pn(y) := E(eXny). Then from (1) and independence

Pn(y) =
Qn(y)

n

∑

0≤k<n

Pk(y)Pn−1−k(y) (n ≥ 1),

with P0(y) := 1, where Qn(y) := E(eTny).
Before going further, we need to discard the special case when Tn = c for n ≥ 1, which yields

Xn = cn for n ≥ 1.

Lemma 3. Assume that In and Tn are independent for n ≥ 1. The variance of Xn is zero for n ≥ 1
iff Tn = c for n ≥ 1 for some constant c.

Proof. Let φn(y) := e−xnyPn(y). Then φ′n(0) = 0 and

φ′′n(0) = Var(Xn) =
2

n

∑

0≤k<n

φ′′k(0) + ψn (n ≥ 2),

where, defining ∆n,k = xk + xn−1−k − xn,

ψn = Q′′
n(0) +

2

n
tn
∑

0≤k<n

∆nk +
1

n

∑

0≤k<n

∆2
nk

= E(T 2
n)− (E(Tn))2 +

1

n

∑

0≤k<n

∆2
nk −





1

n

∑

0≤k<n

∆nk





2

. (10)

The assertion of the lemma follows from the Cauchy-Schwarz inequality and induction.
Define Yα = Yα(T ) by

Yα
d
=

{

UαYα + (1− U)αY ∗
α + T, if α > 1/2, α 6= 1;

UY + (1− U)Y ∗ + 2U logU + 2(1− U) log(1− U) + T, if α = 1,
(11)

where Y
d
= Y ∗ and Y, Y ∗, T, U are independent. Here T is essentially the limit distribution of Tn/tn.

It will turn out that Yα is the limit law of Xn, after properly normalized. From this defining equation,
it follows that the m-th moment of Yα, denoted by ηm, satisfies, if it exists, the recurrence η0 = 1
and for m ≥ 1

ηm =



















∑

a+b+c=m

(

m

a, b, c

)

τaηbηcB(bα+ 1, cα + 1), if α > 1/2, α 6= 1;

∑

a+b+c+d=m

(

m

a, b, c, d

)

τaηbηc

∫ 1

0
xbα(1− x)cαΛ(x)d dx, if α = 1,

(12)

where τm = E(Tm), Λ(x) := 2x log x+ 2(1− x) log(1− x) and B(u, v) denotes the beta integral:

B(u, v) :=

∫ 1

0
xu−1(1− x)v−1 dx =

Γ(u)Γ(v)

Γ(u+ v + 1)
(u, v > 0),

Γ being the Gamma function. Also the moment generating function η(z) := E(eYαz) satisfies

η(z) =

{

τ(z)
∫ 1
0 η(x

αz)η((1 − x)αz) dx, if α > 1/2, α 6= 1;

τ(z)
∫ 1
0 η(x

αz)η((1 − x)αz)eΛ(x)z dx, if α = 1,

provided that both η(z) and τ(z) := E(eTz) exist.
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Lemma 4. Assume α > 0. If the moment generating function of T exists, then {ηm}m characterizes
uniquely the distribution L(Yα).

Proof. Assume that the series
∑

m τmz
m/m! converges for |z| ≤ δ for some δ > 0. We show that

|ηm| ≤ m!Km for a sufficiently large K. By induction using (12), we have

|ηm|
m!

≤ mα+ 1

mα− 1

∑

0≤b<m

∫ 1

0
xbα

∑

0≤a≤m−b

|τa|
a!
Km−a(1− x)(m−a−b)α dx

≤ Km





∑

a≥0

|τa|
a!
K−a





mα+ 1

mα− 1

∑

0≤b<m

∫ 1

0
xbα(1− x)(m−b)α dx

≤ Km





∑

a≥0

|τa|
a!
K−a





mα+ 1

mα− 1

(

1

mα+ 1
+ (m− 1)

∫ 1

0
xα(1− x)(m−1)α dx

)

= Km





∑

a≥0

|τa|
a!
K−a





[

1

mα− 1
+

(mα+ 1)(m− 1)Γ(α+ 1)Γ(mα + 1− α)

(mα− 1)(mα+ 1)Γ(mα + 1)

]

.

Take first K so large that the series
∑

a |τa|K−a/a! converges. Then since the terms in brackets
tends to zero as m→∞, there exists an m0 > 0 such that





∑

a≥0

|τa|
a!
K−a





[

1

mα− 1
+

(mα+ 1)(m− 1)Γ(α + 1)Γ(mα + 1− α)

(mα− 1)(mα+ 1)Γ(mα + 1)

]

< 1,

for m > m0. On the other hand, |ηm| ≤ m!Km for m ≤ m0 if K was chosen sufficiently large.
We conclude that |ηm| ≤ m!Km and the required assertion then follows from Carleman’s criterion,

stating that the moment sequence {ηm}m uniquely characterizes a distribution if
∑

m η
−1/(2m)
2m = ∞.

The condition we impose (that τ(z) exists) is certainly far from optimal but is sufficient for
practical applications.

Define

Υ[t] := 2
∑

k≥1

tk
(k + 1)(k + 2)

.

Theorem 1 (Large toll functions). Let (Xn) be given by (1), where Tn is independent of In. If

E(Tn) ∼ nαL(n), and E

(

Tn

tn

)m

→ τm (m = 2, 3, . . . ), (13)

where α > 1/2, and τ(z) :=
∑

m τmz
m/m! exists, then

Xn − ξn
nαL(n)

d−→ Yα,

with convergence of all moments, where Yα = Yα(T ) is defined as above and

ξn =







Υ[t]n, if 1/2 < α < 1;
E(Xn), if α = 1;
0, if α > 1.

For small toll functions, we distinguish two overlapping cases: (i)

tn = O(
√
n/(log n)1/2+ε), and E(Tm

n ) = O(tmn ), (14)
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for m = 2, 3, . . . ; and (ii)

tn ∼
√
nL(n), E(T 2

n) ∼ τ2t
2
n, and E(Tm

n ) = O(tmn ), (15)

for m = 3, 4, . . . . More general conditions can be studied, but we content ourselves with these two
for simplicity of presentation.

In the first case, define

s2(n) := σ2n, σ2 := Υ[ψ] = 2
∑

k≥1

ψk

(k + 1)(k + 2)
, (16)

where ψk is given in (10). In the second case, define s(n) as in (16) if
∑

k≥1 L
2(k)/k <∞, and

s2(n) :=

(

9

2
π − 16 + 2τ2

)

n
∑

k≤n

L2(k)

k
, (17)

if
∑

k≤n L
2(k)/k →∞. Note that σ > 0 by (10) and (16) and the leading constant 9

2π − 16 + 2τ2 is

positive since 9
2π > 14 and τ2 ≥ 1 by E(T 2

n) ≥ t2n.

Theorem 2 (Small toll functions). Let (Xn) be given by (1), where Tn is independent of In. If
Tn satisfies either (14) or (15), then

Xn −Υ[t]n

s(n)

d−→ N(0, 1),

with mean and variance satisfying E(Xn) ∼ Υ[t]n and Var(Xn) ∼ s2(n). The limit holds with
convergence of all moments.

The proof uses the method of moments and the asymptotic transfer lemma.

3.1 Large toll functions

For simplicity of presentation, we split the proof of Theorem 1 into three cases: 1/2 < α < 1, α = 1
and α > 1, although we can easily encapsulate them into one.

Case L1. 1/2 < α < 1. In this case, ξn = Υ[t]n and by (7)

E(Xn) ∼ Υ[t]n+
α+ 1

α− 1
nαL(n).

Shift the mean by Υ[t]n by defining Πn(y) := Pn(y)e−Υ[t]ny. Then Π0(y) = 1 and

Πn(y) =
Qn(y)e−Υ[t]y

n

∑

0≤k<n

Πk(y)Πn−1−k(y) (n ≥ 1). (18)

Taking m times derivatives with respect to y on both sides and then substituting y = 0, we have, by

defining Πn,m := Π
(m)
n (0) = E((Xn −Υ[t]n)m),

Πn,m =
2

n

∑

0≤k<n

Πk,m +Rn,m (n ≥ 1), (19)

with Π0,m = 0, where

Rn,m :=
∑

a+b+c+d=m
b,c<m

(

m

a, b, c, d

)

Q(a)
n (0)

(−Υ[t])d

n

∑

0≤k<n

Πk,bΠn−1−k,c.

9



By assumption (13),
Q(m)

n (0) = E(Tm
n ) ∼ τmn

mαLm(n) (m ≥ 1).

For convenience, define τ0 = τ1 = 1. We proceed by induction. Assume

Πn,m ∼ gmn
mαLm(n). (20)

This holds true for m = 1 by (9) with g1 = (α+1)/(α−1). By induction and slow variation of L(n),
we deduce that for m ≥ 2

Rn,m ∼
∑

a+b+c=m
b,c<m

(

m

a, b, c

)

τagbgcn
aα−1La(n)

∑

0≤k<n

kbαLb(k)(n− 1− k)cαLc(n− 1− k)

∼ Lm(n)
∑

a+b+c=m
b,c<m

(

m

a, b, c

)

τagbgcn
aα−1

∑

0≤k<n

kbα(n− 1− k)cα

∼ nmαLm(n)
∑

a+b+c=m
b,c<m

(

m

a, b, c

)

τagbgcB(bα+ 1, cα + 1).

It follows, by the asymptotic transfer lemma, that

Πn,m ∼ mα+ 1

mα− 1
nmαLm(n)

∑

a+b+c=m
b,c<m

(

m

a, b, c

)

τagbgcB(bα+ 1, cα + 1) (m ≥ 2).

Thus if we define gm recursively by

gm =
mα+ 1

mα− 1

∑

a+b+c=m
b,c<m

(

m

a, b, c

)

τagbgcB(bα+ 1, cα + 1) (m ≥ 2),

then (20) holds for all m ≥ 1. Note that gm = ηm for m ≥ 1; see (12). We conclude, by the
Frechet-Shohat moment convergence theorem (see [43]) and Lemma 4, that {ηm} is the sequence of
moments of some distribution function and that (Xn −Υ[t]n)/(nαL(n)) converges in distribution to
Yα.

Case L2. α = 1. Define this time Πn(y) := Pn(y)e−xny, where xn = E(Xn). Then Π0(y) = 1 and

Πn(y) =
Qn(y)

n

∑

0≤k<n

Πk(y)Πn−1−k(y)e
∆n,ky (n ≥ 1),

where ∆n,k = xk + xn−1−k − xn. Observe first, by (7), that

∆n,k = tk + tn−1−k − tn − 2(k + 1)
∑

k≤j<n

tj
(j + 1)(j + 2)

− 2(n− k)
∑

n−k<j<n

tj
(j + 1)(j + 2)

;

from this and tn ∼ nL(n) we deduce that for k = bxnc

∆n,k ∼ Λ(x)nL(n), Λ(x) := 2x log x+ 2(1− x) log(1− x), (21)

uniformly for 0 ≤ x ≤ 1.
Write as above Πn,m = Πn,m(0). Then Πn,m satisfies (19), with

Rn,m :=
∑

a+b+c+d=m
b,c<m

(

m

a, b, c, d

)

Q
(a)
n (0)

n

∑

0≤k<n

Πk,bΠn−1−k,c∆
d
n,k.

10



Note that Πn,1 = 0. We prove by induction that

Πn,m ∼ gmn
mLm(n). (22)

The case m = 1 is true with g1 = 0. For m ≥ 2, we have, similarly as above,

Rn,m ∼
∑

a+b+c+d=m
b,c<m

(

m

a, b, c, d

)

τagbgcn
a−1La(n)

∑

0≤k<n

kbLb(k)(n− 1− k)cLc(n− 1− k)∆d
n,k

∼ nmLm(n)
∑

a+b+c+d=m
b,c<m

(

m

a, b, c, d

)

τagbgc

∫ 1

0
xb(1− x)cΛd(x) dx.

It follows, by Lemma 2, that (22) holds with

gm =
m+ 1

m− 1

∑

a+b+c+d=m
b,c<m

(

m

a, b, c, d

)

τagbgc

∫ 1

0
xb(1− x)cΛd(x) dx (m ≥ 2).

Thus convergence in distribution follows as in case L1.
Note that Var(Xn) ∼ g2n

2L2(n), where

g2 = 7− 2

3
π2 + 3Var(T ). (23)

Case L3. α > 1. In this case, no centering is needed since ξn = 0. We apply mutatis mutandis the
same argument in Case L1 for Pn(y). The proof is similar and is omitted here.

3.2 Small toll functions

When tn is small, namely tn = O(
√
nL(n)), E(Xn) is linear, so we center Xn as in Case L1 above

by defining Πn(y) := Pn(y)e−Υ[t]ny. Write again Πn,m := Π
(m)
n (0). Then Πn(y) satisfies (18) and

Πn,1 = Π′
n(0) = tn − 2n

∑

j≥n

tjj
−2 +O(1).

Variance. By (18), the sequence Πn,2 satisfies (19) with

Rn,2 = Q′′
n(0) − t2n + (tn −Υ[t])(2Πn,1 − tn + Υ[t]) +

2

n

∑

0≤k<n

Πk,1Πn−1−k,1,

(the recurrence of Πn,1 being used to simplify).
Thus, by the asymptotic transfer lemma, if

∑

k Rk,2/k
2 <∞, then

Var(Xn) ∼ σ2n, σ2 := 2
∑

k≥1

Rk,2

(k + 1)(k + 2)
. (24)

But the condition
∑

k Rk,2/k
2 <∞ is not so transparent. We thus consider two simple, overlap-

ping cases.

Case S1. tn = O(
√
n(log n)−1/2−ε). In this case, we have

Πn,1 = O(
√
n(log n)−1/2−ε),

and by (14)
Rn,2 = O(n(log n)−1−2ε);

thus
Var(Xn) ∼ σ2n.

11



Case S2. tn ∼
√
nL(n). By (9),

Πn,1 ∼ −3
√
nL(n),

from which we deduce, using (15), that

Rn,2 ∼
(

9

4
π − 8 + τ2

)

nL2(n).

Applying Lemma 2 yields

Var(Xn) ∼











σ2n, if
∑

k L
2(k)/k <∞;

(

9

2
π − 16 + 2τ2

)

n
∑

k≤n

L2(k)

k
, if

∑

k L
2(k)/k = ∞.

Note that the definition of σ2 in (24) can be shown to be identical to (16).

Asymptotic normality. For higher moments, we use again (19) but split Rn,m into two parts:

Rn,m = R
(1)
n,m +R

(2)
n,m, where

R(1)
n,m :=

∑

1≤b<m

(

m

b

)

1

n

∑

0≤k<n

Πk,bΠn−1−k,m−b,

R(2)
n,m :=

∑

a+b+c+d=m
a+d≥1
b,c<m

(

m

a, b, c, d

)

Q(a)
n

(−Υ[t])d

n

∑

0≤k<n

Πk,bΠn−1−k,c.

Case S1. tn = O(
√
n(log n)−1/2−ε). Assume that for m ≥ 1

{

Πn,2m ∼ gmn
m,

Πn,2m−1 = o(nm−1/2).

This is true for m = 1 with g1 = σ2. By induction, we have

R(2)
n,m = O

(

nm/2(log n)−1/2−ε
)

.

The main contribution for even moments comes from R
(1)
n,m.

R
(1)
n,2m ∼

∑

1≤j<m

(

2m

2j

)

1

n

∑

0≤k<n

Πk,2jΠn−1−k,2m−2j

∼
∑

1≤j<m

(

2m

2j

)

gjgm−j
1

n

∑

0≤k<n

kj(n− 1− k)m−j

∼ nm

m+ 1

∑

1≤j<m

(

2m
2j

)

(

m
j

) gjgm−j .

By Lemma 2,

Πn,2m ∼ nm

m− 1

∑

1≤j<m

(

2m
2j

)

(

m
j

) gjgm−j (m ≥ 2).

Thus we take gm so that g1 = σ2 and

gm =
1

m− 1

∑

1≤j<m

(2m
2j

)

(m
j

) gjgm−j (m ≥ 2).

12



The solution is given by

gm =
(2m)!

2mm!
σ2m (m ≥ 1),

which equals the 2mth moment of the normal distribution with mean zero and variance σ2.
Similarly, for m ≥ 2,

R
(1)
n,2m−1 = o(mm−1/2),

and thus by the o-version of Lemma 2

Πn,2m−1 = o(nm−1/2).

The asymptotic normality follows.

Case S2. tn ∼
√
nL(n). In this case, noting that L2(n) is also slowly varying, we have (see (8))

Q′′
n(0) ∼ τ2t

2
n ∼ τ2nL

2(n) = o



n
∑

k≤n

L2(k)

k



 .

In particular, if
∑

k L
2(k)/k < ∞, then tn = o(

√
n). The proof then follows the same line of

arguments as in Case S1.

3.3 Tn depends on In

In this case, we have P0(y) = 1 and

Pn(y) =
1

n

∑

0≤k<n

Pk(y)Pn−1−k(y)Qn,k(y) (n ≥ 1),

where Qn,k(y) is the moment generating function of Tn conditioned on In = k.
First, Lemma 3 still holds since ψn satisfies

ψn =
1

n

∑

0≤k<n

(

Q′′
n,k(0)−Q′

n,k(0)
2
)

+
1

n

∑

0≤k<n

(

Q′
n,k(0) + ∆n,k

)2
, (25)

and the same argument applies.
A full extension of the limit laws of Xn to this case requires more assumptions on the asymptotic

behavior of Qn,k(y). There is, however, a special case for which the extension is trivial: the Case S1,
namely, when Tn satisfies (14). The asymptotic normality holds without any additional assumptions.
Intuitively, this is the case when each toll summand has only limited contribution to the total cost,
thus whether Tn depends on In or not does not change the “democratic” nature of the problem,
rendering the same law of errors to take effect. The case S2 needs one more condition (26) and the
extension is also straightforward.

Define s(n) as in (16) with ψk there replaced by (25) when Tn satisfies (14). In the case when
tn ∼

√
nL(n), we need in addition to (15) the following estimate

E(Tn

√

InL(In)) +E(Tn

√

n− 1− InL(n− 1− In)) ∼ τ ′2nL
2(n). (26)

Define s(n) by

s2(n) :=

(

2τ2 − 6τ ′2 +
9

2
π

)

n
∑

k≤n

L2(k)

k
,

if
∑

k L
2(k)/k diverges, and s2(n) := σ2n otherwise.

13



Theorem 2′ (Small toll functions—Tn dependent on In). Let (Xn) be given by (1). If Tn

satisfies either (14) or the two estimates (15) and (26), then

Xn −Υ[t]n

s(n)

d−→ N(0, 1),

with mean and variance satisfying E(Xn) ∼ Υ[t]n and Var(Xn) ∼ s2(n). In either case, convergence
of all moments holds.

The proof of Theorem 2 requires only minor modifications and the Rn,2 there should be replaced
by

Rn,2 =
1

n

∑

0≤k<n

Q′′
n,k(0)−2Υ[t]Πn,1−Υ[t]2+

2

n

∑

0≤k<n

Q′
n,k(0) (Πk,1 + Πn−1−k,1)+

2

n

∑

0≤k<n

Πk,1Πn−1−k,1.

We leave aside the discussions of large toll functions since (i) such cases can be succinctly incorpo-
rated in the settings by the contraction method, (ii) Theorem 2′ covers most practical applications,
and (iii) we will describe one such example in Section 6.

4 Limit laws. II. Contraction method

We consider the limit laws of Xn using the contraction method in this section. An advantage of this
approach is that dependence of Tn on In can be easily handled.

4.1 Outline of the method

According to our discussions in the previous section, we first introduce the standardized versions
(Yn) of (Xn) by Yn := 0 for 0 ≤ n ≤ n0 and

Yn :=
Xn − xn

s(n)
(n > n0),

where s(n) > 0 is an appropriate scaling to be defined later and n0 > 0 is suitably chosen so that
s(n) > 0 for all n > n0.

We first sketch the method of proof. The first step is to transform the original recurrence (1)
into a modified recurrence for the scaled quantities (Yn) by defining Yn = 0 for n ≤ n0 and

Yn
d
= A

(n)
1 YIn +A

(n)
2 Y ∗

n−1−In
+ bn (n > n0), (27)

where, for n > n0, A
(n)
1 = s(In)/s(n), A

(n)
2 = s(n− 1− In)/s(n) and

bn =
1

s(n)

(

xIn
+ xn−1−In

− xn + Tn

)

=: hn(Tn, In). (28)

According to (1), (Yn), (Y ∗
n ), and (A

(n)
1 , A

(n)
2 , bn) are independent and Yn

d
= Y ∗

n for all n ≥ 0.

If the coefficients A
(n)
1 , A

(n)
2 , and the additive term bn stabilize as n→∞, say to A1, A2, and b,

respectively, and we expect that (Yn) converges in distribution, then the weak limit Y of (Yn) should
satisfy the limiting equation corresponding to (27):

Y
d
= A1Y +A2Y

∗ + b, (29)

where Y , Y ∗, (A1, A2, b) are independent and Y
d
= Y ∗.
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The contraction method then proceeds by showing that a fixed-point equation as (29) has exactly
one solution in a certain space of probability measures and that the scaled random variables under
consideration converge in distribution to this fixed-point.

Usually, the existence and uniqueness of a fixed-point of the limiting equation in a subspace of
probability distributions is shown by endowing the subspace with a metric and by proving that the
limiting equation defines a contraction map on this space. Then the existence of a unique fixed-
point is implied by Banach’s fixed-point theorem in the case of a complete metric or an appropriate
substitute in the incomplete case.

In particular, the minimal L2-metric `2 is often used, where `r-metrics are defined on the spaces
Mr of probability measures on the Borel σ-algebra of R with finite absolute rth moment by

`r(ν, %) := inf{‖X − Y ‖r : X
d
= ν, Y

d
= %} (ν, % ∈Mr),

for r ≥ 1. We denote by Mr(0) ⊂ Mr the subspace of the centered probability measures in
Mr. The metric spaces (Mr, `r) and (Mr(0), `r) are complete, and convergence in the `r-metric
is equivalent to weak convergence and convergence of the rth moment. For simplicity, we write
`r(X,Y ) := `r(L(X),L(Y )). The infimum in the definition of `r is attained for all ν, % ∈ Mr and
(X,Y ) are called optimal couplings of ν, % if `r(ν, %) = ‖X − Y ‖r; see Bickel and Freedman [11],
Rachev [59], and Rachev and Rüschendorf [62] for more properties of the minimal Lr-metric.

The existence of a unique fixed-point L(Y ) in M2(0) for (29) and the convergence in `2 of (Yn)
given by (27) to Y holds in particular if the following properties are satisfied (see Rösler [67])

(a) E(bn) = E(b) = 0, E(b2) <∞;

(b) ‖(A(n)
1 , A

(n)
2 , bn)− (A1, A2, b)‖2 → 0;

(c) E(A2
1) +E(A2

2) < 1;

(d) For all n1 ∈ N, E[1{In≤n1}(A
(n)
1 )2] +E[1{n−1−In≤n1}(A

(n)
2 )2] → 0.

This is the line we will follow for large toll functions Tn. In the case of small toll functions we
will end up with a well-known limiting equation that is not a contraction in `2 and has the normal
distributions as solutions. In this case asymptotic normality will be derived by a change of the metric
as used in Rachev and Rüschendorf [61]. The metric used later is ideal of order larger than two,
which implies the contraction properties of the limiting equation with respect to this metric on the
appropriate space.

4.2 Large toll functions

Assume that

E(Tn) ∼ nαL(n) and

(

Tn

E(Tn)
,
In
n

)

L2−→ (T,U),

where α > 1/2, L(n) is slowly varying, and T is square-integrable. In particular, Tn may depend on
In and T may depend on U . For our applications to quicksort and binary search trees, this U comes
up (essentially) as the first partitioning element of quicksort (or the root of the associated binary
search tree). Therefore, In has, conditioned on U = u, the binomial B(n − 1, u) distribution and
In/n→ U holds in Lp for all p > 0.

For the scaling factor, we assume at the moment that the variance of Xn admits an expansion of
the form

Var(Xn) ∼ σ2 n2αL2(n),
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where σ = σ(α, (T,U)) is a positive constant given later in Corollary 1. This will later turn out to
be true (up to degenerate cases). Therefore, we use the scaling s(n) := nαL(n) and define Yn := 0
for 0 ≤ n ≤ n0 and

Yn :=
Xn −E(Xn)

nαL(n)
(n > n0);

so that for n > n0

Yn
d
=

(

In
n

)α L(In)

L(n)
YIn +

(

n− 1− In
n

)α L(n− 1− In)

L(n)
Y ∗

n−1−In
+ hn(α, (Tn, In)), (30)

where hn(α, (Tn, In)) := (xIn
+ xn−1−In

− xn + Tn)/(nαL(n)).
Observe that our formal L2-convergence assumption on In/n is equivalent to In/n→ U in Lp for

all p ≥ 0. Using this and the estimate
L(In)

L(n)

L2−→ 1,

we obtain
∥

∥

∥

∥

(

In
n

)α L(In)

L(n)
− Uα

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

(

In
n

)α

− Uα

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

In
n

)α(L(In)

L(n)
− 1

)∥

∥

∥

∥

2

= o(1) +

∥

∥

∥

∥

L(In)

L(n)
− 1

∥

∥

∥

∥

2

→ 0. (31)

Analogously,
∥

∥

∥

∥

(

n− 1− In
n

)α L(n− 1− In)

L(n)
− (1− U)α

∥

∥

∥

∥

2

→ 0.

Finally, hn(α, (Tn, In)) also stabilizes:

hn(α, (Tn, In))
L2→ h(α, (T,U)), (32)

where for α > 1/2

h(α, (T,U)) :=







α+ 1

α− 1

(

Uα + (1− U)α − 1
)

+ T, if α 6= 1,

2U logU + 2(1− U) log(1− U) + T, if α = 1.

(33)

For α = 1, (32) is proved by the relation (see (21))

xIn
+ xn−1−In

− xn

nL(n)

L2−→ 2U logU + 2(1− U) log(1− U),

and our assumption Tn/tn → T in L2. The case α 6= 1 is established by using the asymptotic
expansions (9) for 1/2 < α < 1 and Lemma 2 for α > 1, respectively:

1

nαL(n)

(

xIn
+ xn−1−In

− xn + Tn

)

=
1

nαL(n)

α+ 1

α− 1

(

Iα
nL(In) + (n− 1− In)αL(n− 1− In)− nαL(n) + Tn

)

+ o(1)

→ α+ 1

α− 1

(

Uα + (1− U)α − 1
)

+ T in L2,

where the o(1) depends on the randomness but the convergence is uniform. This establishes the
stabilization of the modified recursion (30) to the limiting equation

Y
d
= UαY + (1− U)αY ∗ + h(α, (T,U)). (34)
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Note that this equation coincides for independent T,U with (11) in the case α = 1; for α > 1/2, α 6= 1,
(34) a translated version of (11) in the sense that Y is a fixed-point of (34) if and only if Y + (α +
1)/(α−1) is a fixed point of (11). This is because in Theorem 1, the random variable is not centered
for α 6= 1 by the exact mean, so that the mean of Yα there equals (α + 1)/(α − 1) while our Y has
mean zero.

The limiting equation (34) defines a map Sα,(T,U) on M2:

Sα,(T,U) : M2 →M2, ν 7→ L
(

UαZ + (1− U)αZ∗ + h(α, (T,U))
)

, (35)

where Z,Z∗, (T,U) are independent, Z
d
= Z∗ d

= ν, and h(α, (T,U)) is given by (33).

Theorem 3. Let (Xn) be given by (1). Assume that

E(Tn) ∼ nαL(n) and

(

Tn

E(Tn)
,
In
n

)

L2−→ (T,U),

where α > 1/2, and that T is square-integrable. Then

`2

(

Xn −E(Xn)

nαL(n)
, Yα,(T,U)

)

→ 0,

where L(Yα,(T,U)) is the unique fixed-point in M2(0) of the map Sα,(T,U) defined in (35).

Proof. First we show that the restriction of Sα,(T,U) to M2(0) is a map into M2(0). Let ν ∈
M2(0). Then Sα,(T,U)(ν) has finite second moment because of independence and the same property
of the coefficients. The assumption Tn/E(Tn) → T in L2 implies that E(T ) = 1 and therefore
E(h(α, (T,U))) = 0 for all α > 1/2. This implies E(Sα,(T,U)(ν)) = 0, and thus Sα,(T,U)(ν) ∈M2(0).

By Theorem 3 in Rösler [66] or Lemma 1 in Rösler and Rüschendorf [68] Sα,(T,U) is Lipschitz
continuous on (M2(0), `2) where the Lipschitz constant lip(Sα,(T,U)) satisfies

lip(Sα,(T,U)) ≤
(

E(U2α) +E((1− U)2α)
)1/2

.

Since α > 1/2 we have lip(Sα,(T,U)) ≤
√

2/(2α + 1) < 1; thus Sα,(T,U) is a contraction on M2(0).
By Banach’s fixed-point theorem Sα,(T,U) has a unique fixed-point L(Yα,(T,U)) in M2(0).

By (30) and (34) the standardized variables Yn = (Xn − E(Xn))/nαL(n) and Yα,(T,U) satisfy,
respectively,

Yn
d
= A

(n)
1 YIn +A

(n)
2 Y ∗

n−1−In
+ bn,

and

Yα,(T,U)
d
= A1Yα,(T,U) +A2Y

∗
α,(T,U) + b.

It remains to check the conditions (a)–(d).
First, by taking expectations in (30) and (34), respectively, we obtain E(bn) = E(b) = 0; also

E(b2) < ∞ since T is square-integrable. Thus (a) is satisfied. Condition (b) is established in (31)
and (32) and condition (c) is the contraction property of Sα,(T,U). Finally, condition (d) follows
from |s(In)/s(n)|, |s(n− 1− In)/s(n)| < 1 since

E(1{In≤n1}(A
(n)
1 )2) +E(1{n−1−In≤n1}(A

(n)
2 )2) ≤ P (In ≤ n1) + P (n− 1− In ≤ n1)

=
2n1

n
→ 0,

for all n1 ∈ N. We complete the proof by applying Rösler’s theorem [67].
Note that if h(α, (T,U)) = 0, then the limit distribution L(Yα,(T,U)) is degenerate, namely,

Yα,(T,U) = 0 almost surely. In this case more knowledge on the asymptotics of Tn is necessary and a
scaling other than nαL(n) should be used (our limit law yields merely Var(Xn) = o(nαL(n))).
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Corollary 1. If h(α, (T,U)) 6= 0 (see (33)), then the sequence (Xn) of Theorem 3 satisfies

Var(Xn) ∼ σ2 n2αL2(n),

where σ2 = σ2(α, (T,U)) is defined by

σ2 =











α(α + 1)2B(α, α) + 2(α2 − 2α − 1)

(2α− 1)(α − 1)2
+ C, if α 6= 1;

7− 2π2

3
+ C, if α = 1,

with C = C(α, (T,U)) given by

C =











2α+ 1

2α− 1

(

Var(T ) + 2
α+ 1

α− 1
E [T (Uα + (1− U)α)]− 4

α− 1

)

, if α 6= 1;

3
(

Var(T ) + 4E[T (U logU + (1− U) log(1− U))] + 2
)

, if α = 1.

Proof. By Theorem 3, Var(Xn) = Var(nαL(n)Yn) ∼ E(Y 2
α,(T,U))n

2αL2(n), thus σ2 = E(Y 2
α,(T,U)).

Since Yα,(T,U) solves the equation (34), we deduce, by taking squares and expectations, that

E
(

Y 2
α,(T,U)

)

=
2α+ 1

2α− 1
E(h2(α, (T,U))),

which leads to the expressions in the corollary.
If T is independent of U , then C = (2α+1)Var(T )/(2α−1), which coincides with (23) for α = 1.

Moreover, C = 0 if T = 1, which holds in particular if the toll functions (Tn) are all deterministic.

4.3 Small toll functions

In this section we consider small toll functions by the contraction method, assuming again that Tn

and In may be dependent. Write s(n)2 := Var(Xn). As in the analysis by the method of moments,
we consider two cases:

tn = O(
√
n/(log n)1/2+ε), E(T 2

n) = O(t2n), and E

(

Tn

s(n)

)2+δ

→ 0, (36)

where 0 < δ < 1; and







tn ∼
√
nL(n), E(T 2

n) ∼ τ2nL
2(n), E

(

Tn

s(n)

)2+δ

→ 0, and

E(Tn

√
InL(In)) +E(Tn

√
n− 1− InL(n− 1− In)) ∼ τ ′2nL

2(n).

(37)

In particular, if we assume (14) or (15), then (36) or (37) hold, respectively.
We first look for stabilization in (27) in order to derive a limiting equation. In the case (36), we

have (see (16)), s(n)2 ∼ σ2n; thus

A
(n)
1 =

s(In)

s(n)
→ U1/2 in L2+δ. (38)

Similarly,

A
(n)
2 =

s(n− 1− In)

s(n)
→ (1− U)1/2 in L2+δ. (39)
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For the additive term in (27), we obtain (xIn + xn−1−In − xn)/s(n) → 0 in L2+δ by the expansion
E(Xn) = Υ[t]n+ o(

√
n). This together with Tn/s(n) → 0 gives

xIn + xn−1−In − xn + Tn

s(n)
→ 0 in L2+δ. (40)

The recursion (27) for Yn = (Xn − E(Xn))/s(n) and Yn = 0 if s(n) = 0 now lead to the limiting
equation

Y
d
= U1/2Y + (1− U)1/2Y ∗. (41)

The conditions (38)–(40) are also satisfied in the case (37) using the corresponding expansions for
s(n). Briefly, (38) and (39) are proved by (

∑

k≤In
L2(k)/k)/(

∑

k≤n L
2(k)/k) → 1. For (40), if

∑

k L
2(k)/k < ∞, then L(k) → 0, implying that (xIn + xn−1−In − xn)/s(n) → 0 in L2+δ. If

∑

k L
2(k)/k = ∞, the same L2+δ convergence follows from L2(n) = o(

∑

k≤n L
2(k)/k); see (8).

In all cases we obtain the limiting equation (41). Therefore, we cannot follow the line as for large
toll functions since (41) has no contraction properties in `2 and is not a contraction for any `r-metric.
This is well-known and discussed in Rachev and Rüschendorf [61] and Rösler and Rüschendorf [68].
Thus we have to choose a metric that is (r,+)-ideal, where r > 2, and to refine the work space M2(0)
in order to obtain contraction properties for equation (41).

The situation here is similar to the size of random tries discussed in Rachev and Rüschendorf
[61]. We obtain weak convergence of (Yn) to a normal distribution by applying similar arguments;
see also Rösler and Rüschendorf [68].

Following Rachev and Rüschendorf, define, for r = m+ 1/p with m ∈ N and p ∈ [1,∞),

Fr := {f ∈ Cm+1 : ‖f (m+1)‖q ≤ 1},

where 1/p+ 1/q = 1 and f (m+1) denotes the m+ 1st derivative of the function f : R → R. Then we
will use the metric

µr(X,Y ) := sup
f∈Fr

|E[f(X) − f(Y )]|,

which was introduced and studied in Maejima and Rachev [45]; see also Rachev and Rüschendorf
[60].

We briefly state the properties of µr, which are used subsequently. The metric µr is (r,+)-ideal,
i.e., µr(cX, cY ) = crµr(X,Y ) for c > 0 and µr(X + Z, Y + Z) ≤ µr(X,Y ) if Z is independent
of X,Y . An upper estimate for µr in Zolotarev’s metric ζr and corresponding properties for the
metric ζr (see Zolotarev [75]) imply that µr(X,Y ) < ∞ if E(Xj) = E(Y j) for all j = 1, . . . ,m and
E(|X|r), E(|Y |r) <∞. Convergence in µr implies convergence in distribution, since a lower estimate
in Levy’s metric L is valid: (L(X,Y ))r+1 ≤ C(r)µr(X,Y ) for some constant C(r) <∞. We will also
use the fact that convergence in `r implies convergence in µr. This follows from the upper estimate
µr(X,Y ) ≤ C ′(r)κr(X,Y ) with some constant C ′(r) <∞ and the difference pseudomoment κr and
the fact that κr and `r are topologically equivalent (see Rachev [59, p. 301]).

The following proof of asymptotic normality is based on the approach used in Rachev and
Rüschendorf [61] mentioned above. The differences here are that we derive convergence in µ2+δ

rather than only weak convergence, and that the estimate of the additive term hn(Tn, In) is simpli-
fied. These improvements are due to the fact that more information on the moments is known in
our case.

Theorem 4. Let (Xn) be given by (1). If Tn satisfies either (36) or (37), then

µ2+δ

(

Xn −E(Xn)
√

Var(Xn)
, N(0, 1)

)

→ 0.
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Proof. Let r := 2 + δ. The key idea of the proof is to introduce a mixed quantity that combines the
structure of the modified recursion with the normal distribution; see [61] and [68, Section 6]. We
denote by N,N ∗ two independent standard normal random variables that are also independent of
all other quantities.

Then we define the distributions of our mixtures Mn by Mn := 0 for 0 ≤ n ≤ n0 and for n > n0

Mn
d
:=

s(In)

s(n)
N +

s(n− 1− In)

s(n)
N∗ + hn(Tn, In)

d
=

[

(

s(In)

s(n)

)2

+

(

s(n− 1− In)

s(n)

)2
]1/2

N + hn(Tn, In), (42)

with hn(Tn, In) given in (28). A comparison with (27) shows that E(Mn) = 0, E(M 2
n) = 1, and

E|Mn|r < ∞ for n ≥ n0, thus µr-distances between Yn, Mn and N(0, 1) are finite. We convent all
µr-distances for these quantities with indices ≤ n0 to be zero. We may estimate

µr(Yn, N(0, 1)) ≤ µr(Yn,Mn) + µr(Mn, N(0, 1)).

By (38) and (39), the factor between the brackets in (42) converges to 1 in Lr; this together with the
Lr-convergence of hn(Tn, In) to 0 yields `r(Mn, N(0, 1)) → 0 and, therefore, µr(Mn, N(0, 1)) → 0.
Here we used the estimates (38)–(40).

Denote by λn the joint distribution of (Tn, In). By the (r,+)-ideality of µr, we have

µr(Yn,Mn) = sup
f∈Fr

|E(f(Yn)− f(Mn))| (43)

= sup
f∈Fr

∣

∣

∣

∣

∣

∫

E

[

f

(

s(k)

s(n)
Yk +

s(n− 1− k)

s(n)
Y ∗

n−1−k + hn(t, k)

)

− f

(

s(k)

s(n)
N +

s(n− 1− k)

s(n)
N∗ + hn(t, k)

)

]

dλn(t, k)

∣

∣

∣

∣

∣

≤
∫

µr

(

s(k)

s(n)
Yk +

s(n− 1− k)

s(n)
Y ∗

n−1−k + hn(t, k),

s(k)

s(n)
N +

s(n− 1− k)

s(n)
N∗ + hn(t, k)

)

dλn(t, k)

≤ 1

n

n−1
∑

k=0

(

µr

(

s(k)

s(n)
Yk,

s(k)

s(n)
N

)

+ µr

(

s(n− 1− k)

s(n)
Y ∗

n−1−k,
s(n− 1− k)

s(n)
N∗

))

≤ 2

n

n−1
∑

k=0

(

s(k)

s(n)

)r

µr(Yk, N).

Thus, we obtain the reduction inequality

µr(Yn, N(0, 1)) ≤ 2

n

n−1
∑

k=0

(

s(k)

s(n)

)r

µr(Yk, N(0, 1)) + o(1).

By (38) and (39)

2

n

n−1
∑

k=0

(

s(k)

s(n)

)r

= 2E

(

s(In)

s(n)

)r

→ 2E
(

U r/2
)

=
2

r/2 + 1
< 1.

From this and the reduction inequality, we deduce by a bootstrapping argument (see Rösler [65, p. 94]
or Rachev and Rüschendorf [61, p. 786]) that µr(Yn, N(0, 1)) → 0. [First prove that µr(Yn, N(0, 1))
remains bounded; then refine the approximation.]

20



5 Continuous change of limits

We prove that the limit distributions L(Yα,(T,U)) in Theorem 3 are continuous in the parameters
(α, (T,U)), where α > 1/2. The property still holds as α ↓ 1/2 in the case of deterministic toll
functions and in the random case under appropriate assumptions.

Theorem 5. Let α→ β > 1/2 and T = T (α) → V in L2 for a square-integrable V . Then

`2(Yα,(T,U), Yβ,(V,U)) → 0.

Let α ↓ 1/2 and T = T (α) satisfy ‖T‖2+δ = o(σ(α, (T,U))) as α ↓ 1/2. If T is independent of U ,
then

µ2+δ

(

Yα,(T,U)

σ(α, (T,U))
, N(0, 1)

)

→ 0.

The property still holds if T,U are dependent, provided that (i) h(α, (T,U)) 6= 0 for h given in (33)
and (ii) σ(α, (T,U)) in Corollary 1 is properly divergent.

Proof. (Sketch) Consider the special case β = 1. For α > 1/2, we have, by definition,

Yα,(T,U)
d
= UαYα,(T,U) + (1− U)αY ∗

α,(T,U) +
α+ 1

α− 1

(

Uα + (1− U)α − 1
)

+ T,

Y1,(V,U)
d
= UY1,(V,U) + (1− U)Y ∗

1,(V,U) + 2U logU + 2(1− U) log(1− U) + V,

where (Yα,(T,U), Y1,(V,U)), (Y ∗
α,(T,U), Y

∗
1,(V,U)), (T,U, V ) are independent, and optimal couplings of

L(Yα,(T,U)) and L(Y1,(V,U)) are formed by (Yα,(T,U), Y1,(V,U)), (Y ∗
α,(T,U), Y

∗
1,(V,U)). To match these two

fixed-point equations we use the Taylor expansion

xα = x+ (α− 1)x log x+

∫ α

1
(α− y)

(

xy−1 + xy(log x)2
)

dy (x ∈ (0, 1), α > 0). (44)

Using the representations of Yα,(T,U), Y1,(V,U) given in the coupled fixed-point equations in the esti-
mate `2(Yα,(T,U), Y1,(V,U)) ≤ ‖Yα,(T,U) − Y1,(V,U)‖2, we obtain, after tedious calculations, that

`2(Yα,(T,U), Y1,(V,U)) � max
{

|α− 1|,
√

|α− 1|‖T − V ‖2, ‖T − V ‖2
}

, (45)

as α→ 1 and T → V in L2. In particular, we used the expansion

B(α, α) = 1− 2(α − 1) + (4− π2/6)(α − 1)2 +O((α− 1)3) (46)

to derive σ(α, (T,U)) → σ(1, (V,U)) as α → 1 and T → V in L2. This implies the assertion for
β = 1. The general case β > 1/2 can be treated by the same approach and is indeed simpler since
the expansions (44) and (46) are not needed.

For the second part we denote r := 2 + δ and Zα,(T,U) := Yα,(T,U)/σ(α, (T,U))). These rescaled
quantities satisfy the fixed-point equation

Zα,(T,U)
d
= UαZα,(T,U) + (1− U)αZ∗

α,(T,U) +
1

σ(α, (T,U))

[

α+ 1

α− 1

(

Uα + (1− U)α − 1
)

+ T

]

,

where Zα,(T,U), Z
∗
α,(T,U), (U, T ) being independent and Zα,(T,U)

d
= Z∗

α,(T,U). We denote by N , N ∗ two
independent standard normal distributed random variables being independent of the other quantities.
Then

N(0, 1)
d
= U1/2N + (1− U)1/2N∗.
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Moreover, we define, similarly to (42), the mixtures

Mα,(T,U)
d
= UαN + (1− U)αN∗ +

1

σ(α, (T,U))

[

α+ 1

α− 1

(

Uα + (1− U)α − 1
)

+ T

]

.

Then E(Mα,(T,U)) = 0, E(M 2
α,(T,U)) = 1, and E|Mα,(T,U)|r < ∞; thus the µr distances between

Zα,(T,U), N(0, 1), and Mα,(T,U) are finite. It follows that

µr(Zα,(T,U), N(0, 1)) ≤ µr(Zα,(T,U),Mα,(T,U)) + µr(Mα,(T,U), N(0, 1)).

A calculation similar to (43) implies, for α > 1/2, that

µr(Zα,(T,U),Mα,(T,U)) ≤ 2E(U rα)µr(Zα,(T,U), N(0, 1))

≤ 2

1 + r/2
µr(Zα,(T,U), N(0, 1)).

Note that the assumptions (i) and (ii) for the dependent case are also satisfied in the case when T
and U are independent (see Corollary 1). The asymptotic normality for dependent and independent
cases can be derived under conditions (i) and (ii) by proving µr(Mα,(T,U), N(0, 1)) = o(1) as α ↓ 1/2.
This follows from the convergence in `r, which is obtained using the fixed-point equations for N(0, 1),
Mα,(T,U), ‖T‖r = o(σ(α, (T,U))) and that σ(α, (T,U)) is properly divergent, giving

`r(Mα,(T,U), N(0, 1)) ≤ 2 ‖U 1/2 − Uα‖r‖N‖r

+
1

σ(α, (T,U))

[∥

∥

∥

∥

α+ 1

α− 1

(

Uα + (1 − U)α − 1
)

∥

∥

∥

∥

r

+ ‖T‖r

]

,

which tends to zero for α ↓ 1/2 under our assumptions. It follows that

µr(Zα,(T,U), N(0, 1)) ≤ 2

1 + r/2
µr(Zα,(T,U), N(0, 1)) + o(1),

thus 2/(1 + r/2) < 1 implies µr(Zα,(T,U), N(0, 1)) → 0.
Note that in the case α ↓ 1/2 and T = 1, which holds especially for deterministic toll functions,

all conditions of the theorem are satisfied.
We may endow (1/2,∞)×L2 with the metric d((α, T ), (β, V )) := |α− β|+ ‖T − V ‖2. Then, for

fixed U , the map Y : (1/2,∞) × L2 → M2(0), (α, T ) 7→ L(Yα,(T,U)) is locally Lipschitz continuous
with respect to d and `2. This follows by making all the constants explicit in the estimate (45) and
in the corresponding one for general β > 1/2.

6 Examples

In this section, we discuss many examples, most of them being new.

The number of exchanges of quicksort. The number of exchanges used by quicksort satisfies
(1) with Tn dependent on In. While Theorem 1 does not apply, its proof does. The starting point is
the recurrence P0(y) = 1 and for n ≥ 1

Pn(y) =
1

n

∑

0≤k<n

Pk(y)Pn−1−k(y)
∑

0≤j≤min{k,n−1−k}

πn,k,je
jy,

where πn,k,j denotes the probability that there are exactly j exchanges when the rank of the pivot
element is k + 1; so that (see Sedgewick [70, p. 55])

πn,k,j =

(

k
j

)(

n−1−k
j

)

(

n−1
k

) . (47)
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Note that the exact number of exchanges used depends on implementation details and we count only
the essential random part.

Using the identity

∑

j≥1

πn,k,jj(j − 1) · · · (j − v + 1) =
(n− v − 1)!k!(n − 1− k)!

(n− 1)!(k − v)!(n− k − 1− v)!
(v = 0, 1, 2, . . . ), (48)

and (7), we easily obtain

E(Xn) =
n+ 1

3
Hn −

7

9
n+

1

18
(n ≥ 2).

For higher moments, we proceed as in Section 3 (α = 1) by defining Πn(y) := Pn(y)e−xny and

Πn,m := Π
(m)
n (0). Then by the same approach, we deduce that

Πn,m ∼ gmn
m (n ≥ 2),

where g0 = 1, g1 = 0 and for n ≥ 2

gm =
∑

a+b+c=m

(

m

a, b, c

)

gagb

∫ 1

0
xa(1− x)b

(

x

3
log x+

1− x

3
log(1− x) + x(1− x)

)c

dx.

Thus

Xn − xn

n

d−→ Y,

as well as convergence of all moments, where

Y
d
= UY + (1− U)Y ∗ +

U

3
logU +

1− U

3
log(1− U) + U(1− U),

with Y
d
= Y ∗ and Y, Y ∗, U independent.

On the other hand, Theorem 3 applies by establishing

Tn

n/6

L2−→ 6U(1− U).

This follows from (48).

In particular, by the recurrence of gm or by Corollary 1, Var(Xn) ∼
(

11
60 − π2

54

)

n2.

Note that by (48)

E(T k
n ) ∼ E(Tn(Tn − 1) · · · (Tn − k + 1)) =

k!k!(n− k − 1)!

(2k + 1)!(n− 2k − 1)!
∼ k!k!

(2k + 1)!
nk,

for k ≥ 1. Thus Tn/n has in the limit a beta distribution:

P

(

Tn

n
< x

)

→ 1−
√

1− 4x (0 < x < 1/4).

Unlike the number of comparisons, which has quadratic worst-case behavior, the number of
exchanges is at most of order n log n. Also it is interesting to note that the histograms of P (Xn = i)
are very close to normal curves for n small; see Figure 2. An explanation of this phenomenon is
that the leading constant of the variance (as well as g3) is very small 11

60 − π2

54 ≈ 0.00056288. The
“non-normality character” of Y will emerge for large enough n.
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Figure 2: The histogram of P (X60 = k) for k from 30 to 68 and the corresponding normal curve
e−(k−E(X60)−1/2)2/(2Var(X60))/

√

2πVar(X60). We shifted the normal density by 1/2; for otherwise the
two curves will be almost indistinguishable.

The limit law (49) is different from that of the number of comparisons (2); however, the limit
distributions are related by their defining fixed-point equations. Indeed, the correlation of the number
of comparisons and the number of exchanges is asymptotic to

√
5(39− 4π2)

2
√

(21 − 2π2)(99 − 10π2)
≈ −0.864042...

This can be proved by the bivariate limit law of both variates that can be derived by a multivariate
extension of the contraction method (see Neininger [53] for details). Thus the number of comparisons
and the number of exchanges are highly negatively correlated. Intuitively, when the shape of the
corresponding binary search tree is very skewed, few key exchanges are needed; on the other hand,
the number of exchanges reaches its maximum when the pivot element is around n/2 (see (47)).
Roughly, the more “balanced” the permutation, the more number of exchanges is needed. The
situation here is more or less the same when one uses the median-of-(2t + 1) quicksort: while the
number of comparisons decreases with t, the number of exchanges increases. We might say that we
trade off the number of exchanges for the number of comparisons.

Note that the same limit law (2) for Tn = n+O(1) persists for Tn = n+ω(n), where ω(n) = o(n)
and

∑

n ω(n)/n2 <∞; this reflects the “robustness” of the limit laws.

Paged trees. Fix a page (or bucket) size b ≥ 1. Cut all nodes with subtree sizes ≤ b. The resulting
tree is called the b-index of the tree; see Flajolet et al. [27] and Mahmoud [47]. What is the size of
a random b-index? And what is the total path length? Obviously, both random variables satisfy (1)
(with different initial conditions). The asymptotic normality of the size was established for fixed b by
Flajolet et al. [27] with mean equal to 2(n+ 1)/(b+ 2)− 1. The variance is equal to (the expression
given in [27] being wrong)

2

(

4H2b+2 − 4Hb+1 −
(b+ 1)(5b + 2)

(2b+ 3)(b + 2)

)

n+ 1

b+ 2
(n ≥ 2b+ 2).

Indeed, we can prove that the asymptotic normality holds for 2 ≤ b = o(n). This does not
follow directly from our results but easily amended by truncating the first b terms in our exact and
asymptotic expressions (6) and by applying the same arguments.

If we vary b such that 2 ≤ b = o(n), then the path length of the b-index gives an interesting
example with mean of order n/b, which varies from linear to any function tending to infinity. Thus
the limit laws change from non-normal to normal when b increases.
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This variation of path length suggests in turn a variation of quicksort: stop subfiles of size less
than or equal to b, where b can vary with n. We can show that the limit law of the total number
of comparisons used in the quicksort partitioning stages does not change as long as b = o(n). This
images another “robustness” of the limit laws.

Leaves and patterns in binary search trees. Our Theorem 2 can be applied to the number of
times a given pattern appears in a random binary search tree; see Devroye [17] and Flajolet et al.
[27]. The number of times a subtree of size k appears is also asymptotically normally distributed;
see Aldous [1] and Devroye [19]. By the correspondence between increasing trees (or binary recursive
trees) and permutations, some patterns on trees like the number of leaves also lead to well-known
distributions in random permutations; see Bergeron et al. [6] and Flajolet et al. [27].

Analysis of tree traversal algorithms. Binary search trees can be implemented in several dif-
ferent ways: two-pointers, threaded with or without flag, triply linked (with a pointer to parent),
etc.; and the nodes can be traversed in different orders: inorder, preorder, postorder, breath-first,
depth-first, etc.; see [2, 10, 11, 12, 22, 23, 31, 50, 64] and [30]. The analysis of the cost of these
algorithms then reduces to the calculation of certain parameters on trees such as the number of
nodes with null (or non-null) left (or right) branches, the number of nodes with both non-null left
and right branches, and the number of nodes that are a left child and whose right branch is not
empty. All these quantities can be systematically analyzed by applying our results; see Brinck and
Foo [11] and Brinck [10] for analysis of the mean of some cost measures.

For example, the major cost (number of pointer operations) needed to traverse a threaded binary
search tree in preorder and in inorder is essentially given by (neglecting minor parameters)

Xn
d
= XIn +X∗

n−1−In
+ TIn ,

where

Qn(y) := E(eTny) =
∏

1≤k≤n

k − 1 + ey

k
(n ≥ 1), (49)

essentially the Stirling numbers of the first kind (enumerating the number of records in iid sequences,
the number of cycles in random permutations, etc.). The distribution of Xn is asymptotically normal.
Likewise, the moment generating function Pn(y) of the cost for postorder traversal satisfies

Pn(y) =
ey

n

∑

0≤k≤n−2

Pk(y)Pn−1−k(y)Q2
k(y)Vk(y) +

ey

n
Pn−1Q

2
n−1(y),

where Qn(y) is defined as in (49) and Vn(y) denotes the moment generating function for the depth
of the first node in postorder; see (53). The mean was derived by Brinck [10]. Indeed the exact
forms of these generating functions are immaterial because our results are strong enough to prove
the asymptotic normality of the cost within a large range of variation for the toll function; see also
Section 7 for the asymptotic normality of the depth of the first node in postorder.

Secondary parameters of quicksort. If we always sort smaller files first, then the number of
stack pushes and pops used to sort a random input satisfies Pn(y) = 1 for n ≤ 4 and

Pn(y) =
ey

n

∑

0≤k<n

Pk(y)Pn−1−k(y) +
2

n
(1− ey) (Pn−1(y) + Pn−2(y)) (n ≥ 5).

Our results apply and the number of stack pushes is asymptotically normally distributed. If we stop
sorting subfiles of sizes less than a certain given value and then use a final insertionsort to complete
the sorting, then the number of comparisons and exchanges used by the insertionsort is again normal
in the limit. For more information on analysis of quicksort, see Sedgewick [70], Chern and Hwang
[13].
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Sorting on a broadcast communication model. The model consists of n processors sharing a
common channel for communications, allowing one processor to broadcast at each time epoch. To
each processor a certain number is attached (the numbers being distinct). The sorting problem is to
order these numbers in increasing order. The algorithm proposed in Shiau and Yang [71] is as follows.
Select first a loser (a preferable term being “a leader”) by the coin-flipping procedure in Prodinger
[58]. Split the processors into two subsets containing, respectively, smaller and larger numbers; then
sort recursively by the same approach; see Shiau and Yang [71] for details. The number of rounds
of coin-tossings (in order to resolve the conflict for using the channel) satisfies (1) with Tn given by
(Qn(y) := E(eTny))

Qn(y) =
ey

2n

∑

1≤k≤n

(

n

k

)

Qk(y) +
ey

2n
Qn(y) (n ≥ 2),

with Q1(y) = 1. The mean of Xn is studied by Grabner and Prodinger [32]. By the results of Fill et
al. [26], our results apply and Xn is asymptotically normal.

In-situ permutation algorithm. The problem in question is: given a sequence of numbers
{a1, . . . , an} and a permutation {π1, . . . πn}, output {aπ1

, . . . , aπn} using at most O(1) space. An
algorithm was given by MacLeod [44] and analyzed by Knuth [42]. Kirschenhofer et al. [41] showed
that the major cost Xn of the algorithm satisfies the quicksort recurrence (1) with Tn = In. They
extended Knuth’s analysis of the first two moments by computing the asymptotics of all moments
(non-centered).

Theorem 3 applies and we obtain

Xn −E(Xn)

n

d−→ Y, (50)

where Y
d
= UY + (1− U)Y ∗ + U logU + (1− U) log(1− U) + U . Note that

E(Xn) ∼ n log n, Var(Xn) ∼ σ2(1, (2U,U))n2 =

(

2− π2

6

)

n2.

We can indeed prove convergence of all moments using the same approach in Section 3 starting from
P0(y) = 1 and

Pn(y) =
1

n

∑

0≤k<n

ekyPk(y)Pn−1−k(y) (n ≥ 1). (51)

Note that Xn can also be viewed as the left path length of random binary search trees (by counting
only left branches). In general, one may consider weighted path length by assigning weight α to each
left branch and β to each right branch in a random binary search tree; our tools apply.

Recursive trees. Interestingly, the limit distribution (50) also appears as the limit distribution
of the total path length of random recursive trees; see Dobrow and Fill [21], Mahmoud [46]. This
can be explained in two ways. First, by a well-known transformation from multiway trees to binary
trees (see Corman et al. [15]), we can actually prove a bijection between the total path length of a
recursive tree of n nodes and the left path length of a random binary search tree of n− 1 nodes, the
latter having the same distribution as the major cost of the in-situ permutation algorithm.

Second, the underlying recurrence for total path length of recursive trees is almost identical to
(51)

Xn
d
= XJn +Xn−Jn + Jn,

where Jn is uniformly distributed over {1, 2, . . . , n− 1}.
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This connection makes it possible to derive the limit laws of other parameters on recursive trees
by our approaches (up to minor modifications) like the number of leaves, the number of nodes with
a specified degree, etc.; see Smythe and Mahmoud [72] for a survey of recursive trees. Note that the
number of leaves satisfies P0(y) = 1, P1(y) = ey and

Pn(y) =
1

n− 1

∑

1≤k≤n−2

Pk(y)Pn−1−k(y) +
Pn−1(y)

n− 1
(n ≥ 2),

the underlying distribution being essentially the Eulerian numbers; see Bergeron et al. [6].

Superlinear toll functions. The Wiener index of a graph is defined as the sum of the distances
between all pairs of nodes. This index plays an important role in connection with physico-chemical
properties (like boiling point, heat of information, crystal defects) of chemical structures; see Gutman
et al. [33] and Trinajstić [73]. The Wiener index of a random binary search tree satisfies, neglecting
the independence assumptions, (1) with

Tn = 2In(n− 1− In) + Zn + InZ
∗
n−1−In

+ (n− 1− In)Z ′
In
,

where Zn denotes the total path length, which satisfies (1) with Tn = n− 1. The mean is easily seen
to be

E(Xn) = 2n2Hn − 6n2 + 8nHn − 10n+ 6Hn (n ≥ 1).

But our results fail since Zn and Xn are not independent. The variance satisfies Var(Xn) ∼ (20
3 −

2
3π

2)n4 and the characterization of the limit law of Xn necessitates a multivariate extension of our
approach, see Neininger [54] for details.

Other examples. For other examples of the quicksort type leading to an asymptotically normal
distribution, see Fill [24], Hofri and Shachnai [37], Panholzer and Prodinger [56], Chern et al. [14].

7 One-sided quicksort recurrence

In this section, we briefly discuss the recurrence (3). Assume that Tn is independent of In. Then the
moment generating function of Xn satisfies P0(y) = 1 and for n ≥ 1

Pn(y) =
Qn(y)

n

∑

0≤k<n

Pk(y),

which can be easily solved, by considering the difference nPn(y) − (n − 1)Pn−1(y)Qn(y)/Qn−1(y),
giving

Pn(y) = Qn(y)
∏

0≤k<n

k +Qk(y)

k + 1
(n ≥ 1).

Thus Xn−Tn is the sum of independent mixed random variables. The asymptotic transfer from the
toll function to the total cost in this case is much simpler.

Lemma 5. Define a0 = 0 and for n ≥ 1

an = bn +
1

n

∑

0≤k<n

ak. (52)

Then

an = bn +
∑

1≤k<n

bk
k + 1

(n ≥ 1).
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Proof. Omitted.

Lemma 6 (Asymptotic transfer). Assume an satisfies (52). If bn ∼ nαL(n), where L(n) is slowly
varying, then

an ∼















∑

1≤k<n

L(k)

k + 1
, if α = 0;

α+ 1

α
nαL(n), if α > 0.

Proof. Omitted.
For the limit laws, we have roughly

Pn(y)

Qn(y)
=

∏

1≤k<n

(

1 +
Qk(y)− 1

k + 1

)

≈ exp





∑

1≤k<n

Qk(y)− 1

k + 1





≈ exp



y
∑

1≤k<n

Q′
k(0)

k + 1
+
y2

2

∑

1≤k<n

Q′′
k(0)

k + 1
+O



|y|3
∑

1≤k<n

|Q′′′
k (0)|
k + 1







 .

Thus for small toll functions, if
∑

1≤k<n

Q′′
k(0)

k + 1
→∞

and




∑

1≤k<n

Q′′
k(0)

k + 1





−3/2
∑

1≤k<n

|Q′′′
k (0)|
k + 1

→ 0,

then Xn is asymptotically normally distributed.

On the other hand, for larger toll functions, if Tn/tn
d−→ T , then roughly

Pn(y)

Qn(y)
≈ exp





∑

1≤k≤n

Qk(y)− 1

k + 1





≈ exp

(∫ x

0

Q(v) − 1

v
dv

)

,

where Q(y) denotes the moment generating function of T .
Instead of making these heuristics rigorous, we state a simpler result, describing mainly the phase

change from normal to non-normal laws.

Theorem 6. Let Xn satisfy (3), where Tn is independent of In. Assume that

E(Tn) ∼ nαL(n) and E

(

Tn

tn

)m

→ τm (m ≥ 1),

where α > 0, and that Q(z) :=
∑

m≥0 τmz
m/m! has a nonzero radius of convergence. Then

Xn

nαL(n)

d−→ X,

28



with convergence of all moments, where G(z) := E(ezX) satisfies

G(z) =

∫ 1

0
exp

(

1

α

∫ wαz

0

Q(v) − 1

v
dv

)

dw,

for sufficiently small z. On the other hand, if

tn ∼ L(n), and E(|Tn|m) = O(tmn ) (m = 2, 3),

and

s2(n) :=
∑

1≤k<n

Q′′
k(0)

k + 1
→∞,

then
Xn −

∑

1≤k<nQ
′
k(0)/(k + 1)

s(n)

d−→ N(0, 1).

Proof. (Sketch) The proof of the asymptotic normality follows from the above argument using moment
generating functions and Curtiss’s continuity theorem. For large toll functions, we use the method
of moments as above by proving

P (m)
n (0) ∼ gmn

mαLm(n),

where g0 = 1 and for m ≥ 1

gm =
∑

0≤j≤m

(

m

j

)

gj

jα + 1
τm−j .

The required result follows from the same arguments we used for (1).
When α > 0, the contraction method gives another access to the limit law, where Tn may depend

on In.

Theorem 7. Let (Xn) be given by (3). Assume that

E(Tn) ∼ nαL(n) and

(

Tn

E(Tn)
,
In
n

)

L2−→ (T,U),

where α > 0 and T is square-integrable. Then

`2

(

Xn

nαL(n)
, Xα,(T,U)

)

→ 0,

where L(Xα,(T,U)) is the unique fixed-point of the map

Sα,(T,U) : M2 →M2, ν 7→ L(UαZ + T ),

with Z, (T,U) being independent and L(Z) = ν.

Proof. Omitted.
If T 6= (α+ 1)(1 − Uα)/α, then

Var(Xn) ∼ σ2n2αL2(n),

where σ = σ(α, (T,U)) is defined by

σ2 =
1

2α
+

2α+ 1

2α

(

Var(T ) +
2(α + 1)

α
E(TUα)− 2

α

)

.

When T = (α+ 1)(1 − Uα)/α, then Var(Xn) = o(n2αL2(n)).
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Tree traversals. The simplest example is when Tn = 1 for n ≥ 1. The distribution is essentially
the Stirling numbers of the first kind; see (49). This classical example also appears in a large
number of problems; see Bai et al. [3] for some examples. This distribution also has another concrete
interpretation: the depth of the first node in inorder traversal.

Interestingly, the depth of the first node in postorder traversal of a random binary search tree
satisfies a slightly different recurrence: P0(y) = P1(y) = 1 and for n ≥ 2

Pn(y) =
ey

n

∑

1≤k<n

Pk(y) +
ey

n
Pn−1(y), (53)

which can be asymptotically solved as

Pn(y) =
ney−1

Γ(y)
$(ey)

(

1 +O(n−1)
)

+O(n−1),

uniformly for |y| ≤ δ, where

$(y) = ey +

∫ 1

0
wyeyw

(

1− y − yw−1
)

dw.

This is derived by applying singularity analysis (see [28]) to the generating function P (z, ey) =
∑

n Pn(y)zn, which satisfies

P (z, y) = (1− z)−yez + (1− z)−ye−y(1−z)

∫ 1

1−z
wyeyw

(

1− y − yw−1
)

dw.

Therefore the distribution of Xn is asymptotically Poisson with parameter log n and thus asymptot-
ically normal; see [38]. The mean was discussed by Brinck [10].

Quickselect. The number of comparisons and exchanges used by quickselect to find the smallest
(or the largest) elements satisfies (3) with toll functions of linear mean. Our theorems apply and,
in particular, the limit law of the number of comparisons is Dickman. The same limit law actually
persists for selecting the m-th smallest (or largest) element when m = o(n); see Hwang and Tsai [39]
for more details.

The Stirling distribution also naturally appears as the number of partitioning stages used by
quickselect to find the smallest or the largest element. This gives yet another addition to the large
list of concrete interpretations of the Stirling numbers of the first kind.

Logarithmic product of cycle sizes in random permutation. Permutations can be decom-
posed into a set of cycles. Given a random permutation of n elements, let σ1 ≤ · · · ≤ σk denote the
cycle sizes. Define Xn :=

∑

1≤j≤k log σj, which appeared as a good approximation to the logarithmic
order of a random permutation. Then Xn satisfies (1) with Tn = log n and

E(eXny) =
∏

1≤k≤n

(

1 +
yk − 1

k

)

.

Our result gives the well-known asymptotic normality of Xn with mean 1
2 log2 n and variance 1

3 log3 n;
see Barbour and Tavaré [4] for further information.
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