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1. Introduction

1.1. Motivation

The description of movement patterns can be important for the understanding of various
biological processes on multiple scales. One main goal is to understand potential causes of
changes between such movement patterns [23, 51]. This can be important for controlling the
spread of infectuous diseases or invasive species, to understand impacts of climate change,
e.g., on the change of migration routes [45, 38, 33, 63] or to minimize the impact of new
technology on the natural habitat [56, 57].

On the macro scale, differences and changes between movement patterns of animals are
investigated in order to describe specific behavior such as foraging strategies and predation,
dispersal and migration, habitat use, social and territorial behavior, the coexistence of com-
petitors or community interactions [for an overview see, e.g., 11, 15, 23, 6]. For example,
highly explorative behavior with fast changes in movement direction and speed can alternate
with resting periods with little changes or local exploration with minimal movement speed
but highly diverse directions. Animals studied in this context are for example wolves [23],
whales [24, 66], seals [38, 6] or butterflies [6].

On the micro scale, cells for example are compartmentalized into different cell organelles
that form specialized reaction rooms in order to dissect various metabolic processes. At the
same time, most metabolic and signalling pathways are shared between different cell or-
ganelles. Consequently, the distribution of nutrients and signals within the cell needs to be
coordinated, which requires in part organelle interactions [8, 60, 52, 69]. This is one, but not
the only driving force for organelle movement within cells. One mode for this movement is
cytoplasmic streaming [70] which can be observed in most of the eukaryotic cells [e.g., 21, 2].
Aside from this rather arbitrary force a more directed mechanism of movement is based on
the structures provided by the cytoskeleton [52].
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Fig 1. (A) Example of a microscopy image with fluorescently labelled plastids appearing as light spots. (B, C)
Examples of two organelle tracks, no. 102 (B) and 434 (C) projected onto the first two principal components.
Time is colour coded starting at dark blue. The phenomenon of changes in movement direction and step length is
illustrated with red lines and arrows.

So far, we only start to understand the principles of movement of the different cell or-
ganelles, but we are far from understanding the various regulations in different tissues and
cell types. While new technological developments in the field of light sheet microscopy and
super resolution microscopy allow the experimental determination of the cellular dynam-
ics, fast procedures for the analysis of the large data sets are required. Especially a change
point analysis for velocity and direction of movement would provide information, e.g., on
involvement of cytosceleton components, influence of other organelles and the frequency of
the switch between different modes of movement.

In order to learn about the combination of and switch between different types of movement,
we consider here the movements of specific cell organelles in the root of the plant Arabidopsis
thaliana (see Figure 1 A). These organelles are so-called plastides, which predominantly
consist of leucoplasts with mainly nutrient storage functions and peroxisomes which take
part in various reaction pathways. Details on the detection, tracking and post-processing of
the two datasets can be found in Dryad [53].

Examples of such tracks are illustrated in Figure 1 B and C. Interestingly, while all tracks
were recorded in three dimensions, over 90% of the tracks showed more than 95% of their
movement variability in only two dimensions. We therefore focused on the two-dimensional
projection of the movements, allowing comparability to approaches for animal movement
pattern analysis. Our methods will, however, be also applicable to a higher number of dimen-
sions.

In the present data set, we observed interesting new features of the movement patterns (see
Figure 1 B and C): First, the movement of the cell organelles seemed to occur along roughly
linear structures (red arrows in panel B and C). Second, sharp changes in the movement
direction were visible (red circles in panels B and C). Third, the speed, or the step length
from one data point to the next, which are recorded in equidistant time intervals, showed a
certain variability (red dashes in panel B).

It is therefore the goal of the present article to describe such movement patterns in a mathe-
matical framework and to derive a method that can statistically test for, detect and distinguish
changes in the movement direction and speed in such tracks.
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1.2. State of the art

The offline change point analysis and detection of structural breaks is a major field of research
[see, e.g., 10, 47, 4, 28, 9]. One considers abrupt changes in the mean or variance in 𝑛-
dimensional real valued time series with independent observations [10, 47, 28], cases with
short or long term dependence [4, 13, 58, 49, 48] or cases with gradual changes [67, 9].
Change point detection methods range from likelihood ratio and Bayes-type methods [28] to
CUSUM [4, 20] or MOSUM-based methods [16, 41, 31].

However, only a small number of statistical methods is available for change point analy-
sis in the field of directional statistics [see e.g., 59, 36, 27, 18]. When investigating change
points in directional time series, classical change point analysis methods are often limited
by technical restrictions. For example, quantities corresponding to the standard deviation are
rather limited, or the usual behavior of means or linear combinations of normally distributed
random variables does not exist for the relevant directional distributions. Many approaches
for change point detection in animal movement therefore focus on the partitioning of the
observed time series, often lacking statistically rigorous tests for the null hypothesis of no
changes in movement direction or speed [see e.g., 11, 22, 15, 23, 43]. In many cases, one
intends to segregate a small number of different states, where this number often needs to be
specified in advance [34, 43].

Among the mathematical models applied for such analyses, one finds time discrete as well
as time continuous models. In certain applications, e.g., with large sections of missing data
or unequally spaced recording times, time continuous models such as Ornstein-Uhlenbeck
processes or correlated velocity models can be necessary [see 29, 24, 50, 25, 38, 19, 42]. In
the present study, however, missing data were virtually not observed, all recording times were
equally spaced, and the sampling rate was sufficiently small to capture important activity such
as fast transport [64].

Concerning time discrete models, a random walk (RW) is one of the most widely used
families of models [e.g., 5, 6, 7, 30, 38, 39, 43, 44] and applied in different variants. In an-
imal studies, so-called correlated random walks [CRWs, 30, 39, 43, 44] are often applied in
which the current movement is assumed to depend on the current position and the previous
movement direction. In such models, movement is described by choosing a random step size
and turning angle at each movement step. Turning angles around zero and high step sizes
indicate strongly directed behavior as opposed to, e.g., explorative behavior with small step
sizes. Such models do not directly fit the present data structure because they cannot maintain
a global movement direction (Figure 3 C). Also, changes in the movement direction during
strongly directed behavior as we observe in the present data set (Figure 1) cannot be investi-
gated in CRWs because the mean turning angle is always zero during directed behavior and
does not depend on the absolute movement direction.

More suitable for the description of the observed movement along linear structures is there-
fore a so-called biased RW, which has been investigated, e.g., in the context of swimming
micro-organisms [3, 12, 26]. In such biased RWs, one assumes a mean absolute movement
direction, which is distorted by some random component. Analyses using a Hidden Markov
Model suggest that assuming absolute angles in a biased RW may be more appropriate for
the present data set than using turning angles as in CRWs [54].
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The biased RW will therefore serve as a reference model in the present paper. As this
biased RW is the only type of RW investigated here, we will refer to it simply as ‘RW’ in the
following.

The RW has technical advantages, e.g., it allows a relatively straightforward extension of
existing change point methods. However, our findings indicate that a RW shows a higher
variability in the movement direction and may thus move less strictly along a linear structure
than can be observed in many organelle tracks (Figure 3 B). One possibility to deal with this
issue would be to use more complex models, such as biased and correlated random walks,
e.g., with attraction points. However, such models can contain complex dependence structures
and often need to be fitted using Bayesian methods or artificial neuronal networks [65, 39].
Here, we follow an approach that proposes an alternative model in which the process sticks
more closely to a linear structure than a RW.

1.3. Aims and plan of the paper

In the present paper, we follow three main aims. First, we aim at developing a stochastic model
for the description and statistical analysis of the recorded organelle tracks. This model will
be presented in Section 2. For the present recording setup, (i) the model can be time discrete,
and it will even be constructed in such a way that the parametrization does not depend on the
time resolution of the recording. Most importantly, the model should be able (ii) to represent
movements along roughly linear structures and (iii) to capture an arbitrary number of changes
in (iv) the movement direction, or speed, or both. Due to these properties, the model will be
called a Linear Walk (LW). As we also aim to capture changes in the absolute movement
direction, we propose to use a model with absolute angles (v).

Second, we aim at developing a statistical test for the null hypothesis of no changes in
direction or speed, which can also be used for the investigation of change points on multi-
ple time scales. As we will show, changes in either direction or speed can be investigated
individually, but only under the assumption that the respective other parameter is kept con-
stant (Section 3.1 and Appendix D). If we allow for potential changes in both parameters,
changes in either parameter will affect the analysis of the other. One would therefore need
to know the changes in, e.g., the speed to analyse changes in the direction, and vice versa.
We therefore propose a bivariate approach that investigates changes in these two parameters
simultaneously.

We then switch from the polar parameterization to a classical cartesian parameterization
in which, for example, a classical MOSUM approach has been proposed for the bivariate
analysis of changes in the mean and variance of a one-dimensional, independent and piece-
wise identically distributed time series by Messer [40]. We illustrate its adaptation to our RW
setting and show that it is less suitable in the LW setting due to a specific serial dependence
structure in the increments (Section 3.1.2).

We derive new estimators for the model parameters in the LW setting and use these to
replace the classical MOSUM statistic with a moving kernel process (Section 3.2). We then
show that for a fixed window size under the null hypothesis, the new statistic scaled with the
true variance is a Gaussian process whose distribution is independent from the model param-
eters (Section 3.2). For increasing window size, we show convergence to a limit Gaussian
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process with a specific autocovariance structure (Section 3.3). We also show strong consis-
tency of the estimator �̂�2 for the variance 𝜎2 in the proposed model.

Our third aim is to provide a method for change point estimation and classification of
change points in direction or speed only, or in a combination of the two parameters. To that
end, we adapt a change point detection algorithm that was proposed in the classical MOSUM
setting, which allows testing for change points on multiple time scales and which has well
studied asymptotic properties [31, 32]. For classification of change points, we apply a graph-
ical method called the leaf plot in which changes in the two parameters typically result in
specific graphical representations that represent different leaves. The methods are illustrated
by application to tracks from the two sample data sets in Section 4.

2. The random walk and the linear walk

2.1. Notation and model assumptions

Here we shortly review the Random Walk (RW) and propose a new stochastic model, the
Linear Walk (LW). When we refer to a LW or RW specifically, we will use the superscripts
𝐿𝑊 and 𝑅𝑊 , respectively, to denote processes, variables or estimators. When the superscripts
𝐿𝑊 and 𝑅𝑊 are omitted, we refer to both, the LW and RW case. In both cases, we consider
a bivariate stochastic movement process (𝑋𝑖) with increments 𝑌𝑖 := 𝑋𝑖 − 𝑋𝑖−1, 𝑖 = 1, 2, . . .
In both models, movement direction is denoted by 𝜗 ∈ [0, 2𝜋) and measured as an absolute
angle. The step length is denoted by 𝑟 > 0 and the variance of the error term is denoted by
𝜎2 > 0.

In addition to the polar parametrization (𝜗, 𝑟), which allows a straightforward biological
interpretation, we will also use the cartesian parameters 𝜇 := (𝜇 (1) , 𝜇 (2) )𝑡 due to technical
advantages, where (see Figure 2 B)

(𝜇 (1) , 𝜇 (2) )𝑡 = 𝑟 (cos 𝜗, sin 𝜗)𝑡 , 𝜗 := arctan2(𝜇 (2) , 𝜇 (1) ) and 𝑟 := ‖𝜇‖2, (1)

where ‖𝑥‖2 denotes the euclidean norm and arctan2 denotes a generalized inverse of the tan-
gens function. Maximum likelihood estimators (MLEs) for 𝜗 and 𝑟 can therefore be derived
from the MLEs of 𝜇 (1) and 𝜇 (2) .

The RW and LW are formally defined in Definition 2.2. Basically, the RW assumes that all
increments 𝑌𝑖𝑅𝑊 are independent and bivariate normally distributed, i.e.,

𝑌𝑖
𝑅𝑊 = 𝑋𝑅𝑊𝑖 − 𝑋𝑅𝑊𝑖−1 = 𝜇 + 𝜎�̃�𝑖, 𝑖 ∈ N.

The variables �̃�𝑖 as well as the variables 𝑍𝑖 used below in the LW describe independent and
bivariate standard normally distributed random variables.

The parameter 𝜇 = (𝜇 (1) , 𝜇 (2) )𝑡 , which is different from zero due to 𝑟 > 0, describes a
biased movement in the direction given by 𝜗 = arctan2(𝜇 (2) , 𝜇 (1) ). For ease of notation, we
refer to this biased RW simply as RW. The model assumptions and relations to other models
in the context of movement analysis are discussed in more detail in Section 2.2.

In comparison to the RW, we propose here a model called Linear Walk (LW) which has
the same movement bias 𝜇 but sticks more closely to a straight line than the RW. Within a
stationary section, we assume that an LW follows

𝑋𝐿𝑊𝑖 := 𝑏 + 𝑖𝜇 + 𝜎𝑍𝑖, (2)
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Fig 2. (A) Visualization of the model parameters and the Expected Process (EP), (B) Polar and linear parametriza-
tion of the model, distribution of increments of the model, (C) visualization of the random displacement of the
process by normally distributed error terms in the LW (blue) and in the RW (green) around the EP (orange).

for 𝑖 ∈ N, with an arbitrary starting point 𝑏 ∈ R
2.

Both an LW and RW can share the same process of expected values 𝑒𝑖 := E𝑋𝑅𝑊𝑖 = E𝑋𝐿𝑊𝑖 ,
differing only in the variability around this expectation. To see this, we define the expected
process (EP) in Definition 2.1 and the corresponding LW and RW in Definition 2.2. In the
full model with change points, we allow the EP (𝑒𝑖)𝑖∈N to show changes in the movement
direction 𝜗 and in the step length, 𝑟 (Fig. 2 A).

Definition 2.1 (Expected Process, EP). For a starting point 𝑏 ∈ R
2 and a drift vector 𝜇 =

(𝜇 (1) , 𝜇 (2) )𝑡 ∈ 𝑅2 \ {0}, let 𝑟 and 𝜗 be as in (1). Then the EP (𝑒𝑖)𝑖∈N denoted by EP(𝜗,𝑟,𝑏,∅)
with an empty set of change points is given by

𝑒𝑖 := 𝑏 + 𝑖𝜇 = 𝑏 + 𝑖 · 𝑟 (cos 𝜗, sin 𝜗)𝑡 , 𝑖 ∈ N.

An EP with a set of 𝑘 ∈ N change points 𝐶 := {𝑐1, . . . , 𝑐𝑘} with 0 =: 𝑐0 < 𝑐1 < · · · < 𝑐𝑘 <
𝑐𝑘+1 := 𝑇 < ∞ is defined as a composition of EPs without change points. To that end, define
(𝑘 + 1) drifts 𝜇1, . . . , 𝜇𝑘+1, and let the sets of directions and step lengths be given by

Θ = {𝜗1, . . . , 𝜗𝑘+1} and 𝑅 = {𝑟1, . . . , 𝑟𝑘+1},

with 𝜗 𝑗 := arctan2(𝜇 (2)𝑗 , 𝜇
(1)
𝑗 ) and 𝑟 𝑗 := ‖𝜇 𝑗 ‖2, 𝑗 = 1, . . . , 𝑘 + 1, and define 𝑘+1 processes

EP(𝜗 𝑗 ,𝑟 𝑗 ,𝑏 𝑗 ,∅) that describe the piecewise linear EPs in the sections between the change
points. The set of starting points 𝐵 = {𝑏1, . . . , 𝑏𝑘+1} are defined such as to connect the EPs,
i.e., 𝑏1 ∈ R

2 and

𝑏 𝑗 = (𝑐 𝑗−1 − 𝑐 𝑗−2) · 𝑟 𝑗−1 · (cos(𝜗 𝑗−1), sin(𝜗 𝑗−1))𝑡 + 𝑏 𝑗−1, 𝑗 ∈ {2, . . . , 𝑘+1}.

We assume that for successive EPs, at least one of the parameters 𝜗 or 𝑟 changes. Then
(𝑒 ( 𝑗 )𝑖 )𝑖∈N = EP(𝜗 𝑗 ,𝑟 𝑗 ,𝑏 𝑗 ,∅) are given by 𝑒 ( 𝑗 )𝑖 := 𝑏 𝑗 + 𝑖𝜇 𝑗 , and (𝑒𝐶𝑖 )𝑖=1,...,𝑇 = EP(Θ, 𝑅, 𝐵,C)
with change point set 𝐶 is defined as

𝑒𝐶𝑖 := 𝑒 ( 𝑗+1)
𝑖−𝑐 𝑗 , 𝑗 = 0, . . . , 𝑘, 𝑖 = 𝑐 𝑗 + 1, . . . , 𝑐 𝑗+1. (3)

Definition 2.2 (RW and LW). Let (𝑒𝐶𝑖 )𝑖∈N = EP(Θ,𝑅,𝐵,𝐶) denote an expected process
with parameter sets Θ, 𝑅, 𝐵 and change point set 𝐶 as in Definition 2.1. Let 𝜎2 > 0 and
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𝑍𝑖 , �̃�𝑖 , 𝑖 = 1, 2, . . . , be independent and bivariate standard normally distributed random vari-
ables. Then the corresponding RW and LW, RW(Θ, 𝑅, 𝐵, 𝜎2,C) and LW(Θ, 𝑅, 𝐵, 𝜎2,C), are
given, respectively, by

𝑋𝑅𝑊𝑖 := 𝑒𝐶𝑖 + 𝜎
𝑖∑
𝑗=1

�̃� 𝑗 and (4)

𝑋𝐿𝑊𝑖 := 𝑒𝐶𝑖 + 𝜎𝑍𝑖, for 𝑖 ∈ N. (5)

2.2. Discussion of the model assumptions

The RW and LW models capture the two features of the absolute movement direction and
step length with two biologically interpretable parameters. Changes in these parameters can
be implemented separately, which enables the description of different modes of movement.
For example, a high step length and constant movement direction could indicate transport
along intracellular filaments, while lower step length could indicate cytoplasmic streaming.
Note that we use normally distributed errors because these have technical advantages over
generic directional distributions.

Qualitatively, the LW (see Fig. 2 C, blue, and Fig. 3 A) sticks more closely to the EP
(see Fig. 2 C, orange, and Fig. 3 A) and thus captures the linear movement of the plastid
tracks (Fig. 1). If the EP is interpreted as a filament along which the organelle is transported,
the random displacements 𝑍𝑖 of the points assumed in the LW could be interpreted as a
fluctuation of the organelle around its adhesion point or as a measurement error. In an RW
(Fig. 2 C, green, and Fig. 3 B), the linear structure hidden in the EP is much less visible
due to a cumulation of error terms �̃�𝑖 . In a CRW, i.e., a model in which movement direction
is measured relative to the previous movement direction, movement that shows a certain
variability around an otherwise linear structure can only hardly be observed. Figure 3 C
shows a corresponding simulation of a CRW which is, in between change points, of the form

𝑌𝐶𝑅𝑊𝑖 :=
(
𝑌𝐶𝑅𝑊, (1)
𝑖 , 𝑌𝐶𝑅𝑊, (2)

𝑖

)
:= 𝑟 𝑗 (cos 𝜑𝑖−1, sin 𝜑𝑖−1)𝑡 + 𝜎�̊�𝑖,

where �̊�𝑖 are independent and bivariate standard normally distributed random variables and
𝜑𝑖 := arctan2(𝑌𝐶𝑅𝑊, (2)

𝑖 , 𝑌𝐶𝑅𝑊, (1)
𝑖 ). At a change point 𝑐 𝑗 , the new angle 𝜑𝑐 𝑗 is chosen such

as to match the direction given in the set of fixed directions Θ.s Due to the relative nature
of the movement direction in the CRW, a fixed absolute direction cannot be kept for large
variability 𝜎2 (solid lines), while small values of 𝜎2 (dottes lines) may roughly keep a global
direction, however reduce all variability to a minimum. Neither of such patterns would closely
correspond to the empirical tracks nor to inner cellular structures, an observation also in
agreement with the results reported in [54]. We therefore restrict the discussion to the LW
and the (biased) RW in the following.

The RW and LW also differ with respect to the dependence structure in their increments.
While the increments in the RW are independent and N(𝜇, 𝜎2𝐼)-distributed by definition,
the increments in the LW are given by

𝑌 𝐿𝑊𝑖 = 𝜇 + 𝜎(𝑍𝑖 − 𝑍𝑖−1).
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Fig 3. Four simulated tracks of length 𝑇 = 150 within the three movement models LW (A), (Biased) RW (B)
and CRW (C). Parameters for all tracks shown as solid lines were Θ = {35/180 · 𝜋,−115/180 · 𝜋, 20/180 · 𝜋},
𝑅 = {1, 2, 1}, 𝜎 = 2, 𝑏 = (0, 0) and 𝐶 = {50, 100}. For the CRW in panel C, dotted tracks were simulated with
𝜎 = 0.25. LW and RW were simulated as in Definition 2.2. For the CRW, for comparability, we used the same
parameters, change points and assumptions on the error terms, but the turning angles were set to zero in sections
of constant movement direction, while at each change point, one fixed turning angle was chosen.

Thus, they exhibit a serial dependence of order one because successive increments𝑌𝑖 and𝑌𝑖+1

share the error term 𝑍𝑖. For each dimension 𝑑 = 1, 2, we thus, for all 𝑗 ≥ 1, observe that

Cor(𝑌 𝐿𝑊, (𝑑)
𝑖 , 𝑌 𝐿𝑊, (𝑑)

𝑖+1 ) = −1
2
, Cor(𝑌 𝐿𝑊, (𝑑)

𝑖 , 𝑌 𝐿𝑊, (𝑑)
𝑖+ 𝑗 ) = 0. (6)

In Section 2.3 we will discuss the behavior of the classical mean of increments, which shows
crucial differences between the RW and the LW.

2.3. Parameter estimation

In order to derive the maximum likelihood estimates (MLEs) of the model parameters, both
for the RW and the LW, we derive the estimators for the parametrization (𝜇 (1) , 𝜇 (2) )𝑡 and
then obtain the estimators for the direction 𝜗 and step length 𝑟 using equation (1).

In the RW, the increments 𝑌𝑅𝑊𝑖 are independent and normally distributed, so that the
MLEs can be derived classically as the mean and empirical variance. Thus, as estimates in a
window of size ℎ ∈ N, ℎ > 2 starting at 𝑖, we obtain in the RW

�̂�𝑅𝑊 (𝑖, ℎ) = 1
ℎ

ℎ∑
𝑗=1

𝑌𝑅𝑊𝑖+ 𝑗 and

(�̂�𝑅𝑊 )2(𝑖, ℎ) = 1
2(ℎ − 1)

ℎ∑
𝑗=1

‖𝑌𝑅𝑊𝑖+ 𝑗 − �̂�𝑅𝑊 (𝑖, ℎ)‖2.

Interestingly, for the LW, the classical mean of increments behaves quite differently than in
the RW, and it does no longer represent the MLE for 𝜇. In the RW, the variance of �̂�𝑅𝑊 (𝑖, ℎ)
falls like ℎ−1 due to the independence of increments, i.e., for every dimension 𝑑 = 1, 2,

Var( �̂�𝑅𝑊, (𝑑) (𝑖, ℎ)) = ℎ−1Var(𝑌𝑅𝑊, (𝑑)
𝑖 ) = ℎ−1𝜎2.

In contrast, in the LW, the classical mean reduces to a telescope sum, i.e., 1
ℎ

∑ℎ
𝑗=1𝑌

𝐿𝑊
𝑗 =

𝜇 + 𝜎
ℎ (𝑍ℎ − 𝑍1), implying that its variance, 2𝜎2ℎ−2, falls like ℎ−2 within the LW. As a
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consequence, the classical MOSUM statistic will be replaced by a kernel estimator in Section
3.2, replacing the classical mean by the maximum likelihood estimator (MLE) of 𝜇 as given
in Proposition 2.3.

Proposition 2.3. Let LW(𝜗, 𝑟, 𝑏,𝜎,∅) be a uni-directional LW as in Definition 2.2, and let for
𝑖 ∈ N, 𝑋𝐿𝑊

𝑖+1 , 𝑋
𝐿𝑊
𝑖+2 , . . . , 𝑋

𝐿𝑊
𝑖+ℎ be a sequence of positions from this model. Then the MLEs for

𝜇, 𝑏 and 𝜎2 are given, respectively, by

�̂�𝐿𝑊 (𝑖, ℎ) = 6
ℎ3 − ℎ

� ℎ
2 �∑
𝑗=1

(ℎ − (2 𝑗 − 1))
(
𝑋𝐿𝑊𝑖+ 𝑗 − 𝑋𝐿𝑊𝑖+ℎ− 𝑗+1

)
, (7)

�̂�𝐿𝑊 (𝑖, ℎ) = �̄� 𝑖 𝐿𝑊 − (𝑖 + (ℎ + 1)/2) �̂�𝐿𝑊 (𝑖, ℎ) and (8)

(�̂�𝐿𝑊 )2(𝑖, ℎ) = 1
2ℎ

ℎ∑
𝑗=1

‖𝑋𝐿𝑊𝑖+ 𝑗 − (𝑖 + 𝑗) �̂�𝐿𝑊 (𝑖, ℎ) − �̂�𝐿𝑊 (𝑖, ℎ)‖2, (9)

where �̄� 𝑖 𝐿𝑊 := ℎ−1 ∑ℎ
𝑗=1 𝑋

𝐿𝑊
𝑖+ 𝑗 denotes the mean of the observed points in the respective

window.

The proof can be found in Appendix A.1. The MLEs of 𝜇 and 𝑏 are unbiased. In the
estimator of 𝜎2 we replace the numerator 2ℎ by 2ℎ − 4 to obtain an unbiased version of the
estimator (see Appendix A.2). The MLEs of the direction, �̂�(𝑖, ℎ), and step length, 𝑟 (𝑖, ℎ),
are given as functions of �̂�(𝑖, ℎ) according to equation (1).

In the LW, the MLEs of 𝜇 have an interesting geometric interpretation in terms of the
increments (𝑋𝐿𝑊𝑖+ 𝑗 − 𝑋𝐿𝑊

𝑖+ℎ− 𝑗+1) between the 𝑗 th and the 𝑗-last observation in equation (7).
The largest increment from the first to the last position within the window, 𝑋𝐿𝑊

𝑖+1 − 𝑋𝐿𝑊𝑖+ℎ ,
gets the largest weight (ℎ − 1), and the weight decreases linearly with the temporal distance
between positions. As a potential intuitive explanation of this result, all these increments have
the same variance 2𝜎2, but the expectation of the increments in equation (7) and thus, the
relative precision, is largest for 𝑗 = 1, i.e., for the largest increment from the first to the last
observation, and decreases linearly with 𝑗 . Also the parameter 𝑏 is estimated intuitively by
starting with the center of mass �̄� and subtracting an appropriate number of steps of size
�̂�𝐿𝑊 (𝑖, ℎ).

In the following, we will develop methods for change point detection within the two mod-
els, with a focus on the newly proposed LW.

3. Statistical test and change point detection

In this section we derive a statistical test for the null hypothesis of no change in the move-
ment direction or speed both for the RW and the LW. Section 3.1 will present the basic idea
and explain the limits of two seemingly straightforward approaches, namely the univariate
analysis and the classical MOSUM approach.

3.1. The idea and limitations of seemingly natural approaches

The main idea to statistically test for and detect changes in the movement direction and speed
is to apply a moving window technique. By moving a double window of size 2ℎ across a
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Fig 4. (A) Realization of a LW track with one change in the direction. Double window (orange line) around time
𝑖 (black circle) with ℎ = 30. Blue arrows indicate estimated direction in left and right window. (B) Resulting
process of absolute differences |𝐷𝑖 | and its maximum (red point). Double window (orange) around time 𝑖 and
its moving direction (grey arrows). (C) A LW track (black line). Track before change point in direction (blue)
and after (green). In a double window of size 2ℎ around time 𝑖 (orange), estimates of the expectation in the left
and right window, �̂�𝐿𝑊

ℓ
:= �̂�𝐿𝑊 (𝑖 − ℎ, ℎ) and �̂�𝐿𝑊𝑟 := �̂�𝐿𝑊 (𝑖, ℎ), are obtained. Red arrows indicate moving

window. (D, E) The two components of the process of scaled differences (𝐺ℎ,𝑖)𝑖∈N and (F) (𝐺ℎ,𝑖)𝑖∈N as a two-
dimensional process. Point of maximal deviation from origin m (red dot), length of maximal deviation M (red
line) and boundary of rejection circle with radius 𝑄 (purple). (G) Normalized autocovariance function 𝜅. (H–K)
Change point detection algorithm. (H) Process (𝐺ℎ,𝑖) derived from a LW with three change points, rejection
threshold (purple), point of maximum deviation, 𝑚 (red), and 2ℎ-neighbourhood (orange). The LW track is shown
in the bottom left together with the position of 𝑚 (red). (I,J) The process (𝐺ℎ,𝑖), where the 2ℎ-neighbourhood
around 𝑚 (I) and the second maximal deviation (J) has been deleted, new maximal deviations marked in red. (K)
(𝐺ℎ,𝑖) remains within the rejection borders, CPD is finished.

track of length 𝑇 , one successively estimates the parameter of interest, for example the move-
ment direction 𝜗, as �̂�ℓ (𝑖) := �̂�(𝑖 − ℎ, ℎ) and �̂�𝑟 (𝑖) := �̂�(𝑖, ℎ) in the left and right half of this
window (Figure 4 A, blue directions and orange window). One then calculates the process of
differences, which would, in the case of 𝜗 denoting the direction, be defined as (cmp. Figure
4 B), for 𝑖 = ℎ, . . . , 𝑇 − ℎ,

𝐷𝑖 := 𝐷𝑖 (�̂�ℓ (𝑖), �̂�𝑟 (𝑖)) := atan2(sin(�̂�𝑟 (𝑖) − �̂�ℓ (𝑖)), cos(�̂�𝑟 (𝑖) − �̂�ℓ (𝑖))), (10)

which gives the smaller angle enclosed by the two directions. If all parameters are constant,
the process (𝐷𝑖)𝑖∈{ℎ,...,𝑇−ℎ} should fluctuate around zero, while it will show systematic de-
viations from zero in the neighbourhood of change points. Therefore, the maximum of the
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resulting absolute difference process,

𝑀 := max
𝑖∈{ℎ,...,𝑇−ℎ}

|𝐷𝑖 |, (11)

can serve as a test statistic for the null hypothesis of no change. A suitable quantile 𝑄 of the
distribution of 𝑀 under the null hypothesis can be used to define the rejection threshold of
the statistical test.

3.1.1. The univariate approach

It would be intriguing to apply the described approach directly to univariate parameters such
as the movement direction. However, one should note that this univariate approach has a
number of problems and restrictions. First, if the difference process is defined as above for
directions, the distribution of 𝑀 is not easily accessible formally. Both for the LW and RW,
the estimator �̂�(𝑖, ℎ) follows a Projected Normal (PN) distribution because it is derived from
the normally distributed estimator of the expectation �̂�(𝑖, ℎ) by projection onto the unit cir-
cle (see e.g. [36]). While statements about the projected normal distribution are possible in
simple scenarios [68, 37, 46], we are not aware of general properties of either the distribution
of the difference of two PN variables, nor process theory with PN distributed components.
Therefore, the rejection threshold𝑄 needs to be derived in simulations based on the parameter
estimates of all other process parameters. As a second restriction, this automatically requires
the other parameters to be constant or their change points to be known beforehand (cmp. [1]).
This is because changes in, for example, 𝑟, will lead to biased estimation of 𝑟 and thus, a
biased threshold 𝑄, such that the significance level cannot be kept. Finally, even if all model
parameters are assumed constant, the step length 𝑟 should not be too small as compared to
𝜎 because otherwise, estimation of 𝑟 will be biased. For more details on this approach see
Appendix D. It will therefore be important to consider both parameters simultaneously in a
bivariate setting.

3.1.2. The classical MOSUM

As another idea, one might consider using a classical MOSUM approach, which has been
proposed in a bivariate framework by Messer [40]. While in the RW setting, this approach is
straightforward and will be shortly recalled and adapted, it requires careful consideration and
extension in the LW setting.

In this approach, we make use of the parametrization 𝜇 = (𝜇 (1) , 𝜇 (2) ) instead of the polar
parametrization (𝜗, 𝑟). Specifically, we apply a double window of size 2ℎ centered around
time 𝑖 to estimate the difference �̂�𝑅𝑊 (𝑖, ℎ) − �̂�𝑅𝑊 (𝑖 − ℎ, ℎ). This results in a two dimensional
process of differences, which we scale with its estimated variance, such that the derived test
statistic will be independent of the model parameters even if changes in both parameters can
occur.

In short, we consider an RW(Θ,𝑅,𝐵,𝜎,𝐶) as in Definition 2.1. For a window of integer
size ℎ ∈ N, ℎ > 2 and 𝑖 = 1, 2, . . ., the difference of means is scaled with its variance, i.e.,

𝐺𝑅𝑊
ℎ,𝑖 :=

√
ℎ

(
�̂�𝑅𝑊 (𝑖, ℎ) − �̂�𝑅𝑊 (𝑖 − ℎ, ℎ)

)√
(�̂�𝑅𝑊 )2(𝑖 − ℎ, ℎ) + (�̂�𝑅𝑊 )2(𝑖, ℎ)

. (12)
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Note that for the RW, we find the classical mean in the numerator. Then, for an observed
process of length 𝑇 ∈ N, we consider the two dimensional process of differences

𝐺𝑅𝑊 :=
(
𝐺𝑅𝑊
ℎ,𝑖

)
𝑖∈{ℎ,ℎ+1,...,𝑇−ℎ}

.

The process 𝐺𝑅𝑊 will typically fluctuate around zero but show systematic deviations in the
neighborhood of a change point. Thus, the maximal deviation from the origin,

𝑀ℎ := max
𝑖∈{ℎ,...,𝑇−ℎ}

‖𝐺𝑅𝑊
ℎ,𝑖 ‖

2, (13)

is used as test statistic for the null hypothesis of no change in bivariate expectation, i.e., no
change in direction or step length.

In order to derive a rejection threshold for the statistical test, one can use straightfor-
ward modifications of the proof presented in [40]. For asymptotics a growing number of
data points within the windows is required. To that end one switches from the time discrete
setting with 𝑖, ℎ ∈ N to a time continuous setting, where 𝑖 and ℎ are replaced by 𝑛𝑡 and
𝑛𝜂 respectively, where 𝜂 > 0 and 𝑡 ∈ [𝜂, 𝑇 − 𝜂] are real, 𝑇 > 2𝜂, and 𝑛 → ∞ is consid-
ered. All parameter estimates can be adapted to the time continuous setting, e.g., defining
�̂�𝑅𝑊 (𝑛𝑡, 𝑛𝜂) := �̂�𝑅𝑊 (�𝑛𝑡�, 𝑛𝜂), and analogously for the other terms. For convenience we as-
sume 𝜂 ∈ N, which is not a restriction in practice because 𝜂 can be assumed a multiple of the
recorded time resolution. All results of the present paper also hold, with slight adaptations,
for real 𝜂 > 0.

The process (𝐺𝑅𝑊
𝑛𝜂,𝑛𝑡 )𝑡∈[𝜂,𝑇−𝜂 ] can then be rewritten as a functional of sums of the form

𝑆 (𝑛) (𝑡) := 𝑛−1/2 ∑�𝑛𝑡 �
𝑗=1 �̃�

(𝑑)
𝑗 . According to the functional limit theorem

(
𝑆 (𝑛) (𝑡)

)
→ (𝑊𝑡 ) in

distribution, which is, in various forms, a key component in MOSUM and CUSUM frame-
works [41, 40, 4, 31] and can be used to show convergence. Then the process (𝐺𝑅𝑊

𝑛𝜂,𝑛𝑡 )𝑡∈[𝜂,𝑇−𝜂 ]
convergences in distribution to a limit process (L𝑅𝑊

𝜂,𝑡 )𝑡∈[𝜂,𝑇−𝜂 ] , which is a functional of a
planar Brownian motion. That means, as 𝑛→ ∞,(

𝐺𝑅𝑊
𝑛𝜂,𝑛𝑡

)
𝑑−−−−−→

(
L𝑅𝑊
𝜂,𝑡

)
in (DR2 [𝜂, 𝑇 − 𝜂], 𝑑𝑆𝐾 ) , (14)

where the two dimensional limit process (L𝑅𝑊
𝜂,𝑡 ) does not depend on the model parameters.

Here, (DR2 [𝜂, 𝑇 − 𝜂], 𝑑𝑆𝐾 ) denotes the space of R2-valued càdlàg-functions on [𝜂, 𝑇 − 𝜂]
equipped with the Skorokhod topology. The vectors L𝑅𝑊

𝜂,𝑡 are given by

L𝑅𝑊
𝜂,𝑡 = (2𝜂)−1/2((𝑊𝑡+𝜂 −𝑊𝑡 ) − (𝑊𝑡 −𝑊𝑡−𝜂)), (15)

where (𝑊𝑡 )𝑡∈[0,𝑇 ] := (𝑊 (1)
𝑡 ,𝑊 (2)

𝑡 )𝑡∈[0,𝑇 ] denotes a planar Brownian motion. Using this limit
process, a rejection threshold can be obtained via simulation cmp. [40]. For this we use∑�𝑡 �
𝑗=1 �̃� 𝑗 as an approximation of𝑊𝑡 such that the process with elements, for 𝑡 ∈ [𝜂, 𝑇 − 𝜂],

Γ𝑅𝑊𝑛𝜂,𝑛𝑡 := (2𝑛𝜂)−1/2
𝑛𝜂∑
𝑗=1

(
�̃��𝑛𝑡 �+ 𝑗 − �̃��𝑛𝑡 �−𝑛𝜂+ 𝑗

)
is an approximation of (L𝑅𝑊

𝜂,𝑡 ). In case of a change point, the process diverges, such that
consistency of the test introduced in Section 3.2.1 can be established, cf. [31].
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3.1.3. Limitations of the classical MOSUM in the LW

Whereas the classical MOSUM is a suitable tool in the RW setting, it would not be consistent
in the LW setting, i.e., the testpower would not increase with 𝑛. This can be seen noting
that the variance of the classical mean decreases with (𝑛𝜂)−2 instead of (𝑛𝜂)−1 in the LW
(Section 2.3). Therefore, the MOSUM statistic would need to be scaled with 𝑛𝜂 instead of√
𝑛𝜂, yielding a MOSUM statistic of the form

𝑛𝜂

2𝜎
	
� 1
𝑛𝜂

𝑛𝜂∑
𝑗=1

𝑌 𝐿𝑊�𝑛𝑡 �+ 𝑗 −
1
𝑛𝜂

𝑛𝜂∑
𝑗=1

𝑌 𝐿𝑊�𝑛𝑡 �−𝑛𝜂+ 𝑗
�� (16)

=
𝜎

2𝜎

𝑛𝜂∑
𝑗=1

(
(𝑍�𝑛𝑡 �+ 𝑗 − 𝑍�𝑛𝑡 �+ 𝑗−1) − (𝑍�𝑛𝑡 �−𝑛𝜂+ 𝑗 − 𝑍�𝑛𝑡 �−𝑛𝜂+ 𝑗−1)

)
,

where we used 𝑌 𝐿𝑊𝑖 = 𝜇 + 𝜎(𝑍𝑖 − 𝑍𝑖−1). Summing up the two inner brackets separately over
𝑗 yields telescopic sums, where the first sum reduces to 𝑍�𝑛𝑡 �+𝑛𝜂 − 𝑍�𝑛𝑡 � and the second to
𝑍�𝑛𝑡 � − 𝑍�𝑛𝑡 �−𝑛𝜂 . This results in (16) being equal to

1
2

(
𝑍�𝑛𝑡 �+𝑛𝜂 − 2𝑍�𝑛𝑡 � + 𝑍�𝑛𝑡 �−𝑛𝜂

)
, (17)

which has the distribution 𝑁 (0, 1.5𝐼2) for every 𝑛, 𝜂 and 𝑡, where 𝐼2 denotes the identity
matrix in R

2. As the statistic no longer depends on 𝑛 or 𝜂, the testpower cannot be increased
by increasing the window size, such that small changes will always remain unlikely to be
detected.

Therefore, we propose to replace the classical MOSUM by a moving kernel estimator that
makes use of the MLE of 𝜇 derived within the LW. For a note on the consistency of the
resulting statistical test see Section 3.2.1.

3.2. The kernel approach for the LW

For the LW setting, we propose to substitute the classical mean by its MLE of 𝜇 in the
derivation of the process 𝐺. In the time discrete setting, as an analogue of equation (12) we
thus consider the process

𝐺𝐿𝑊
ℎ,𝑖 :=

�̂�𝐿𝑊 (𝑖, ℎ) − �̂�𝐿𝑊 (𝑖 − ℎ, ℎ)√
12
ℎ3−ℎ ((�̂�

𝐿𝑊 )2(𝑖 − ℎ, ℎ) + (�̂�𝐿𝑊 )2(𝑖, ℎ))
, 𝑖 ∈ N, 𝑖 > ℎ. (18)

The denominator of equation (18) estimates the standard deviation of the numerator, because
it holds

V𝑎𝑟
(
�̂�𝐿𝑊, (𝑑) (𝑖, ℎ)

)
= V𝑎𝑟

	
� 6
ℎ3 − ℎ

ℎ∑
𝑗=1

(2 𝑗 − ℎ − 1)𝑋𝐿𝑊, (𝑑)
𝑖+ 𝑗

��
=

36
(ℎ3 − ℎ)2

𝑛∑
𝑗=1

(2 𝑗 − ℎ − 1)2
V𝑎𝑟

(
𝑋𝐿𝑊, (𝑑)

1

)
=

12
ℎ3 − ℎ

𝜎2,
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where we use the independence of 𝑋𝐿𝑊, (𝑑)
𝑖 and 𝑋𝐿𝑊, (𝑑)

𝑘 for 𝑖 ≠ 𝑘 .
We study the process (𝐺𝐿𝑊

ℎ,𝑖 )𝑖∈N to construct a statistical test. For asymptotics we replace
𝑖 and ℎ by 𝑛𝑡 and 𝑛𝜂 respectively, where 𝜂 > 0 and 𝑡 ∈ [𝜂, 𝑇 − 𝜂] are real and 𝑇 > 2𝜂 is
a finite time horizon. All parameter estimates can be adapted to the time continuous setting
analogously to Section 3.1.2, e.g., defining �̂�𝐿𝑊 (𝑛𝑡, 𝑛𝜂) := �̂�𝐿𝑊 (�𝑛𝑡�, 𝑛𝜂), and analogously
for the other terms, where we again assume 𝜂 ∈ N for convenience.

Firstly, in Proposition 3.1, we obtain that the estimate of 𝜎2 from equation (9) is pointwise
strongly consistent. Secondly, we investigate the limit behavior of a time continuous version
of (𝐺𝐿𝑊

ℎ,𝑖 )𝑖∈N in Section 3.3 with respect to a functional limit law, see Proposition 3.4.

Proposition 3.1 (Pointwise Strong Consistency of MLEs in the LW). Let LW(𝜗, 𝑟, 𝑏,𝜎,∅)
be a uni-directional LW as in equation (2) and let 𝑋𝐿𝑊1 , 𝑋𝐿𝑊2 , . . . be a sequence of positions
from this model. Let 𝜂, 𝑡 > 0. Then the MLEs �̂�𝐿𝑊 (𝑛𝑡, 𝑛𝜂), �̂�𝐿𝑊 (𝑛𝑡, 𝑛𝜂) and (�̂�𝐿𝑊 )2(𝑛𝑡, 𝑛𝜂)
are pointwise strongly consistent, see Proposition 2.3, i.e., as 𝑛→ ∞ almost surely

�̂�𝐿𝑊 (𝑛𝑡, 𝑛𝜂) → 𝜇, �̂�𝐿𝑊 (𝑛𝑡, 𝑛𝜂) → 𝑏, (�̂�𝐿𝑊 )2(𝑛𝑡, 𝑛𝜂) → 𝜎2. (19)

For the proof, the Strong Law of Large Numbers (SLLN) is adapted to a setting in which
each summand is multiplied by a weight dependent on 𝑛 and the index of the summand.
One version of the SLLN for weighted sums and the proof of the strong consistency for
�̂�𝐿𝑊 (𝑛𝑡, 𝑛𝜂) and �̂�𝐿𝑊 (𝑛𝑡, 𝑛𝜂) can be found in Appendix B. The proof of the strong consis-
tency of (�̂�𝐿𝑊 )2(𝑛𝑡, 𝑛𝜂) follows the same structure but involves more tedious calculations.
Together with the second required SLLN, it can be found in Appendix E.

Now we define a time continuous version of (18) to investigate process convergence.

Definition 3.2 (Process of Differences Γ𝐿𝑊ℎ,𝑡 ). Let
(
𝑋𝐿𝑊𝑖

)
𝑖∈N0

be a sequence of positions from
an LW(Θ, 𝑅, 𝐵,𝜎,𝐶), and let 𝜂 ∈ N, 𝑡 ∈ R, 𝑡 > 𝜂. Let �̂�𝐿𝑊 (𝑛𝑡, 𝑛𝜂) be the MLEs of 𝜇 in the
LW setting according to Proposition 2.3. Then, for 𝑛 ∈ N, let

Γ𝐿𝑊𝑛𝜂,𝑛𝑡 :=
�̂�𝐿𝑊 (𝑛𝑡, 𝑛𝜂) − �̂�𝐿𝑊 (𝑛(𝑡 − 𝜂), 𝑛𝜂)√

24
(𝑛𝜂)3−𝑛𝜂

𝜎2
. (20)

Note that the two components of the process are stochastically independent by construc-
tion. Under the null hypothesis, cf. (2), process (Γ𝐿𝑊𝑛𝜂,𝑛𝑡 )𝑡∈[𝜂,𝑇−𝜂 ] simplifies, noting also
(31), to

Γ𝐿𝑊𝑛𝜂,𝑛𝑡 =

(
2
3
((𝑛𝜂)3 − 𝑛𝜂)𝜎2

)−1/2

× 	
�
𝑛𝜂∑
𝑗=1

𝑤𝜇 (𝑛𝜂, 𝑗)𝑋𝐿𝑊�𝑛𝑡 �+ 𝑗 −
𝑛𝜂∑
𝑗=1

𝑤𝜇 (𝑛𝜂, 𝑗)𝑋𝐿𝑊�𝑛𝑡 �−𝑛𝜂+ 𝑗
�� ,

where 𝑤𝜇 (𝑛𝜂, 𝑗) := 2 𝑗 − 𝑛𝜂 − 1. If we combine the sums due to equality of the factors
𝑤𝜇 (𝑛𝜂, 𝑗) and replace 𝑋𝐿𝑊�𝑛𝑡 �+ 𝑗 = (�𝑛𝑡� + 𝑗)𝜇 + 𝑏 + 𝜎𝑍�𝑛𝑡 �+ 𝑗 and analogously for 𝑋𝐿𝑊�𝑛𝑡 �−𝑛𝜂+ 𝑗 ,
this yields

Γ𝐿𝑊𝑛𝜂,𝑛𝑡=

(
2
3
((𝑛𝜂)3 − 𝑛𝜂)𝜎2

)−1/2
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×𝑛𝜂𝜇
𝑛𝜂∑
𝑗=1

𝑤𝜇 (𝑛𝜂, 𝑗) + 𝜎
𝑛𝜂∑
𝑗=1

𝑤𝜇 (𝑛𝜂, 𝑗)
(
𝑍�𝑛𝑡 �+ 𝑗 − 𝑍�𝑛𝑡 �−𝑛𝜂+ 𝑗

)
=

(
2
3
((𝑛𝜂)3 − 𝑛𝜂)

)−1/2 𝑛𝜂∑
𝑗=1

𝑤𝜇 (ℎ, 𝑗)
(
𝑍�𝑛𝑡 �+ 𝑗 − 𝑍�𝑛𝑡 �−𝑛𝜂+ 𝑗

)
, (21)

where we used that
∑𝑛𝜂
𝑗=1 𝑤𝜇 (𝑛𝜂, 𝑗) = 0.

As the scaling was chosen as the square root of the variance of the nominator, for fixed
𝑡, Γ𝐿𝑊𝑛𝜂,𝑛𝑡 is standard normally distributed in R

2. The covariance structure of each process
component only depends on the window size 𝜂. The limit behavior of (Γ𝐿𝑊𝑛𝜂,𝑛𝑡 ) is investigated
in Section 3.3 with respect to a functional limit law.

3.2.1. The statistical test and change point detection in practice

Both for the LW and the RW, a rejection threshold for the test can be obtained by simula-
tion. In detail, for a given track 𝑥1, . . . , 𝑥𝑇 , 𝑇 ∈ N (cmp. Figure 4 C), we derive the process(
𝐺ℎ,𝑖

)
𝑖∈{ℎ,...,𝑇−ℎ} by shifting a double window of size 2ℎ across the track to estimate the two

dimensional expectation �̂�(𝑖 − ℎ, ℎ) and �̂�(𝑖, ℎ). The difference �̂�(𝑖, ℎ) − �̂�(𝑖 − ℎ, ℎ) is scaled
according to equation (18), resulting in the process 𝐺 whose two components are illustrated
in Figure 4 D and E. As a change in the expectation often affects both components, we can
consider directly the two dimensional process 𝐺 (panel F) and use the maximal deviation
𝑀ℎ (𝐺) := max𝑖 ‖𝐺ℎ,𝑖 ‖2 as a test statistic. Then we simulate independent realizations of the
process

(
Γℎ,𝑖

)
𝑖∈{ℎ,...,𝑇−ℎ} and derive the rejection threshold 𝑄 as the 95%-quantile of the

maximal deviations 𝑀ℎ (Γ) := max𝑖 ‖Γℎ,𝑖 ‖2 of the simulated processes. If 𝑀ℎ (𝐺) > 𝑄, i.e.,
if the process

(
𝐺ℎ,𝑖

)
𝑖∈{ℎ,...,𝑇−ℎ} passes outside the circle with radius 𝑄 around the origin, we

reject the null hypothesis of no change points. For a rigorous justification neglecting rates of
convergence see Remark 3.5.

Note that, as mentioned at the end of Section 3.1.2 for the RW case, this testing procedure
is also consistent for the LW in the sense that the test statistic 𝑀ℎ (𝐺) tends to infinity under
an alternative of one change point. We give a precise statement in Appendix B, see Theorem
B.2. Due to the local nature of the process (𝐺ℎ,𝑖) the argument given there extends to the
case of multiple change points of appropriate minimal distance.

After rejection of the null hypothesis, we estimate the number and location of change
points using a procedure introduced in Messer et al. [41, 40] (see Figure 4 H-K). Let 𝑐1 :=
argmax𝑖∈{ℎ,...,𝑇−ℎ} ‖𝐺ℎ,𝑖 ‖2 be the estimator for the first change point. Then the process 𝐺
is deleted in the 2ℎ-neighbourhood around the change point [𝑐1 − ℎ + 1, 𝑐1 + ℎ] because in
that area, 𝐺 may be affected by the change point. Then we successively identify the maximal
deviation of the remaining process 𝐺 to add change point estimates to the set of estimated
change points �̂� = {𝑐1, 𝑐2}. This procedure is repeated until the remaining values of 𝐺 are
inside the rejection area.

The computational complexity of the described algorithm is comparable for the RW and
LW setting. For the first step, i.e., the statistical test procedure, the calculation of the test
statistic 𝑀 for one track requires iteration over all time points in the range [ℎ, 𝑇 − ℎ], causing
a factor of (𝑇 −ℎ) in the complexity, which we bound by 𝑇 . As a second factor, the simulation
of the rejection threshold 𝑄 requires performing analogous computations on simulated tracks
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in 𝑆 simulations, causing a factor of 𝑆, which results in a complexity of O(𝑇 · 𝑆) for the
statistical test. In the second step, the change point detection algorithm iterates a procedure
of complexity O(𝑇) until no further change points are detected, resulting in a computational
complexity of O(𝑇 · 𝑘) for the change point detection, where 𝑘 denotes the number of change
points.

3.3. The limit process

In this section we show the convergence of the process (Γ𝐿𝑊𝑛𝜂,𝑛𝑡 ) := (Γ𝐿𝑊, (1)
𝑛𝜂,𝑛𝑡 , Γ

𝐿𝑊, (2)
𝑛𝜂,𝑛𝑡 ) of

differences from Definition 3.2 towards a Gaussian limit process whose distribution does not
depend on the model parameters. Note that by independence of the components Γ𝐿𝑊, (1)

𝑛𝜂,𝑛𝑡 and

Γ𝐿𝑊, (2)
𝑛𝜂,𝑛𝑡 ), it is sufficient to show process convergence of the components individually.

Recall that we fix 𝑇 > 0 and 0 < 𝜂 < 𝑇
2 . We denote T := [𝜂, 𝑇 − 𝜂]. We obtain the limit

process with independent coordinates, which are distributed as the centered Gaussian process
Υ = (Υ𝑡 )𝑡∈T with the covariance function

𝐶 : T × T → R, (𝑠, 𝑡) ↦→ 𝜅

(
|𝑠 − 𝑡 |
𝜂

)
, (22)

where the normalized autocovariance function 𝜅 : [0,∞) → R is given by (cmp. also Figure
4 G)

𝜅(𝑥) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3𝑥3 − 3𝑥2 − 3

2𝑥 + 1, for 0 ≤ 𝑥 ≤ 1,

−𝑥3 + 3𝑥2 − 3
2𝑥 − 1, for 1 ≤ 𝑥 ≤ 2,

0, for 𝑥 ≥ 2.

(23)

We now consider the first component 𝑑 = 1 and require to normalize time. We set, cf. (20),

Υ(𝑛)
𝑡 := Γ𝐿𝑊, (1)

𝑛𝜂,𝑛𝑡 , 𝑡 ∈ T, (24)

where Υ(𝑛) := (Υ(𝑛)
𝑡 )𝑡∈T are considered as processes in the càdlàg space 𝐷 (T) endowed with

the topology induced by the supremum norm ‖ · ‖∞.
The covariance functions 𝐶𝑛 : T×T → R of the processes Υ(𝑛) converge uniformly to the

covariance function 𝐶 of the limit process, see (22), as stated in the following Proposition.
Proposition 3.3. We have uniformly in 𝑠, 𝑡 ∈ T that

𝐶𝑛 (𝑠, 𝑡) → 𝐶 (𝑠, 𝑡) (𝑛→ ∞).

The proof can be found in Appendix C.3. The idea is to use that the process Υ(𝑛) equals in
distribution a weighted sum of independent standard normal variables {𝑉 𝑗 | 𝑗 ∈ Z}, cf. also
(21),

Υ(𝑛)
𝑡

𝑑
=

√
3
2

(
(𝑛𝜂)3 − 𝑛𝜂

)−1/2 ∞∑
𝑗=−∞

𝑔 (𝑛)𝑡 ( 𝑗)𝑉 𝑗 , (25)

where, for 𝑢 ∈ R, 𝑔 (𝑛)𝑢 is a function, see (38), containing the weights in the estimator �̂�.
Then the covariance function 𝐶𝑛 (𝑠, 𝑡) can be interpreted as a Riemann sum, which uniformly
converges to the function 𝐶 (𝑠, 𝑡) as in equation (22). The proof can be found in Appendix
C.3.

Then as main result in this section we have the following process convergence:
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Proposition 3.4. For the processes Υ(𝑛) and Υ defined above we have convergence in distri-
bution

Υ(𝑛) 𝑑−→ Υ (𝑛→ ∞)

within the càdlàg space (𝐷 (T), ‖ · ‖∞).
The proof of Proposition 3.4 consists of showing convergence of the finite dimensional

marginals (fdd convergence) and tightness. We use a criterion for the space (𝐷 (T), ‖ · ‖∞),
which can be found in Pollard [55, Section V, Theorem 3]. The fdd convergence follows
from the convergence of the covariance functions in Proposition 3.3 and Lévy’s continuity
theorem. To verify the condition for tightness we exploit that the Υ(𝑛) are Gaussian processes,
allowing to apply a bound of Dirksen [14], which is based on Talagrand’s [61, 62] generic
chaining method. The proof of Proposition 3.4 can be found in Appendix C.4.

Remark 3.5. Note that the convergence in Proposition 3.4 can also be obtained for a time
continuous version 𝐺 (𝑛) ,𝐿𝑊 of 𝐺𝐿𝑊

ℎ,𝑖 from equation (18) defined analogously to the process
(Γ𝐿𝑊𝑛𝜂,𝑛𝑡 ) in Definition 3.2. This requires to strengthen the consistency in Proposition 3.1 to
uniform consistency, so that the Lemma of Slutsky can be applied.

3.4. Simulations and multi scale approach

Significance level and comparison of LW and RW Because the results in the previous
section are asymptotic, it is important to investigate the empirical significance level for finite
data sets. Here we compare simulations of the classical MOSUM approach in the RW setting
described in Section 3.1.2 with the new moving kernel approach in the LW setting described
in Section 3.2. Figure 5 A indicates that a significance level of 5% is obtained for a window
of about ℎ = 30 for the LW, while it is still considerably increased for ℎ = 30 in the RW due to
the summation of error terms in the test statistic and the higher variability in the underlying
tracks. We therefore recommend to choose at least ℎ = 30 for the LW and ℎ = 50 for the RW.
Similarly, due to the smaller variance, the test power is higher for the LW than for the RW
case both for changes in direction and in step length (Figure 5 B and C).

Due to the difference in model assumptions, erroneous application of the RW method to
LW tracks typically is conservative and yields an underestimation of change points (Figure
5 D, left). This is because the RW shows more variability in positions due to the summation
of error terms, and this variability is inherited by the process (𝐺𝑅𝑊

ℎ,𝑡 ). Therefore the rejection
threshold in the RW case is generally higher. Vice versa, erroneous application of the LW
to RW tracks tends to yield a higher number of falsely detected change points (Figure 5 D,
right).

Number of falsely detected change points under the null hypothesis and in the presence
of true change points Note that although the algorithm for change point detection seems to
implicitly apply multiple testing for the successive identification of change points, this does
not affect the probability of falsely identifying change points both in the LW and RW [see
also 41]. First, under the null hypothesis of no change points, the statistical test keeps the
significance level (Figure 5 A), and in the rare case of falsely detected change points, only
few falsely detected change points were observed in our simulations. The proportion of simu-
lations with two falsely detected change points under the null hypothesis was 1.6 % across all
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Fig 5. (A–D) Simulations on the bivariate CPD comparing LW and RW, 𝑇 = 400, 𝜗 = 35/180 · 𝜋, 𝑏 = (0, 0), 𝜎2 =
0.5, 1000 simulations per parameter set. (A) Empirical significance level as a function of 𝜎2 and step length
(color coded), ℎ ∈ {10, 30}. (B) Test power on tracks with one change point in 𝜗 for varying magnitude of this
change and varying step length, change point at 𝑡 = 200. (C) Test power on tracks with one change in step
length for varying magnitude of this change and varying window sizes (color coded). Other parameters are:
𝑟𝑝𝑟𝑒−𝑐𝑝 = 0.5, ℎ ∈ {30, 50, 100}. (D) Application of the bivariate CPD from both models to a LW (left) and
a RW (right). Parameters for both tracks and CPD algorithms are Θ = {55/180 · 𝜋, 55/180 · 𝜋,−55/180 · 𝜋},
𝑅 = {0.2, 1, 1}, 𝑏 = (0, 0), 𝜎2 = 1, 𝑇 = 300, change point set 𝐶 = {80, 150}, ℎ = 30. (E-G) Multi window CPD.
(E) Simulated LW track with two changes in direction and one change in step length, true change points marked as
points, 𝑇 = 530, Θ = {55/180 · 𝜋,−55/180 · 𝜋,−45/180 · 𝜋,−45/180 · 𝜋, 𝑅 = {1, 1, 1, 0.85}, 𝜎 = 3, 𝑏 = (0, 0),
𝐶 = {50, 110, 345}. (F) Process 𝐺ℎ,𝑖 based on the track in E for window sizes in H = {30, 50, 100}, colours
as indicated in G. (G) The absolute deviation of the difference processes 𝐺ℎ,𝑖 for different window sizes ℎ as a
function of time. Colours of window sizes indicated in the top right corner. Vertical lines indicate true change
points, circles indicate estimated change points.

simulations in the LW case (0.15 % for RW), while more than two change points were falsely
detected only in 0.9% of simulations (0.05 % for RW). Second, if a change point exists, it
only affects the process 𝐺 in its 2ℎ-neighborhood, which is cut out after detection of the
change point. Therefore, existing change points should not affect the behavior of the proce-
dure outside their 2ℎ-neighborhood and thus, not enhance the probability of falsely detecting
additional change points. In Figure 6 we illustrate the asymptotic performance of the proposed
procedures, i.e., as 𝑛 increases. Panels H and J show the proportion of simulations in which
too many change points were detected, indicating that as 𝑛 increases, the probability of falsely
detecting additional change points is not increased also in the presence of true change points.
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Fig 6. Asymptotic behavior of statistical test and change point detection for LW (A, B, E, G, H) and RW (C, D,
F, I, J) in three scenarios, simulated with parameters 𝑏 = (0, 0), 𝜎 = 0.5, 𝑇 = 200. The three scenarios are
(example tracks in A, C): (1, green) one change point at time 𝑡 = 100 in direction with 𝜗 = (35/180)𝜋 before
and 𝜗 = (25/180)𝜋 after the change point, (2, orange) one change point in step length at time 𝑡 = 100 with 𝑟
changing from 0.5 to 0.48, and (3, blue) a combination of the same two change points, 𝑟 changing from 0.48 to
0.5 at 𝑡 = 66 and 𝜗 changing from (25/180)𝜋 to (35/180)𝜋 at 𝑡 = 134. Performance of the new kernel approach
was analysed in 1000 simulations in the LW and of the classical MOSUM in 2000 simulations in the RW using
𝜂 = 30 and different values of 𝑛. For the asymptotic setting we let time �𝑛𝑡� and window size 𝑛𝜂 grow linearly
in 𝑛. Proportion of simulations with correctly detected change points in the LW (B) and RW (D). Histograms of
estimated change points for all three scenarios for 𝑛 = 10 in the LW (E) and RW (F), where the time points of
detected change points are scaled with 1/𝑛 for better comparability. A true change point was then called correctly
detected if an estimated change point fell within a distance of ℎ/3 of the true change point. Mean squared error
(MSE) of correctly detected change points in the LW (G) and RW (I). Proportion of simulations in which too many
change points were detected in the LW (H) and the RW (J).

Precision of change point detection Figure 6 also illustrates simulations of three different
change point scenarios in 𝜗 and 𝑟 in which the mean squared error of the estimated change
point tends to zero and the probability of correctly detecting an existent change point tends
to one as 𝑛 increases. The latter is in agreement with the divergence of the test statistic at a
change point discussed in Section 3.2.1 and is illustrated both for the LW and the RW case.
Note that consistency of the number and location of change points for the RW in the classical
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MOSUM setting has been shown by [31]. However, the results for the RW case do not directly
extend to our LW case due to the prefactors appearing in our kernel estimator. We leave this
issue for further research.

Multi scale approach Interestingly, the present methods are compatible with the combined
use of multiple windows H := {ℎ1, ℎ2, . . . , ℎ𝐻 }, 𝐻 ∈ N [cmp. 41, 40] both for the RW and
the LW. To that end, one can calculate the process 𝐺ℎ 𝑗 ,𝑖 for every window size ℎ 𝑗 ∈ H
and then use the maximum 𝑀 := max 𝑗=1,...,𝐻 𝑀ℎ 𝑗 of all maxima across processes as a test
statistic, where 𝑀ℎ 𝑗 := max𝑖 ‖𝐺ℎ 𝑗 ,𝑖 ‖. The threshold 𝑄 can be simulated analogously to the
one window approach. That means we simulate, for every ℎ 𝑗 , the process Γℎ 𝑗 ,𝑖 (Definition
3.2), where for each individual simulation, the processes of all window sizes ℎ 𝑗 ∈ H are
based on the same realization of the random sequence Z := (𝑍𝑖)𝑖∈N0

. Thus, the processes
Γℎ 𝑗 ,𝑖 are related across the different windows in the same way as the processes𝐺ℎ 𝑗 ,𝑖. We then
obtain the distribution of the maximum 𝑀 of all maximal distances of Γℎ 𝑗 ,𝑖 to the origin. Its
95%-quantile serves as the new rejection threshold 𝑄.

The CPD is performed by using the global threshold 𝑄 on each process
(
𝐺ℎ 𝑗 ,𝑖

)
. The

sets of change points derived for each individual window are then combined into a final set
starting with the change points estimated in the smallest window and then successively adding
change points from larger windows to a set of ‘accepted’ change points if their respective 2ℎ 𝑗-
neighborhood does not contain an already accepted change point [cmp. 41].

Application of multiple windows then increases the complexity by a factor of 𝐻, where
𝐻 denotes the number of applied windows. That means, the computational complexity of
the change point test is O(𝐻 · 𝑇 · 𝑆), since every step needs to be performed for each of
the 𝐻 window sizes. The same holds for the change point detection algorithm, resulting in a
computational complexity of O(𝐻 · 𝑇 · 𝑘).

Figure 5 E illustrates an example in which two large change points in direction in short
succession are followed by one small change in step length. Panel F illustrates the processes
𝐺 for different window sizes, and panel G shows only the distances from the origin as a
function of time. As one can see in panel G, only the combination of multiple window sizes
allowed the detection of all change points. While short term changes could be detected by
smaller windows, small change on a large time scale required a larger temporal window.
Thus, a combination of multiple windows is particularly interesting if one aims at detecting
changes at multiple time scales. As the computational complexity increases with the number
of windows, this number should however remain small. While the smallest window should
be sufficiently large to maintain the asymptotic significance level, larger windows should
be sufficiently small to distinguish between multiple change points. In addition, because all
processes

(
𝐺ℎ 𝑗 ,𝑖

)
are based on the same underlying track, they show high dependency for

similar window sizes, and test power therefore hardly increases when adding highly similar
window sizes to the window set. In order to reduce computational complexity, chosen window
sizes should therefore be sufficiently different from each other [cf. 41].

4. Application

Here we apply the statistical test and CPD to example tracks from the data set of organelle
movements introduced in Section 1.1. The data set consisted of 41 planar tracks representing
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the movement of cell-organelles of the type plastid and of 12 planar tracks of peroxisomes in
root cells of Arabidopsis thaliana.

We first present the analysis in the LW model and show a comparison to the detected
change points within the RW in section 4.1. We use a window size of ℎ = 30 to adhere to
the chosen significance level of 5% as suggested by the simulations in Section 3.4. As we
will see, a high number of big changes is estimated with this single window only, and esti-
mated change points are sometimes quite close together. We therefore used only the smallest
possible window instead of a set of multiple windows in order to keep the test power of this
individual window as high as possible.

Figure 7 A and B show our two example tracks, where blue and orange points indicate
change points in direction and step size, respectively, estimated within the LW model. As
one can see, the LW method estimates a number of change points, particularly at prominent
changes in the movement direction, that are visible by eye.

The leaf plot

In order to analyse the detected change points in more detail and to distinguish between
change points in the direction and in the step length, we propose to use the original pa-
rameterization of direction and step length in a graphical approach. To that end, we cal-
culate the process of differences in direction, 𝐷𝜗

𝑖 := 𝐷𝑖 (�̂�ℓ (𝑖), �̂�𝑟 (𝑖)) and in step length,
𝐷𝑟𝑖 := 𝐷𝑖 (𝑟ℓ (𝑖), 𝑟𝑟 (𝑖)) in a moving double window as described in equation (10). We then
plot these difference processes against each other in a bivariate plot.

This plot will be called leaf plot for short because ideal change points show up in leaf form
in the bivariate difference process representation. Figure 7 M and N show simple examples
of such leaves for three simulated LWs with different change points. The green process shows
a change point in step length, which is illustrated in the leaf plot as a degenerated flat leaf in
which only the difference process 𝐷𝑟𝑡 on the 𝑥-axis deviates from zero. Second, in pale brown,
we see a track with a change only in the movement direction in panel M. The corresponding
leaf in panel N deviates from the origin in the vertical direction, where the maximal deviation
is expected at the time of the change point in direction. Note that this leaf also shows slight
horizontal deviations around the change point in direction. This does not indicate changes in
the step length but is caused by the fact that a change point in the direction tends to slightly
bias the estimates in the step length in the area around this change point (cmp. Appendix D).
Third, in light blue, we see a change in direction and step length occurring at the same time,
which shows up in a diagonally oriented leaf in panel N.

For track 102, we observe the leaf plot in panel E, where its leaves, i.e., the sections of
the process around the estimated change points, are depicted individually in panels I-L. The
numbers next to the blue and orange points indicate the temporal order of detected change
points in the track. Interestingly, most estimated change points show up in vertical deviations
in the leaf plot, with a maximal difference in directions of almost 𝜋, suggesting strong changes
in the movement direction (blue points).

In addition to these strong changes in the movement direction, we also observe one hori-
zontal deviation in the leaf plot at change point no. 3 (orange point), suggesting an increase
in step length at this location.



Bivariate change detection in direction and speed 2143

Fig 7. (A, B) Tracks 102 and 434 from the plastid data set. Change points estimated with the 𝐶𝑃𝐷𝐿𝑊 and ℎ = 30
(blue+orange dots). Tracks between change points color coded. (C)+(D) Tracks 17 and 23 from the peroxisome
data set analysed with 𝐶𝑃𝐷𝐿𝑊 and ℎ = 30. (E)–(H) Corresponding leaf plots to (A)–(D), created with ℎ = 30
in (E, F, H) and ℎ = 20 in (G). (I-L) Leaf plot from (A) separated in different change points. (M) Simulated LW
tracks with Parameters (pale brown track) Θ = {−135/180 · 𝜋, 10/180 · 𝜋}, 𝑅 = {0.1, 0.1}, 𝑏1 = (0, 0), 𝜎 = 0.15,
𝑇 = 400, 𝐶 = {200}, (green track) Θ = {35/180 · 𝜋, 35/180 · 𝜋}, 𝑅 = {0.1, 0.5}, 𝑏1 = (0, 0), 𝜎 = 0.25, 𝑇 = 300,
𝐶 = {100}, (blue track) Θ = {−105/180 · 𝜋, 10/180 · 𝜋}, 𝑅 = {0.1, 0.25}, 𝑏1 = (0, 0), 𝜎 = 0.25, 𝑇 = 400,
𝐶 = {200} with true change points (red). (N) Leaf plot of the tracks with the corresponding colour from (M).
(O-Q) Leaf plots of the loop of change point no 4 in Track 102 with ℎ = 30 (O), ℎ = 20 (P) and ℎ = 10 (Q). (R-T):
Leaf plots of a simulated track with small standard deviation and three change points analyzed with ℎ = 15 (T),
ℎ = 30 (S) and ℎ = 45 (R). Simulated leaves are separated for small window sizes in T and S and merge for bigger
windows (R).

In order to interpret leaves that do not correspond completely to the stereotypical form
indicated in panel N, we observe that such phenomena will occur if successive change points
are closer than the window size ℎ. This is illustrated in Figure 7 O-T by comparison to a
simulation. The respective loop of track 102 is shown in panel O with an analysis window
ℎ = 30. Decreasing the window size to ℎ = 20 (panel P) yields one vertical leave indicating
a change point in direction and another structure indicating additional change points on even
smaller time scales. Reducing the window size further to ℎ = 10 (panel Q) however does
not reveal new leaves due to high empirical variability. Therefore, panels R-T illustrate a
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simulation with small variability and comparable effects. In panel T, we observe three distinct
leaves corresponding to three simulated change points (blue points) in short succession in a
leaf plot with small ℎ = 15. Successively increasing the window size yields similar structures
as observed in the track (panels S and R).

Therefore, the leaf plot may allow the visual classification of detected change points into
directional changes (vertical leaves), step length changes (horizontal leaves) and simultaneous
changes (diagonal leaves). In addition, loop like structures can be indicative of the analysis
window overlapping more than one change point.

Further examples

As another example of a plastid track, Figure 7 B and F shows the estimated change points
of Track 434. The results are highly similar, showing a number of strong changes in direction
by about 𝜋 (e.g., change points no. 3, 4, 6, 7, blue points) as well as changes in the step
length (change points no. 2 and 5, orange points). Panels 7 C, D, G, H show further examples
of peroxisome tracks, which indicate similar behavior. Most interestingly, the peroxisome
tracks show clear changes in the step length. For example, track 17 shows a higher step length
between change points no. 1 and 2 (Figure 7 C, orange point) indicated by the horizontal
leaves around change point 2 (panel G, orange point). Similarly, peroxisome track 23 (panels
D and H) shows a strong change in the speed at the last change point no. 4 (orange point
in panel E), as indicated by the horizontal deviation on the right of the leaf plot (panel H,
ℎ = 30).

4.1. Comparison of the LW and RW approach

As explained above in Section 2.1 and 2.2, the LW was explicitly designed to describe move-
ments along roughly linear cellular structures. Accordingly, the change points detected with
the LW method often agree with visual inspection, suggesting a number of strong changes
in movement direction, and also changes in step length. In comparison, the RW method esti-
mates considerably fewer change points. In track 434, the null hypothesis of no change points
was not even rejected. This is illustrated in Figure 8 B, which shows no green circles, i.e.,
no estimated change points in the RW approach. For track 102, the RW approach estimated
only four change points (green circles in Figure 8 A), particularly missing visually prominent
changes in direction. This is in line with the observation that the RW-CPD tends to overlook
change points when applied to an LW (Section 3.4).

As an additional visual comparison, we simulated LW and RW tracks with piecewise con-
stant movement direction and speed in Figure 8 C-F. To that end, we estimated the piecewise
constant movement direction and step length from the organelle tracks within each section
between detected change points, both for the LW and the RW, using the model specific es-
timators of parameters and change points described earlier. We then simulated LW and RW
tracks with these estimates. Again, the LW shows strong linear components similar to the
shown organelle tracks, while the RW has weaker linear parts and a tendency to show a
curled behavior.
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Fig 8. Tracks 102 (A) and 434 (B) with change points estimated by with the 𝐶𝑃𝐷𝐿𝑊 (blue dots) and 𝐶𝑃𝐷𝑅𝑊
(green dots) marked, h=30. Simulated LW-tracks with the estimated 𝐶𝑃𝐷𝐿𝑊 change points, direction and step
length estimated between change points, variance estimated as median across time points 𝑖 ∈ {1, . . . , 𝑇 − 2ℎ} of
(�̂�𝐿𝑊 )2 (𝑖, 2ℎ), where the values in a 2ℎ-neighbourhood around each detected CP were removed, based on track
102 (C) and track 434 (D). Simulated RW-tracks with the estimated 𝐶𝑃𝐷𝑅𝑊 change points, direction and step
length estimated between change points, variance estimated as median across time points 𝑖 ∈ {1, . . . , 𝑇 − 2ℎ} of
(�̂�𝑅𝑊 )2 (𝑖, 2ℎ), where the values in a 2ℎ-neighbourhood around each detected CP were removed, based on track
102 (E) and track 434 (F).

5. Discussion

This paper followed three main aims. The first goal was to derive a stochastic model with
which movements of cell organelles can be described. Specifically, a data set of plastid move-
ments indicated that organelles can move in a rather linear manner, following piecewise linear
structures with abrupt changes in movement direction and speed. Therefore, the second aim
of the paper was to develop an analysis method that can statistically test for changes in the
movement direction and speed. Third, if the null hypothesis of no changes is rejected, we
aimed at estimating the locations of the change points and at distinguishing between changes
in the direction and the step length.

Concerning the first aim, we have presented a new stochastic model for the description of
two dimensional movement patterns. The model is called here a linear walk (LW) in order
to stress similarities as well as differences to the biased random walk (RW) assumptions. On
the one hand, the LW assumes, similar to the RW, that movement has a piecewise constant
direction and speed and that each step is drawn from a probability distribution. On the other
hand, movement within a LW follows more strictly a straight line than the RW by assuming
that observations are equidistant points on a straight line offset by independent random errors.
As a consequence, increments in a LW show a clear dependence structure of order one and
allow for a relatively strict movement along linear structures as is observed in cell organelle
movements reported here.

In order to address the second aim, i.e., to test for changes in movement direction, we used
a moving window approach and first explained parameter estimation within the LW. Illustrat-
ing that a univariate analysis of the movement direction requires assuming a constant step
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length, we switched to a bivariate setting in which the polar parametrization is transformed to
a cartesian parametrization. A classical MOSUM approach could be applied in the RW case
but is limited in the LW setting. We therefore used the new MLEs to derive a new moving
kernel statistic replacing the MOSUM process. We then showed convergence of the resulting
process, assuming the true scaling, to a limit Gaussian process which is independent from
the model parameters, and we also showed pointwise strong consistency of the variance esti-
mator. These theoretical results motivated the use of our new moving kernel statistic within
the LW, where we replaced the true scaling by the variance estimator in order to show good
performance with respect to significance level and test power via simulations.

Estimation of change points as described in the third aim can then be performed with a
straightforward algorithm both for the RW and LW. In particular, we showed that the de-
scribed method can be easily applied using a whole set of multiple window sizes in order to
perform change point detection on multiple time scales simultaneously. The complexity of
the algorithm is linear in the length of the time series, the number of simulations used for the
derivation of the rejection threshold, in the number of windows and the number of change
points. Finally, we proposed a graphical technique called the leaf plot in order to distinguish
qualitatively between change points in the direction and step length. In the leaf plot, local
differences in the estimated step length are plotted against local differences in the estimated
movement direction in a moving window analysis, thus reverting back to the polar parameter-
ization. The form of the resulting leaves allows a qualitative discrimination between changes
in the individual parameters. The analysis of the sample data set indicated a high number of
estimated change points both in the direction and step length, where most directional change
points ranged around the value of 𝜋, indicating a frequent quasi reversal of the organelle
movement direction.

Concerning the model assumptions, both the LW and the (biased) RW used here share a
number of advantages. Both models describe visually observable sections of roughly constant
movement direction. All model parameters have a clear and simple interpretation and can be
estimated from the data. Also, by assuming absolute angles instead of the widely used turning
angles, the LW and biased RW allow to distinguish between phases of fast linear movement
that show different absolute movement directions as observed in the present data set. In this
respect, we consider such models more suitable here than, e.g., correlated random walks, see
also [54].

In the comparison between the LW and RW, we observe (see Fig. 3) that the LW sticks
quite closely to a straight line, while the RW shows a much higher variability. As a con-
sequence, change point methods based on the RW have a lower test power and could fail to
detect visually prominent changes in the movement direction in the present data set, while the
change points estimated with the LW tended to correspond more closely to visual inspection.

However, one should also note that the visual correspondence of the LW with the patterns
of organelle tracks has limits. In particular, LW tracks do not appear perfectly organic due to
the negative serial correlation of increments, which is caused by the independence of offsets
of each measurement point from the line. It would be interesting to study extended models
in which the strong serial correlation is weakened, for example by a slow backward drift
towards the underlying line, or by a combination of RW assumptions with a stricter movement
direction. However, this often requires further technical assumptions such as for example
attraction points, whose number and location typically needs to be pre-specified. In such
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settings, the mean movement direction would differ for every time point and also depend
on the present position in relation to, e.g., a future and unknown attraction point potentially
located outside the moving analysis window. Such assumptions require additional technical
developments because they cannot be analysed within the present analysis framework that is
based on estimating and comparing a piecewise constant mean movement direction.

Considering the statistical test and change point detection algorithm, we have shown that
methods for multiple window sizes derived earlier [41] can easily be applied in the present
setting. Thus, the present analysis also allows for the analysis and estimation of change points
in movement direction and speed on multiple time scales. One should, however, note that
when applying the asymptotic procedure, a minimal window of size ℎ = 30 (for the LW)
should be applied in order to keep the required significance level. As a consequence, change
points that occur in faster succession cannot be detected. They will, however, show up in
loops and other shapes in the leaf plot indicating the potential existence of additional change
points.

Finally, one should also note that although the statistical test and change point estimation
were derived and presented for two dimensional movements, they are easily applicable to an
arbitrary number of dimensions. This is because the theoretical results rely on the behavior of
the processes in one single dimension, where errors in all directions are assumed independent.
Therefore, these methods can be extended to an arbitrary number of dimensions.

In [53], we provide an R code that implements the statistical test for and change point es-
timation as well as basic representation of a two-dimensional track with its estimated change
points. The algorithm directly uses multiple windows for change point detection and illus-
trates the estimated change points in a leaf plot.

We thus believe that the present paper can contribute to the theoretical understanding
and application of change point analysis of biological movement patterns that show abrupt
changes in their movement direction and speed.

Appendix A: Proof of Proposition 2.3

A.1. MLEs

Note that throughout the appendix all processes and estimators refer to the LW case. For ease
of notation, we will therefore omit the superscript 𝐿𝑊 in the following. Also, we will use the
short notation �̂� := �̂�(𝑖, ℎ) and �̂� := �̂�(𝑖, ℎ).

Let 𝑋𝑖+1, 𝑋𝑖+2, . . . , 𝑋𝑖+ℎ be a sequence of positions from a uni-directional LW(𝜗, 𝑟, 𝑏,𝜎,∅).
Then all 𝑋 (𝑑)

𝑖+ 𝑗 are independent for all 𝑗 = 1, . . . , ℎ and 𝑑 = 1, 2 and with distribution

𝑋 (𝑑)
𝑖+ 𝑗 ∼ N

(
(𝑖 + 𝑗)𝜇 (𝑑) + 𝑏 (𝑑) , 𝜎2

)
,

with

(𝜇 (1) , 𝜇 (2) ) = (𝑟 · cos(𝜗), 𝑟 · sin(𝜗)).

The corresponding log-likelihood is given by

−ℎ log 2𝜋𝜎2 − 1
2𝜎2

∑
𝑑=1,2

ℎ∑
𝑗=1

(
𝑋 (𝑑)
𝑖+ 𝑗 − (𝑖 + 𝑗)𝜇 (𝑑) − 𝑏 (𝑑)

)2
. (26)
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Differentiating with respect to 𝜇 (𝑑) and 𝑏 (𝑑) for fixed 𝑑 results in the following system of
equations

ℎ∑
𝑗=1

(𝑖 + 𝑗)
(
𝑋 (𝑑)
𝑖+ 𝑗 − (𝑖 + 𝑗) �̂� (𝑑) − �̂� (𝑑)

)
= 0, (27)

ℎ∑
𝑗=1

(
𝑋 (𝑑)
𝑖+ 𝑗 − (𝑖 + 𝑗) �̂� (𝑑) − �̂� (𝑑)

)
= 0. (28)

In (27) we use the short notation 𝑠1 :=
∑ℎ
𝑗=1(𝑖 + 𝑗) and 𝑠2 :=

∑ℎ
𝑗=1(𝑖 + 𝑗)2 to solve for �̂� (𝑑) as

a function of �̂� (𝑑) ,

�̂� (𝑑) =
1
𝑠2

ℎ∑
𝑗=1

(𝑖 + 𝑗)𝑋 (𝑑)
𝑖+ 𝑗 −

𝑠1

𝑠2
�̂� (𝑑) . (29)

Now we solve (28) for �̂� (𝑑) and replace �̂� (𝑑) by the term in (29),

�̂� (𝑑) =
1
ℎ

ℎ∑
𝑗=1

𝑋 (𝑑)
𝑖+ 𝑗 −

�̂� (𝑑)

ℎ
𝑠1

=
1
ℎ

ℎ∑
𝑗=1

(
1 − 𝑠1

𝑠2
(𝑖 + 𝑗)

)
𝑋 (𝑑)
𝑖+ 𝑗 +

𝑠2
1

ℎ · 𝑠2
�̂� (𝑑) .

This yields

�̂� (𝑑) =
1

𝑠2
1 − 𝑠2ℎ

ℎ∑
𝑗=1

(𝑠1(𝑖 + 𝑗) − 𝑠2) 𝑋 (𝑑)
𝑖+ 𝑗 . (30)

Inserting 𝑠1 = ℎ(ℎ + 2𝑖 + 1)/2 and 𝑠2 = ℎ(2ℎ2 + 6𝑖ℎ + 3ℎ + 6𝑖2 + 6𝑖 + 1)/6 yields

�̂� (𝑑) = (ℎ3 − ℎ)−1
ℎ∑
𝑗=1

𝑤𝑏 (ℎ, 𝑖, 𝑗)𝑋 (𝑑)
𝑖+ 𝑗 , where

𝑤𝑏 (ℎ, 𝑖, 𝑗) := (−6ℎ 𝑗 − 12 𝑗𝑖 − 6 𝑗 + 4ℎ2 + 6ℎ𝑖 + 6ℎ + 6𝑖 + 2).

To derive �̂� (𝑑) we plug in (30) in (29), which yields

�̂� (𝑑) =
1

𝑠2ℎ − 𝑠2
1

ℎ∑
𝑗=1

(ℎ(𝑖 + 𝑗) − 𝑠1) 𝑋 (𝑑)
𝑖+ 𝑗 =

6
ℎ3 − ℎ

ℎ∑
𝑗=1

(2 𝑗 − ℎ − 1)𝑋 (𝑑)
𝑖+ 𝑗

=
6

ℎ3 − ℎ

� ℎ
2 �∑
𝑗=1

(ℎ − (2 𝑗 − 1))
(
𝑋 (𝑑)
𝑖+ 𝑗 − 𝑋

(𝑑)
𝑖+ℎ− 𝑗+1

)
. (31)

For the estimation of 𝜎2 we differentiate (26) with respect to 𝜎2 and obtain equation (9). For
an interpretable notation of �̂�, we note that

𝑤𝑏 (ℎ, 𝑖, 𝑗)
6(2 𝑗 − ℎ − 1) = −(𝑖 + (ℎ + 1)/2) + (ℎ2 − 1)

6(2 𝑗 − ℎ − 1) .
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This implies

�̂� =
1

ℎ(ℎ2 − 1)

ℎ∑
𝑗=1

(ℎ2 − 1)𝑋𝑖+ 𝑗 − (𝑖 + (ℎ + 1)/2) �̂�

= �̄�𝑖 − (𝑖 + (ℎ + 1)/2) �̂�,

where �̄�𝑖 := ℎ−1 ∑ℎ
𝑗=1 𝑋𝑖+ 𝑗 denotes the mean of the observed points. Unbiasedness of the

MLEs is shown in Supplement 2.

A.2. Unbiasedness of MLEs from Proposition 2.3

In order to show the unbiasedness of the estimators derived in Proposition 2.3, we first note
the following equalities for the weights in �̂� (𝑑) and �̂� (𝑑) , which we denote by 𝑤𝜇 (ℎ, 𝑗) :=
2 𝑗 − ℎ − 1 and 𝑤𝑏 (ℎ, 𝑖, 𝑗) := −6ℎ 𝑗 − 12 𝑗𝑖 − 6 𝑗 + 4ℎ2 + 6ℎ𝑖 + 6ℎ + 6𝑖 + 2, respectively. Then
we have

ℎ∑
𝑗=1

𝑤𝜇 (ℎ, 𝑗) = 0 and
ℎ∑
𝑗=1

𝑤𝜇 (ℎ, 𝑗) (𝑖 + 𝑗) =
ℎ3 − ℎ

6
, (32)

ℎ∑
𝑗=1

𝑤𝑏 (ℎ, 𝑖, 𝑗) = ℎ3 − ℎ and
ℎ∑
𝑗=1

𝑤𝑏 (ℎ, 𝑖, 𝑗) (𝑖 + 𝑗) = 0. (33)

We then find for �̂�

E [�̂�] = 6
ℎ3 − ℎ

ℎ∑
𝑗=1

𝑤𝜇 (ℎ, 𝑗)E
[
𝑋𝑖+ 𝑗

]
=

6
ℎ3 − ℎ

ℎ∑
𝑗=1

𝑤𝜇 (ℎ, 𝑗) ((𝑖 + 𝑗)𝜇 + 𝑏)

=
6

ℎ3 − ℎ
	
�𝜇

ℎ∑
𝑗=1

𝑤𝜇 (ℎ, 𝑗) (𝑖 + 𝑗) + 𝑏
ℎ∑
𝑗=1

𝑤𝜇 (ℎ, 𝑗)
�� =

6
ℎ3 − ℎ

ℎ3 − ℎ
6

𝜇 = 𝜇,

where we use equation (32). For �̂� we use equation (33) and observe

E[�̂�] = 1
ℎ3 − ℎ

𝑛∑
𝑗=1

𝑤𝑏 (ℎ, 𝑖, 𝑗)E
[
𝑋𝑖+ 𝑗

]
=

1
ℎ3 − ℎ

𝑛∑
𝑗=1

𝑤𝑏 (ℎ, 𝑖, 𝑗) ((𝑖 + 𝑗)𝜇 + 𝑏)

=
1

ℎ3 − ℎ
	
�𝜇

𝑛∑
𝑗=1

𝑤𝑏 (ℎ, 𝑖, 𝑗) (𝑖 + 𝑗) + 𝑏
𝑛∑
𝑗=1

𝑤𝑏 (ℎ, 𝑖, 𝑗)
�� = 𝑏. (34)

For the expectation of �̂�2 we first insert equation (8) into equation (9), noting that

𝑋𝑖+ 𝑗 − (𝑖 + 𝑗) �̂� − �̂� = 𝑋𝑖+ 𝑗 − (𝑖 + 𝑗) �̂� − �̄� +
(
𝑖 + ℎ + 1

2

)
�̂�

= 𝑋𝑖+ 𝑗 − �̄� + �̂�
(
ℎ + 1

2
− 𝑗

)
.

Now using 𝑋𝑖+ 𝑗 = (𝑖 + 𝑗)𝜇 + 𝑏 + 𝜎𝑍𝑖+ 𝑗 , we note that

𝑋𝑖+ 𝑗 − �̄� = 𝜇

(
𝑗 − ℎ + 1

2

)
+ 𝜎

(
𝑍𝑖+ 𝑗 − �̄�

)
,
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where �̄� = 1
ℎ

∑ℎ
𝑗=1 𝑍 𝑗+𝑖. For unbiasedness of �̂�2 we thus need to show that

E

⎡⎢⎢⎢⎢⎣
ℎ∑
𝑗=1

����𝜎 (
𝑍𝑖+ 𝑗 − �̄�

)
+ ( �̂� − 𝜇)

(
ℎ + 1

2
− 𝑗

)����2⎤⎥⎥⎥⎥⎦ = (2ℎ − 4)𝜎2. (35)

The expression on the left of (35) equals
∑ℎ
𝑗=1

∑
𝑑=1,2(𝑎1 + 𝑎2 + 𝑎3), with

𝑎1 = 𝜎2
E

[(
𝑍 (𝑑)
𝑖+ 𝑗 − �̄�

(𝑑)
)2

]
,

𝑎2 = 2𝜎
(
ℎ + 1

2
− 𝑗

)
E

[(
𝑍 (𝑑)
𝑖+ 𝑗 − �̄�

(𝑑)
) (
�̂� (𝑑) − 𝜇 (𝑑)

)]
,

𝑎3 =

(
ℎ + 1

2
− 𝑗

)2

E

[(
�̂� (𝑑) − 𝜇 (𝑑)

)2
]
.

We then observe

𝑎1 = 𝜎2
E

[
𝑍 (𝑑)2

𝑖+ 𝑗 − 2𝑍 (𝑑)
𝑖+ 𝑗 �̄�

(𝑑) + �̄� (𝑑)2
]
= 𝜎2

(
1 − 1

ℎ

)
,

𝑎2 = 2𝜎
(
ℎ + 1

2
− 𝑗

) (
E

[
𝑍 (𝑑)
𝑖+ 𝑗 �̂�

(𝑑)
]
− E

[
�̄� (𝑑) �̂� (𝑑)

] )
.

Now we note that

E

[
𝑍 (𝑑)
𝑖+ 𝑗 �̂�

(𝑑)
]
= E

[
𝑍 (𝑑)
𝑖+ 𝑗

6
ℎ3 − ℎ

ℎ∑
𝑘=1

𝑤𝜇 (ℎ, 𝑘)𝑋 (𝑑)
𝑖+𝑘

]
=

6
ℎ3 − ℎ

𝑤𝜇 (ℎ, 𝑗)E
[
𝑍 (𝑑)
𝑖+ 𝑗 𝑋

(𝑑)
𝑖+ 𝑗

]
=

6
ℎ3 − ℎ

𝑤𝜇 (ℎ, 𝑗)E
[
𝑍 (𝑑)
𝑖+ 𝑗 (𝜇

(𝑑) + 𝑏 (𝑑) + 𝜎𝑍 (𝑑)
𝑖+ 𝑗 )

]
= 𝜎

6
ℎ3 − ℎ

𝑤𝜇 (ℎ, 𝑗)

and

E
[
�̄� (𝑑) �̂� (𝑑)

]
= E

[
1
ℎ

ℎ∑
𝑘=1

𝑍 (𝑑)
𝑖+𝑘

6
ℎ3 − ℎ

ℎ∑
𝑙=1

𝑤𝜇 (ℎ, 𝑙)𝑋 (𝑑)
𝑖+𝑙

]
=

6
ℎ(ℎ3 − ℎ)

E

[
ℎ∑
𝑘=1

ℎ∑
𝑙=1

𝑤𝜇 (ℎ, 𝑙)𝑋 (𝑑)
𝑖+𝑙 𝑍

(𝑑)
𝑖+𝑘

]
=

6
ℎ(ℎ3 − ℎ)

(
ℎ∑
𝑙=1

𝑤𝜇 (ℎ, 𝑙)E
[
𝑍 (𝑑)
𝑖+𝑙 𝑋

(𝑑)
𝑖+𝑙

] )
=

6𝜎
ℎ(ℎ3 − ℎ)

ℎ∑
𝑙=1

𝑤𝜇 (ℎ, 𝑙) = 0

and hence find

𝑎2 = 2𝜎
(
ℎ + 1

2
− 𝑗

) (
𝜎

6
ℎ3 − ℎ

𝑤𝜇 (ℎ, 𝑗)
)
= −𝜎2 6

ℎ3 − ℎ
𝑤𝜇 (ℎ, 𝑗)2.
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For 𝑎3 we have

𝑎3 =

(
ℎ + 1

2
− 𝑗

)2 (
E

[
�̂� (𝑑)

2
]
− 2𝜇 (𝑑)E

[
�̂� (𝑑)

]
+ 𝜇 (𝑑)2

)
=

1
4

12
ℎ3 − ℎ

𝜎2𝑤𝜇 (ℎ, 𝑗)2.

In total, the left hand side of (35) equals

ℎ∑
𝑗=1

∑
𝑑=1,2

(𝑎1 + 𝑎2 + 𝑎3)

=
ℎ∑
𝑗=1

∑
𝑑=1,2

(
𝜎2

(
1 − 1

ℎ

)
− 𝜎2 6

ℎ3 − ℎ
𝑤𝜇 (ℎ, 𝑗)2 + 1

4
12

ℎ3 − ℎ
𝜎2𝑤𝜇 (ℎ, 𝑗)2

)
= 2ℎ𝜎2

(
1 − 1

ℎ

)
− 2𝜎2 6

ℎ3 − ℎ

ℎ∑
𝑗=1

𝑤𝜇 (ℎ, 𝑗)2 + 2𝜎2 3
ℎ3 − ℎ

ℎ∑
𝑗=1

𝑤𝜇 (ℎ, 𝑗)2

=

(
2(ℎ − 1) − 12

ℎ3 − ℎ
1
3
(ℎ3 − ℎ) + 6

ℎ3 − ℎ
1
3
(ℎ3 − ℎ)

)
𝜎2

= (2ℎ − 4)𝜎2,

where we used that
∑ℎ
𝑗=1 𝑤𝜇 (ℎ, 𝑗)2 = (ℎ3 − ℎ)/3. �

Appendix B: Strong consistency of �̂� (𝒅) and �̂� (𝒅) (Proposition 3.1) and of the testing
procedure

To show the strong consistency of �̂� (𝑑) and �̂� (𝑑) we use a variation of the SLLN for a setting
of weighted sums. The proof of the strong consistency of �̂�2 follows the same structure but
involves more tedious calculations. Together with the second required SLLN, it can be found
in Appendix E.

Proposition B.1 (SLLN with weights). Let 𝑋 𝑗 be independent with E[𝑋 𝑗] = 0, but not
necessarily identically distributed random variables with sup 𝑗≥1 E[𝑋4

𝑗 ] < ∞. Let 𝑆𝑛 :=∑𝑚𝑛

𝑗=1 𝑣(𝑛, 𝑗)𝑋 𝑗 , where 𝑚𝑛 ∈ N and 𝑣(𝑛, 𝑗) ∈ R are weights. Then lim
𝑛→∞

𝑆𝑛 = 0 almost surely
if

𝑚𝑛∑
𝑗=1

𝑣(𝑛, 𝑗)2=O(𝑛−1). (36)

Proposition B.1 can be proven by a standard argument based on the Lemma of Borel–
Cantelli and Markov’s inequality.

Strong consistency of 𝜇 (𝑑) is now shown by verifying the condition in Proposition B.1, eq.
(36). The MLE for 𝜇 (𝑑) in the time continuous setting is given by

�̂� (𝑑) (𝑛𝑡, 𝑛𝜂) = 6
(𝑛𝜂)3 − 𝑛𝜂

𝑛𝜂∑
𝑗=1

(2 𝑗 − 𝑛𝜂 − 1) 𝑋 (𝑑)
�𝑛𝑡 �+ 𝑗

=
𝑛𝜂∑
𝑗=1

𝑣(𝑛, 𝑗)𝑋 (𝑑)
�𝑛𝑡 �+ 𝑗 , with
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𝑣(𝑛, 𝑗) :=
6 (2 𝑗 − 𝑛𝜂 − 1)
(𝑛𝜂)3 − 𝑛𝜂

.

Since 𝑋 (𝑑)
�𝑛𝑡 �+ 𝑗 ∼ N

(
(�𝑛𝑡� + 𝑗)𝜇 (𝑑) , 𝜎2) , the fourth moment of 𝑋 (𝑑)

�𝑛𝑡 �+ 𝑗 exists and since �̂� (𝑑)

is unbiased, it suffices to show that as 𝑛→ ∞, ( �̂�(𝑛𝑡, 𝑛𝜂) − 𝜇) → 0 almost surely. According
to Proposition B.1, it is therefore sufficient to show that

∑𝑚𝑛

𝑗=1 𝑣(𝑛, 𝑗)
2 ∈ O(𝑛−1). This holds

because
𝑛𝜂∑
𝑗=1

𝑣(𝑛, 𝑗)2 =
62

((𝑛𝜂)3 − 𝑛𝜂)2

𝑛𝜂∑
𝑗=1

(2 𝑗 − 𝑛𝜂 − 1)2

=
62

((𝑛𝜂)3 − 𝑛𝜂)2︸������������︷︷������������︸
=O(𝑛−6 )

1
3
((𝑛𝜂)3 − 𝑛𝜂)︸������������︷︷������������︸

=O(𝑛3 )

=O(𝑛−3)=O(𝑛−1).

The strong consistency of �̂� (𝑑) can be shown analogously using the SLLN for weighted
sums from Proposition B.1. In the time continuous setting, �̂� is given by

�̂�(𝑛𝑡, 𝑛𝜂) = 1
(𝑛𝜂)3 − 𝑛𝜂

𝑛𝜂∑
𝑗=1

𝑤𝑏 (𝑛𝜂, 𝑛𝑡, 𝑗)𝑋 (𝑑)
�𝑛𝑡 �+ 𝑗

=
𝑛𝜂∑
𝑗=1

𝑤𝑏 (𝑛𝜂, 𝑛𝑡, 𝑗)
(𝑛𝜂)3 − 𝑛𝜂

𝑋 (𝑑)
�𝑛𝑡 �+ 𝑗 =

𝑛𝜂∑
𝑗=1

𝑣(𝑛, 𝑗)𝑋 (𝑑)
�𝑛𝑡 �+𝑖,

where we define

𝑤𝑏 (𝑛𝜂, 𝑛𝑡, 𝑗) := − 6𝑛𝜂 𝑗 − 12 𝑗 �𝑛𝑡� − 6 𝑗 + 4(𝑛𝜂)2 + 6𝑛𝜂�𝑛𝑡� + 6𝑛𝜂 + 6�𝑛𝑡� + 2

and 𝑣(𝑛, 𝑗) := 𝑤𝑏 (𝑛𝜂, 𝑛𝑡, 𝑗)/((𝑛𝜂)3−𝑛𝜂). Again, it is sufficient to show that
∑𝑚(𝑛)
𝑗=1 𝑣(𝑛, 𝑗)2 =

O(𝑛−1). This is the case because 𝑤𝑏 (𝑛𝜂, 𝑛𝑡, 𝑗)=O(𝑛2) and thus,
𝑛𝜂∑
𝑗=1

𝑣(𝑛, 𝑗)2 =
1

((𝑛𝜂)3 − 𝑛𝜂)2︸������������︷︷������������︸
=O(𝑛−6 )

𝑛𝜂∑
𝑗=1

𝑤𝑏 (𝑛𝜂, 𝑛𝑡, 𝑗)2︸�����������︷︷�����������︸
=O(𝑛4 )︸�����������������︷︷�����������������︸

=O(𝑛5 )

=O(𝑛−1).

Now, we turn to the consistency of the testing procedure mentioned in Section 3.2.1. To
give a precise asymptotic statement we consider a LW model with one change point in our
asymptotic setting. Let directions 𝜇1, 𝜇2 ∈ R

2 \ {0} be given with 𝜇1 ≠ 𝜇2 and corresponding
sets Θ = {𝜗1, 𝜗2} and 𝑅 = {𝑟1, 𝑟2} as well as a change point 0 < 𝑐1 < 𝑇 . Further let 𝜎2 > 0
and 𝐵 = {𝑏1, 𝑏2} with 𝑏1 ∈ R

2 and 𝑏2 = 𝑏1 + 𝑐1𝜇1. Then, for an asymptotic setting we
consider

𝐵𝑛 := {𝑏1, 𝑏1 + 𝑛𝑐1𝜇1}, 𝐶𝑛 := {𝑛𝑐1}

with a window size 𝑛𝜂 and time horizon 𝑛𝑇 .
For the sequence of LW models LW(Θ, 𝑅, 𝐵𝑛, 𝜎2, 𝐶𝑛), 𝑛 ∈ N, we define the processes

𝐺𝐿𝑊, (𝑛) corresponding to the process 𝐺𝐿𝑊 in (18). Then we have the following consistency
result:
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Theorem B.2. For the linear walk models LW(Θ, 𝑅, 𝐵𝑛, 𝜎2, 𝐶𝑛), 𝑛 ∈ N, and processes
𝐺𝐿𝑊, (𝑛) as above we have almost surely that

𝑀𝑛𝜂

(
𝐺𝐿𝑊, (𝑛)

)
:= max

𝑛𝜂≤𝑖≤𝑛𝑇−𝑛𝜂

���𝐺𝐿𝑊, (𝑛)
𝑛𝜂,𝑖

���
2
→ ∞ (𝑛→ ∞).

Proof. We focus on the index 𝑖0 = 𝑛𝑐1 and note that, by definition,

𝑀𝑛𝜂

(
𝐺𝐿𝑊, (𝑛)

)
≥

���𝐺𝐿𝑊, (𝑛)
𝑛𝜂,𝑖0

���
2
.

Hence, by definition of 𝐺𝐿𝑊, (𝑛) we have

𝑀𝑛𝜂

(
𝐺𝐿𝑊, (𝑛)

)
≥

���̂�𝐿𝑊 (𝑛𝑐1, 𝑛𝜂) − �̂�𝐿𝑊 (𝑛𝑐1 − 𝑛𝜂, 𝑛𝜂)
��

2√
12

(𝑛𝜂)3−𝑛𝜂 ((�̂�
𝐿𝑊 )2(𝑛𝑐1 − 𝑛𝜂, 𝑛𝜂) + (�̂�𝐿𝑊 )2(𝑛𝑐1, 𝑛𝜂))

.

Now note that, by construction, for indices 𝑖 = 1, . . . , 𝑛𝑐1 the process follows a LW without
a change point, also for indices 𝑖 = 𝑛𝑐1 + 1, . . . , 𝑛𝑇 . Hence, the consistency of the estimators
in Proposition 3.1 implies, as 𝑛→ ∞, that

�̂�𝐿𝑊 (𝑛𝑐1, 𝑛𝜂) → 𝜇2, �̂�𝐿𝑊 (𝑛𝑐1 − 𝑛𝜂), 𝑛𝜂) → 𝜇1,

(�̂�𝐿𝑊 )2(𝑛𝑐1 − 𝑛𝜂, 𝑛𝜂) → 𝜎2, (�̂�𝐿𝑊 )2(𝑛𝑐1, 𝑛𝜂)) → 𝜎2.

Hence, almost surely, we have

𝑀𝑛𝜂

(
𝐺𝐿𝑊, (𝑛)

)
≥ ‖𝜇2 − 𝜇2‖1√

12
(𝑛𝜂)3−𝑛𝜂2𝜎2

(1 + 𝑜(1)) = Θ
(
𝑛3/2

)
,

since 𝜇1 ≠ 𝜇2. This implies the assertion. �

Appendix C: Proof of convergence of 𝚼(𝒏) to 𝚼

C.1. The limit process

Recall that we fix 𝑇 > 0 and 0 < 𝜂 < 𝑇
2 , denote T := [𝜂, 𝑇 − 𝜂] and define a centered

Gaussian process Υ = (Υ𝑡 )𝑡∈T by its covariance function 𝐶 : T × T → R defined in (22). By
a criterion of Fernique [17] we obtain that we have a version of Υ with continuous sample
paths. (Choose, e.g., 𝜓(𝑥) := 6(𝑥/𝜂)3 in the formulation of Marcus and Shepp [35].) The
space of continuous functions on T is denoted by 𝐶 (T).

Remark C.1. We will not make use of the fact that (Υ𝑡 )𝑡∈T has a representation as an Itô-
integral with respect to Brownian motion with a deterministic kernel: With the functions 𝑔𝑢
defined in (40) we have, in distribution,

(Υ𝑡 )𝑡∈T =

(√
3/2𝜂−3/2

∫ 𝑡+𝜂

𝑡−𝜂
𝑔𝑡 (𝑣) 𝑑𝐵𝑣

)
𝑡∈T

,

where (𝐵𝑣)𝑣∈[0,∞) denotes standard Brownian motion.
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C.2. The discrete processes for fixed n

Recall that the processes Υ(𝑛) are defined, see also (21), by Υ(𝑛)
𝑡 := Γ (1) ,𝐿𝑊

𝑛𝜂,𝑛𝑡 with

Γ (1) ,𝐿𝑊
𝑛𝜂,𝑛𝑡 =

(
2
3
((𝑛𝜂)3 − 𝑛𝜂)

)−1/2

×
(
𝑛𝜂∑
𝑗=1

(2 𝑗 − 𝑛𝜂 − 1)
(
𝑍 (1)
�𝑛𝑡 �+ 𝑗 − 𝑍

(1)
�𝑛𝑡 �−𝑛𝜂+ 𝑗

) )
and considered as processes in the càdlàg space 𝐷 (T) endowed with the topology induced
by the supremum norm ‖ · ‖∞. Note that they are measurable. To prepare for the process
convergence of the Υ(𝑛) in Proposition 3.4 we first study the covariance functions of Υ(𝑛)

and Υ.

C.3. The covariance functions

Recall the definition of 𝐶 in (22) and further denote the covariance function of Υ(𝑛) by

𝐶𝑛 (𝑠, 𝑡) := Cov(Υ(𝑛)
𝑠 ,Υ(𝑛)

𝑡 ) = E [Υ(𝑛)
𝑠 Υ(𝑛)

𝑡 ] .

We show uniform convergence of the covariance functions as stated in Proposition 3.3.
Proof of Proposition 3.3. In order to obtain a convenient form of the covariance functions of
the Υ(𝑛) we note that, see (25), we have

Υ(𝑛)
𝑡 =

√
3
2

(
(𝑛𝜂)3 − 𝑛𝜂

)−1/2 ∞∑
𝑗=−∞

𝑔 (𝑛)𝑡 ( 𝑗)𝑉 𝑗 , (37)

where {𝑉 𝑗 | 𝑗 ∈ Z} is a set of independent standard normal N(0, 1) distributed random vari-
ables and, for 𝑢 ∈ R, functions 𝑔 (𝑛) are defined by

𝑔 (𝑛)𝑢 : Z → R (38)

with

𝑗 ↦→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2| 𝑗 − �𝑛𝑢� | − 𝑛𝜂 + sgn(�𝑛𝑢� − 𝑗), 0 < | �𝑛𝑢� − 𝑗 | < 𝑛𝜂
and 𝑗 < �𝑛𝑢� or
0 < | �𝑛𝑢� − 𝑗 | ≤ 𝑛𝜂
and 𝑗 > �𝑛𝑢�,

2| 𝑗 − �𝑛𝑢� | − 𝑛𝜂 + 1, for 𝑗 = �𝑛𝑢�,
0, otherwise,

with

sgn(𝑥) :=
⎧⎪⎪⎨⎪⎪⎩

1, for 𝑥 > 0,
0, for 𝑥 = 0,
−1, for 𝑥 < 0.

Since {𝑉 𝑗 | 𝑗 ∈ Z} is a set of independent standard normal random variables we obtain

𝐶𝑛 (𝑠, 𝑡) =
3

2((𝑛𝜂)3 − 𝑛𝜂)

∞∑
𝑗=−∞

𝑔 (𝑛)𝑠 ( 𝑗)𝑔 (𝑛)𝑡 ( 𝑗)
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=
3

2𝜂3 + O(1/𝑛)

{
1
𝑛

∞∑
𝑗=−∞

(
1
𝑛
𝑔 (𝑛)𝑠 ( 𝑗)

) (
1
𝑛
𝑔 (𝑛)𝑡 ( 𝑗)

) }
. (39)

We interpret the expression within { · } in (39) as a Riemann sum. For this, we define func-
tions 𝑔𝑢 for 𝑢 ∈ R by

𝑔𝑢 : R → R, 𝑥 ↦→ (2|𝑥 − 𝑢 | − 𝜂) 1[𝑢−𝜂,𝑢+𝜂 ] (𝑥), (40)

where 1𝐴 denotes the indicator function of a set 𝐴. Now, the expression within { · } in (39)
is a Riemann sum for the integral

∫ ∞
−∞ 𝑔𝑠 (𝑥)𝑔𝑡 (𝑥) 𝑑𝑥 up to summands of the order O(1/𝑛),

using the big-O notation. We obtain, as 𝑛→ ∞, that000001𝑛 ∞∑
𝑗=−∞

(
1
𝑛
𝑔 (𝑛)𝑠 ( 𝑗)

) (
1
𝑛
𝑔 (𝑛)𝑡 ( 𝑗)

)
−

∫ ∞

−∞
𝑔𝑠 (𝑥)𝑔𝑡 (𝑥) 𝑑𝑥

00000 = O
(

1
𝑛

)
(41)

uniformly within 𝑠, 𝑡 ∈ T. An evaluation of the integral
∫ ∞
−∞ 𝑔𝑠 (𝑥)𝑔𝑡 (𝑥) 𝑑𝑥 can be done by

slightly tedious but elementary calculations and yields

3
2𝜂3

∫ ∞

−∞
𝑔𝑠 (𝑥)𝑔𝑡 (𝑥) 𝑑𝑥 = 𝜅

(
|𝑠 − 𝑡 |
𝜂

)
= 𝐶 (𝑠, 𝑡) (42)

with 𝜅 and 𝐶 given in (23) and (22) respectively. Combining (39), (41) and (42) we obtain as
𝑛→ ∞ that

𝐶𝑛 (𝑠, 𝑡) = Cov(Υ(𝑛)
𝑠 ,Υ(𝑛)

𝑡 ) → Cov(Υ𝑠,Υ𝑡 ) = 𝐶 (𝑠, 𝑡)

uniformly within 𝑠, 𝑡 ∈ T. �

The Gaussian processes Υ and Υ(𝑛) induce canonical metrics on T by

𝑑∞(𝑠, 𝑡) := ‖Υ𝑡 − Υ𝑠‖2 := E [|Υ𝑡 − Υ𝑠 |2]1/2,

𝑑𝑛 (𝑠, 𝑡) := ‖Υ(𝑛)
𝑡 − Υ(𝑛)

𝑠 ‖2.

Later, we need an upper bound on the 𝑑𝑛 for |𝑠 − 𝑡 | small.

Proposition C.2. There exists a constant 0 < 𝑐𝜂 < ∞, depending on 𝜂, such that for the
canonical distances of Υ and Υ(𝑛) we have

𝑑𝑛 (𝑠, 𝑡) ≤ 𝑐𝜂 |𝑠 − 𝑡 |1/2,

for all 𝑠, 𝑡 ∈ T with |𝑠 − 𝑡 | ≤ 𝜂 and all 𝑛 ∈ N ∪ {∞}.
Proof. For 𝑠, 𝑡 ∈ T with |𝑠 − 𝑡 | ≤ 𝜂 we obtain with (23) and (22) that

𝑑∞(𝑠, 𝑡) = (Var(Υ𝑡 − Υ𝑠))1/2 = (2(1 − 𝐶 (𝑠, 𝑡)))1/2

=

(
2

(
3
2
|𝑠 − 𝑡 |
𝜂

+ 3
|𝑠 − 𝑡 |2

𝜂2 − 3
|𝑠 − 𝑡 |3

𝜂3

))1/2

≤
(
3
|𝑠 − 𝑡 |
𝜂

+ 6
|𝑠 − 𝑡 |
𝜂

)1/2

=
3
√
𝜂
|𝑠 − 𝑡 |1/2. (43)
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Note that Var(Υ𝑡 ) = Var(Υ(𝑛)
𝑡 ) = 1 for all 𝑡 implies, using notation introduced in the proof of

Proposition 3.3, that

1
𝑛

∞∑
𝑗=−∞

(
1
𝑛
𝑔 (𝑛)𝑡 ( 𝑗)

) (
1
𝑛
𝑔 (𝑛)𝑡 ( 𝑗)

)
=

∫ ∞

−∞
𝑔𝑡 (𝑥)𝑔𝑡 (𝑥) 𝑑𝑥 = 1.

Hence, by triangle inequality, (39) and (41), we obtain

2𝜂3 + O(1/𝑛)
3

|𝐶𝑛 (𝑠, 𝑡) − 𝐶 (𝑠, 𝑡) |

≤

000001𝑛 ∞∑
𝑗=−∞

(
1
𝑛
𝑔 (𝑛)𝑠 ( 𝑗)

) (
1
𝑛
𝑔 (𝑛)𝑡 ( 𝑗)

)
− 1
𝑛

∞∑
𝑗=−∞

(
1
𝑛
𝑔 (𝑛)𝑡 ( 𝑗)

) (
1
𝑛
𝑔 (𝑛)𝑡 ( 𝑗)

)00000
+

0000∫ ∞

−∞
𝑔𝑡 (𝑥)𝑔𝑡 (𝑥) 𝑑𝑥 −

∫ ∞

−∞
𝑔𝑠 (𝑥)𝑔𝑡 (𝑥) 𝑑𝑥

0000
≤ 1
𝑛

∞∑
𝑗=−∞

00001𝑛𝑔 (𝑛)𝑠 ( 𝑗) − 1
𝑛
𝑔 (𝑛)𝑡 ( 𝑗)

0000 1
𝑛
|𝑔 (𝑛)𝑡 ( 𝑗) | +

∫ ∞

−∞
|𝑔𝑡 (𝑥) | |𝑔𝑡 (𝑥) − 𝑔𝑠 (𝑥) | 𝑑𝑥

≤ 𝑐 |𝑠 − 𝑡 |,

with appropriate 0 < 𝑐 < ∞ uniformly in 𝑛, noting that | 1
𝑛𝑔

(𝑛)
𝑠 ( 𝑗) − 1

𝑛𝑔
(𝑛)
𝑡 ( 𝑗) | ≤ 2|𝑠 − 𝑡 |

for all 𝑗 = �𝑛(𝑠 ∧ 𝑡)� − 𝑛𝜂, . . . , �𝑛(𝑠 ∨ 𝑡)� + 𝑛𝜂 and |𝑔𝑡 (𝑥) − 𝑔𝑠 (𝑥) | ≤ 2|𝑠 − 𝑡 | for all 𝑥 ∈
[(𝑠 ∨ 𝑡) − 𝜂, (𝑠 ∧ 𝑡) + 𝜂], and using trivial bounds outside these summation and integration
ranges, respectively. Hence, for 𝑠, 𝑡 ∈ T we have

|𝐶𝑛 (𝑠, 𝑡) − 𝐶 (𝑠, 𝑡) | ≤
3𝑐

2𝜂3 + O(1/𝑛)
|𝑠 − 𝑡 |. (44)

Using (44) in (43) we further obtain for all |𝑠 − 𝑡 | ≤ 𝜂 that

𝑑2
𝑛 (𝑠, 𝑡)
= 2(1 − 𝐶𝑛 (𝑠, 𝑡))

≤ 2

(
3
2
|𝑠 − 𝑡 |
𝜂

+ 3
|𝑠 − 𝑡 |2

𝜂2 − 3
|𝑠 − 𝑡 |3

𝜂3 + 3𝑐
2𝜂3 + O(1/𝑛)

|𝑠 − 𝑡 |)
)

≤ 𝑐2
𝜂 |𝑠 − 𝑡 |

for an appropriate 𝑐𝜂 ≥ 3/√𝜂. �

C.4. Convergence of the processes

We now show process convergence as stated in Proposition 3.4. To prove Proposition 3.4 our
bounds on the covariance functions from Section C.3 allow to verify conditions of general
theorems which we first restate in a notation and form suitable for further use and tailored to
our setting. Firstly, we use a criterion from Pollard [55, Sec V, Thm 3]:

Theorem C.3. Let Ξ,Ξ(𝑛) , 𝑛 ≥ 1, be random elements in (𝐷 (T), ‖ · ‖∞). Suppose that

P(Ξ ∈ 𝐶 (T)) = 1. Necessary and sufficient for Ξ(𝑛) 𝑑−→ Ξ in (𝐷 (T), ‖ · ‖∞) as 𝑛 → ∞, is
that the following two conditions hold:
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(i) We have Ξ(𝑛) fdd−→ Ξ as 𝑛→ ∞,
(ii) For all 𝜀, 𝛿 > 0 there exist 𝜂 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑚 = 𝑇 − 𝜂 such that

lim sup
𝑛→∞

P

(
max

𝑖=0,...,𝑚−1
sup

𝑡∈[𝑡𝑖 ,𝑡𝑖+1 )
|Ξ(𝑛)
𝑡 − Ξ(𝑛)

𝑡𝑖
| > 𝛿

)
< 𝜀. (45)

Secondly, in order to verify condition (ii) in Theorem C.3 we apply a bound of Dirksen
[14, Theorem 3.2] which is based on Talagrand’s [61, 62] generic chaining method. Dirksen
showed that there exist constants 0 < 𝐶, 𝐷 < ∞ such that for any real-valued centered
Gaussian process (Ξ𝑡 )𝑡∈𝜏 with appropriate metric space (𝜏, 𝑑) and any 1 ≤ 𝑝 < ∞ and 𝑡0 ∈ 𝜏
we have

E

[
sup
𝑡∈𝜏

00Ξ𝑡 − Ξ𝑡0
00𝑝]1/𝑝

≤ 𝐶𝛾2, 𝑝 (𝜏, 𝑑) + 2 sup
𝑡∈𝜏

E
[00Ξ𝑡 − Ξ𝑡0

00𝑝]1/𝑝
. (46)

Here, 𝑑 (𝑠, 𝑡) = E [|Ξ𝑠 −Ξ𝑡 |2]1/2 is the canonical metric of (Ξ𝑡 )𝑡∈𝜏 and 𝛾2, 𝑝 (𝜏, 𝑑) is recalled
below. The bound (46) applies to our processes Υ,Υ(𝑛) , i.e., we have appropriate (𝜏, 𝑑), since
our processes have continuous respectively piecewise constant sample paths, cf. Remark 3.1
in [14].

Based on these results we obtain Proposition 3.4 as follows:
Proof of Proposition 3.4. It is sufficient to verify the conditions of Theorem C.3 with Ξ(𝑛) =
Υ(𝑛) and Ξ = Υ. First note that we have P(Υ ∈ 𝐶 (T)) = 1 as noted in Section C.1.

Condition (i) in Theorem C.3 follows from Proposition 3.3, as multivariate random Gaus-
sian vectors with converging covariance matrices converge in distribution to the random
Gaussian vector with limiting covariance matrix, e.g., by Lévy’s continuity theorem.

To verify condition (ii) in Theorem C.3 let 𝜀, 𝛿 > 0. We choose 𝑡 𝑗 := 𝜂 + (𝑇 − 2𝜂) 𝑗/𝑚 for
𝑗 = 0, . . . , 𝑚 with 𝑚 to be determined later. Note that by subadditivity, Markov’s inequality
and that Υ(𝑛) is stationary we have

P

(
max

𝑖=0,...,𝑚−1
sup

𝑡∈[𝑡𝑖 ,𝑡𝑖+1 )
|Υ(𝑛)
𝑡 − Υ(𝑛)

𝑡𝑖
| > 𝛿

)
≤ 𝑚P

(
sup

𝑡∈[0,𝑇/𝑚]
|Υ(𝑛)
𝑡 − Υ(𝑛)

0 | > 𝛿
)

≤ 𝑚

𝛿4 E

[
sup

𝑡∈[0,𝑇/𝑚]

000Υ(𝑛)
𝑡 − Υ(𝑛)

0

0004] .
Hence, for (45) to be satisfied for the processes Υ(𝑛) in view of the latter display it is sufficient
to show that

sup
𝑛≥1

E

[
sup

𝑡∈[0,𝑇/𝑚]

000Υ(𝑛)
𝑡 − Υ(𝑛)

0

0004] = O
(

1
𝑚2

)
(𝑚 → ∞). (47)

In order to obtain (47) we bound the right hand side of (46) with 𝜏 = 𝜏𝑚 := [0, 𝑇/𝑚], 𝑝 = 4
and 𝑑 = 𝑑𝑛 the canonical distance of Υ(𝑛) . To bound the second summand on the right hand
side of (46) recall that the fourth moment (kurtosis) of a standard normal random variable
has the value 3. For 𝑡0, 𝑡 ∈ 𝜏𝑚 and 𝑚 > 𝑇/𝜂, using Proposition C.2, we find that Υ(𝑛)

𝑡 − Υ(𝑛)
𝑡0
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has a centered normal distribution with variance 𝑑2
𝑛 (𝑡, 𝑡0) ≤ 𝑐2

𝜂 |𝑡 − 𝑡0 | ≤ 𝑐2
𝜂𝑇/𝑚. Hence, the

fourth moment of Υ(𝑛)
𝑡 −Υ(𝑛)

𝑡0
is upper bounded by 3𝑐4

𝜂𝑇
2/𝑚2 and we obtain for all 𝑚 > 𝑇/𝜂

that

2 sup
𝑡∈𝜏𝑚

E

[000Υ(𝑛)
𝑡 − Υ(𝑛)

0

0004]1/4

≤
2 4√3𝑇2𝑐𝜂√

𝑚
= O

(
1
√
𝑚

)
, (48)

where the big-O-constant is independent of 𝑛.
To bound the first summand on the right hand side of (46) we recall the definition of

𝛾2, 𝑝 (𝜏, 𝑑) from [14]: A sequence T = (𝑇ℓ)ℓ≥0 of subsets 𝑇ℓ ⊂ 𝜏 are called admissible if their
cardinalities satisfy |𝑇0 | = 1 and |𝑇ℓ | ≤ 22ℓ for all ℓ ≥ 1. Then, with 𝑝 = 4, we have

𝛾2,4(𝜏, 𝑑) := inf
T

sup
𝑡∈𝜏

∞∑
ℓ=2

2ℓ/2𝑑 (𝑡, 𝑇ℓ),

where the infimum is taken over all admissible sequences T . With 𝜏 = 𝜏𝑚 = [0, 𝑇/𝑚] and
𝑑 = 𝑑𝑛 we simply define 𝑇0 := {0} and

𝑇ℓ := {( 𝑗𝑇)/(𝑚22ℓ ) : 𝑗 = 1 . . . , 22ℓ }, ℓ ≥ 1.

This yields an admissible sequence (𝑇ℓ)ℓ≥0. For all 𝑡 ∈ 𝜏𝑚 and ℓ ≥ 1 there exists 𝑠 ∈ 𝑇ℓ with
|𝑠 − 𝑡 | ≤ 𝑇/(𝑚22ℓ ). For all 𝑚 sufficiently large so that 𝑇/𝑚 ≤ 𝜂 we obtain from Proposition
C.2 that

𝑑𝑛 (𝑡, 𝑇ℓ) ≤ 𝑑𝑛 (𝑡, 𝑠) ≤ 𝑐𝜂 (𝑇/(𝑚22ℓ ))1/2 = 𝑐𝜂
√
𝑇/𝑚2−2ℓ−1

.

Hence, for all 𝑚 ≥ 𝑇/𝜂 we have

𝛾2,4(𝜏𝑚, 𝑑𝑛) ≤
∞∑
ℓ=2

2ℓ/2𝑐𝜂
√
𝑇/𝑚2−2ℓ−1

≤
𝑐𝜂

√
𝑇

√
𝑚

∞∑
ℓ=2

2−2ℓ−1+ℓ/2 = O
(

1
√
𝑚

)
, (49)

since the latter series is convergent. Note, that the big-O-bound is independent of 𝑛. Combin-
ing (46), (48) and (49) implies (47) and hence condition (ii) in Theorem C.3. �

Appendix D: Univariate change point detection

Here we shortly discuss problems and restrictions of the univariate moving window approach.
As described there, we derive the process (𝐷𝜗

𝑖 )𝑖∈{ℎ,...,𝑇−ℎ} of differences of estimated direc-
tions according to the following equation

𝐷𝜗
𝑖 := 𝐷𝑖 (�̂�ℓ (𝑖), �̂�𝑟 (𝑖)) := atan2(sin(�̂�𝑟 (𝑖) − �̂�ℓ (𝑖)), cos(�̂�𝑟 (𝑖) − �̂�ℓ (𝑖))),

and use its maximum, 𝑀 , as a test statistic for the null hypothesis of no change in direction.
In order to derive a rejection threshold for the statistical test, we need the distribution of 𝑀
under the null hypothesis. As it is not easily accessible formally, we simulate the distribution
of 𝑀 by assuming that all other parameters, particularly 𝑟, are constant. The empirical (1−𝛼)-
quantile of the resulting simulations then serves as rejection threshold, 𝑄.



Bivariate change detection in direction and speed 2159

Fig 9. Empirical significance level (A) and test power (B) for the LW and RW for 𝛼 = 5%. 1000 simulations were
performed with ℎ = 30, 𝜗 = 35/180 · 𝜋 and 𝑇 = 400, and 𝜎 = 0.5 for the testpower. (C) Distribution of increments
before (blue) and after (green) the change point. Estimated expectation from mixture of increments (orange) and
the resulting estimated direction and step length. Local and global estimators of the model parameters step length
𝑟 (D) and 𝜎2 (E) with window size ℎ = 30 from a track with one change in direction. (F) Estimation of the step
length 𝑟 from data without change points. Mean of estimated step length (green line) and true step length (orange
line). 1000 Simulations per step length 𝑟, 𝜎2 = 1, ℎ = 30. (G) Track from the Linear Walk model with one change
point 𝑐𝑝𝜗 in direction and one change point 𝑐𝑝𝑟 in step length. (H) Process of |𝐷𝑡 | of the absolute value of
differences of directions (black) derived from the track in G, threshold 𝑄𝑔𝑙𝑜𝑏 derived from global estimation of
step length (red). Thresholds 𝑄𝑟1 and 𝑄𝑟2 derived from estimations of step lengths on either side of the change
point in step length (green). Threshold 𝑄𝑟1,𝑟2 derived from tracks with the change point in step length (blue).

Figure 9 A shows that for the used parameter sets, the chosen significance level can be kept
in this setting both for the RW and the LW already for a window size of ℎ = 30. However, one
should note that for small sample sizes, the step length 𝑟 may tend to be overestimated. To
see this, consider first the degenerate case with 𝑟 = 0 in which the distribution of increments
is centered at the origin. The distribution of �̂� is then also normal and centered at the origin.
Thus, the true expectation of 𝑟 should be zero, but by construction, all estimates 𝑟 are positive,
such that 𝑟 must necessarily be overestimated. If the distribution of �̂� is shifted only slightly
away from zero, this effect will remain. It is therefore necessary to assume a sufficiently large
value of 𝑟

𝜎 (Figure 9 F).
If we apply the global parameter estimates in cases with change points in the model pa-

rameters, we observe a certain bias both in the RW and in the LW case. If a track contains one
change point in direction, the increments between successive points are assumed to originate
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from two different normal distributions with the same variance 𝜎2 and the same distance 𝑟
to the origin, but with different directions from the origin (Figure 9 C). In that case, the step
length 𝑟 will tend to be underestimated (purple line in panel E), and the standard deviation 𝜎
will tend to be overestimated (purple line in panel D). We therefore propose to apply a mov-
ing window approach and to use the median of the resulting process as a parameter estimate
(red dashed line in Figure 9 D and E).

In our simulations with change points, the test power increased with the difference in
directions and with increasing step length. In addition, it was higher for the LW than for the
RW (Figure 9 B) for the same parameters, which is due to a higher variability in the RW.

This indicates that the proposed statistical tests are suitable for detecting changes in the
movement direction under the assumption of constant step length. However, one should note
that additional change points in 𝑟 as illustrated in Figure 9 G will affect the rejection threshold
𝑄, because 𝑄 depends on 𝑟 (Figure 9 H). Smaller values of 𝑟 yield a higher variability of |𝐷 |
and thus, a higher 𝑄 (green lines in Figure 9 H). Ignoring potential changes in 𝑟, one will
obtain a false global estimate of 𝑟, such that the resulting global rejection threshold 𝑄𝑔𝑙𝑜𝑏
(red line in Figure 9 H) cannot adhere to the chosen significance level.

Appendix E: Strong consistency of �̂�2

To prove strong consistency of �̂�2 we use the following variation of the SLLN in a setting of
dependent, weighted sums.
Proposition E.1 (SLLN with weights). Let 𝑋 𝑗𝑘 be centred, i.e., E[𝑋 𝑗𝑘] = 0, but not nec-
essarily independent or identically distributed random variables with sup 𝑗≥1 E[𝑋6

𝑗𝑘] < ∞.
Let

𝑆𝑛 :=
𝑚𝑛∑
𝑗 ,𝑘=1

𝑣(𝑛, 𝑗 , 𝑘)𝑋 𝑗𝑘 ,

where𝑚𝑛 ∈ N and 𝑣(𝑛, 𝑗 , 𝑘) ∈ R are weights. Then lim
𝑛→∞

𝑆𝑛 = 0 almost surely if the following

term is in O(𝑛−2)
𝑚𝑛∑
𝑖, 𝑗=1

𝑣(𝑛, 𝑖, 𝑗)4 +
𝑚𝑛∑

𝑖, 𝑗 ,𝑘,𝑙=1
(𝑖, 𝑗 )≠(𝑘,𝑙)

𝑣(𝑛, 𝑖, 𝑗)3𝑣(𝑛, 𝑘, 𝑙)

+
𝑚𝑛∑

𝑖, 𝑗 ,𝑘,𝑙=1
(𝑖, 𝑗 )≠(𝑘,𝑙)

𝑣(𝑛, 𝑖, 𝑗)2𝑣(𝑛, 𝑘, 𝑙)2+

+
𝑚𝑛∑

𝑖, 𝑗 ,𝑘,𝑙,𝑜, 𝑝=1
(𝑖, 𝑗 )≠(𝑘,𝑙)
(𝑖, 𝑗 )≠(𝑜,𝑝)
(𝑜,𝑝)≠(𝑘,𝑙)

𝑣(𝑛, 𝑖, 𝑗)𝑣(𝑛, 𝑘, 𝑙)𝑣(𝑛, 𝑜, 𝑝)2

+
𝑚𝑛∑

𝑖, 𝑗 ,𝑘,𝑙,𝑜, 𝑝,𝑟 ,𝑠=1;
(𝑖, 𝑗 ) , (𝑘,𝑙) ,
(𝑜,𝑝) , (𝑟 ,𝑠)

pairwise different

𝑣(𝑛, 𝑖, 𝑗)𝑣(𝑛, 𝑘, 𝑙)𝑣(𝑛, 𝑜, 𝑝)𝑣(𝑛, 𝑟, 𝑠). (50)
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Proposition E.1 can be proven by a standard argument based on the Lemma of Borel–
Cantelli and Markov’s inequality.

Before we show strong consistency of �̂�2, we rewrite the estimator. For convenience, these
calculations use the time discrete MLE for 𝜎2 as given in Proposition 2.3. We first refer to a
simpler notation of �̂�2 given in (35) in Appendix A.2, i.e.,

(2ℎ − 4)�̂�2 =
ℎ∑
𝑗=1

����𝜎 (
𝑍𝑖+ 𝑗 − �̄�

)
+ ( �̂� − 𝜇)

(
ℎ + 1

2
− 𝑗

)����2

=
ℎ∑
𝑗=1

∑
𝑑=1,2

(
𝜎

(
𝑍 (𝑑)
𝑖+ 𝑗 − �̄�

(𝑑)
)
+

(
�̂� (𝑑) − 𝜇 (𝑑)

) (
ℎ + 1

2
− 𝑗

))2

.

For the second summand in the square we find(
ˆ𝜇 (𝑑) − 𝜇 (𝑑)

) (
ℎ + 1

2
− 𝑗

)
(51)

=

(
6

ℎ3 − ℎ

ℎ∑
𝑘=1

𝑤𝜇 (ℎ, 𝑘)
(
(𝑖 + 𝑘)𝜇 (𝑑) + 𝑏 (𝑑) + 𝜎𝑍 (𝑑)

𝑖+𝑘

)
− 𝜇 (𝑑)

) (
−1

2
𝑤𝜇 (ℎ, 𝑗)

)
,

where 𝑤𝜇 (ℎ, 𝑗) := 2 𝑗 − ℎ− 1. Using that
∑ℎ
𝑘=1 𝑤𝜇 (ℎ, 𝑘) (𝑖 + 𝑘) = (ℎ3 − ℎ)/6 and the notation

�̂� (𝑑) (𝑍) = 6
ℎ3 − ℎ

ℎ∑
𝑘=1

(2𝑘 − ℎ − 1)𝑍 (𝑑)
𝑖+𝑘 ,

the term in (51) equals −1
2𝑤𝜇 (ℎ, 𝑗)𝜎�̂�

(𝑑) (𝑍). Thus, we can rewrite �̂�2 as

�̂�2(𝑖, ℎ) = 𝜎2

2ℎ − 4

ℎ∑
𝑗=1

∑
𝑑=1,2

(
𝑍 (𝑑)
𝑖+ 𝑗 − �̄�

(𝑑) − 1
2
𝑤𝜇 (ℎ, 𝑗) · �̂� (𝑑) (𝑍)

)2

. (52)

Now we show the strong consistency of �̂�2(𝑛𝑡, 𝑛𝜂), i.e., �̂�2(𝑛𝑡, 𝑛𝜂) − 𝜎2 −−−−→
𝑛→∞

0 almost
surely, as stated in Proposition 3.1, returning to the time continuous setting but making use
of formula (52). We start by rewriting �̂�2 into a sum of six summands for each dimension 𝑑.

�̂�2(𝑛𝑡, 𝑛𝜂)

=
𝜎2

2𝑛𝜂 − 4

𝑛𝜂∑
𝑗=1

∑
𝑑=1,2

(
𝑍 (𝑑)
�𝑛𝑡 �+ 𝑗 − �̄�

(𝑑) − 1
2
𝑤𝜇 (𝑛𝜂, 𝑗) · �̂� (𝑑) (𝑍)

)2

=
∑
𝑑=1,2

𝜎2

2𝑛𝜂 − 4

𝑛𝜂∑
𝑗=1

(
𝑍 (𝑑)2

�𝑛𝑡 �+ 𝑗 + �̄�
(𝑑)2 +

(
1
2
𝑤𝜇 (𝑛𝜂, 𝑗) · �̂� (𝑑) (𝑍)

)2

+ 2𝑍 (𝑑)
�𝑛𝑡 �+ 𝑗

(
−�̄� (𝑑)

)
+ 2𝑍 (𝑑)

�𝑛𝑡 �+ 𝑗

(
−1

2
𝑤𝜇 (𝑛𝜂, 𝑗) · �̂� (𝑑) (𝑍)

)
+ 2

(
−�̄� (𝑑)

) (
−1

2
𝑤𝜇 (𝑛𝜂, 𝑗) · �̂� (𝑑) (𝑍)

))
=

∑
𝑑=1,2

𝜎2

2𝑛𝜂 − 4

𝑛𝜂∑
𝑗=1

(
𝑍 (𝑑)2

�𝑛𝑡 �+ 𝑗 + �̄�
(𝑑)2 + 1

4
𝑤𝜇 (𝑛𝜂, 𝑗)2 �̂� (𝑑) (𝑍)2
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− 2𝑍 (𝑑)
�𝑛𝑡 �+ 𝑗 �̄�

(𝑑) − 𝑤𝜇 (𝑛𝜂, 𝑗)𝑍 (𝑑)
�𝑛𝑡 �+ 𝑗 �̂�

(𝑑) (𝑍) + 𝑤𝜇 (𝑛𝜂, 𝑗) �̄� (𝑑) �̂� (𝑑) (𝑍)
)

This therefore yields the following six summands (dropping dimension 𝑑 in the notation of
the 𝑆𝑖)

�̂�2(𝑛𝑡, 𝑛𝜂) =
∑
𝑑=1,2

(𝑆1 + 𝑆2 + 𝑆3 − 𝑆4 − 𝑆5 + 𝑆6) ,

where

𝑆1 =
𝑛𝜂∑
𝑗=1

𝜎2

2𝑛𝜂 − 4
𝑍 (𝑑)2

�𝑛𝑡 �+ 𝑗 , 𝑆2 =
𝑛𝜂∑
𝑗=1

𝜎2

2𝑛𝜂 − 4
�̄� (𝑑)2

,

𝑆3 =
𝑛𝜂∑
𝑗=1

𝜎2

2𝑛𝜂 − 4
1
4
𝑤𝜇 (𝑛𝜂, 𝑗)2 �̂� (𝑑) (𝑍)2, 𝑆4 =

𝑛𝜂∑
𝑗=1

𝜎2

2𝑛𝜂 − 4
2𝑍 (𝑑)

�𝑛𝑡 �+ 𝑗 �̄�
(𝑑) ,

𝑆5 =
𝑛𝜂∑
𝑗=1

𝜎2

2𝑛𝜂 − 4
𝑤𝜇 (𝑛𝜂, 𝑗)𝑍 (𝑑)

�𝑛𝑡 �+ 𝑗 �̂�
(𝑑) (𝑍),

and

𝑆6 =
𝑛𝜂∑
𝑗=1

𝜎2

2𝑛𝜂 − 4
𝑤𝜇 (𝑛𝜂, 𝑗) �̄� (𝑑) �̂� (𝑑) (𝑍).

Since the summands in the two dimensions 𝑑 = 1, 2 are independent, we focus on one dimen-
sion. As �̂�2(𝑛𝑡, 𝑛𝜂) is unbiased we can split the expectation 𝜎2 into the expectations of each
of the summands. We show that each summand in the brackets of the latter display centred
with its expectation converges to 0 almost surely.
For 𝑆1 we have

𝑆1 − E[𝑆1] =
𝑛𝜂∑
𝑗=1

𝜎2

2𝑛𝜂 − 4

(
𝑍 (𝑑)2

�𝑛𝑡 �+ 𝑗 − E

[
𝑍 (𝑑)2

�𝑛𝑡 �+ 𝑗

] )

=
𝑛𝜂∑
𝑗=1

𝑣(𝑛, 𝑗)

	




�
𝑍 (𝑑)2

�𝑛𝑡 �+ 𝑗 − E

[
𝑍 (𝑑)2

�𝑛𝑡 �+ 𝑗

]
︸���������������������︷︷���������������������︸

E[∗]=0

��
,

where we here define 𝑣(𝑛, 𝑗) := 𝜎2

2𝑛𝜂−4 . According to Proposition B.1, we need to verify∑𝑚𝑛

𝑗=1 𝑣(𝑛, 𝑗)
2=O(𝑛−1). This holds because

𝑛𝜂∑
𝑗=1

𝑣(𝑛, 𝑗)2 =
𝑛𝜂∑
𝑗=1

(
𝜎2

2𝑛𝜂 − 4

)2

= 𝜎4 𝑛𝜂

(2𝑛𝜂 − 4)2=O(𝑛−1).

For 𝑆2 we use E�̄� (𝑑)2
= 1/(𝑛𝜂) and get

𝑆2 − E[𝑆2] =
𝑛𝜂𝜎2

2𝑛𝜂 − 4

(
�̄� (𝑑)2 − E�̄� (𝑑)2

)
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=
𝑛𝜂𝜎2

2𝑛𝜂 − 4
�̄� (𝑑)2 − 𝜎2

2𝑛𝜂 − 4
−−−−→
𝑛→∞

0 a.s.

For 𝑆3 we first rewrite 𝑆3 as

𝑆3 =
𝑛𝜂∑
𝑗=1

𝜎2

2𝑛𝜂 − 4
1
4
𝑤𝜇 (𝑛𝜂, 𝑗)2

(
6

(𝑛𝜂)3 − 𝑛𝜂

𝑛𝜂∑
𝑘=1

𝑤𝜇 (𝑛𝜂, 𝑘)𝑍 (𝑑)
�𝑛𝑡 �+𝑘

)2

=
𝑛𝜂∑
𝑘,𝑙=1

𝑣(𝑛, 𝑘, 𝑙)︸����︷︷����︸
in of Proposition B.1

𝑍 (𝑑)
�𝑛𝑡 �+𝑘𝑍

(𝑑)
�𝑛𝑡 �+𝑙,

with

𝑣(𝑛, 𝑘, 𝑙) :=
62𝜎2

4(2𝑛𝜂 − 4) ((𝑛𝜂)3 − 𝑛𝜂)2
	
�
𝑛𝜂∑
𝑗=1

𝑤𝜇 (𝑛𝜂, 𝑗)2��𝑤𝜇 (𝑛𝜂, 𝑘)𝑤𝜇 (𝑛𝜂, 𝑙)
such that we have

𝑆3 − E[𝑆3] =
𝑛𝜂∑
𝑘,𝑙=1

𝑣(𝑛, 𝑘, 𝑙)
(
𝑍 (𝑑)
�𝑛𝑡 �+𝑘𝑍

(𝑑)
�𝑛𝑡 �+𝑙 − E

[
𝑍 (𝑑)
�𝑛𝑡 �+𝑘𝑍

(𝑑)
�𝑛𝑡 �+𝑙

] )
.

To show almost sure convergence to 0 we need to verify that the term in (50) is in O(𝑛−2).
We thus note that for the present definition of 𝑣(𝑛, 𝑘, 𝑙), the term in (50) corresponds to the
following term

68𝜎8

44(2𝑛𝜂 − 4)4((𝑛𝜂)3 − 𝑛𝜂)8

(
(𝑛𝜂)3 − 𝑛𝜂

3

)4

︸���������������������������������������������������︷︷���������������������������������������������������︸
=O(𝑛−28𝑛12 )=O(𝑛−16 )

(𝑆31 + 𝑆32 + 𝑆33 + 𝑆34 + 𝑆35)

with

𝑆31 =
𝑛𝜂∑
𝑗 ,𝑘=1

𝑤𝜇 (𝑛𝜂, 𝑗)4𝑤𝜇 (𝑛𝜂, 𝑘)4 = (𝑛𝜂)2 · O(𝑛8) = O(𝑛10),

𝑆32 =
𝑛𝜂∑

𝑖, 𝑗 ,𝑘,𝑙=1
(𝑖, 𝑗 )≠(𝑘,𝑙)

𝑤𝜇 (𝑛𝜂, 𝑖)2𝑤𝜇 (𝑛𝜂, 𝑗)2𝑤𝜇 (𝑛𝜂, 𝑘)2𝑤𝜇 (𝑛𝜂, 𝑙)2

= (𝑛𝜂)4 · O(𝑛8) = O(𝑛12),

𝑆33 =
𝑛𝜂∑

𝑖, 𝑗 ,𝑘,𝑙=1
(𝑖, 𝑗 )≠(𝑘,𝑙)

𝑤𝜇 (𝑛𝜂, 𝑖)3𝑤𝜇 (𝑛𝜂, 𝑗)3𝑤𝜇 (𝑛𝜂, 𝑘)𝑤𝜇 (𝑛𝜂, 𝑙)

= (𝑛𝜂)4 · O(𝑛8) = O(𝑛12),

𝑆34 =
𝑛𝜂∑

𝑖, 𝑗 ,𝑘,𝑙,𝑜, 𝑝=1
(𝑖, 𝑗 )≠(𝑘,𝑙)
(𝑖, 𝑗 )≠(𝑜,𝑝)
(𝑜,𝑝)≠(𝑘,𝑙)

𝑤𝜇 (𝑛𝜂, 𝑖)𝑤𝜇 (𝑛𝜂, 𝑗)𝑤𝜇 (𝑛𝜂, 𝑘)𝑤𝜇 (𝑛𝜂, 𝑙)𝑤𝜇 (𝑛𝜂, 𝑜)2𝑤𝜇 (𝑛𝜂, 𝑝)2
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= (𝑛𝜂)6 · O(𝑛8) = O(𝑛14),

and

𝑆35 =
𝑛𝜂∑

𝑖, 𝑗 ,𝑘,𝑙,𝑜, 𝑝,𝑟 ,𝑠=1;
(𝑖, 𝑗 ) , (𝑘,𝑙) ,
(𝑜,𝑝) , (𝑟 ,𝑠)

pairwise different

∏
𝑞=𝑖, 𝑗 ,𝑘,𝑙,𝑜, 𝑝,𝑟 ,𝑠

𝑤𝜇 (𝑛𝜂, 𝑞)

The sums 𝑆31, . . . , 𝑆34 are easily upper bounded and seen to be in O(𝑛14). The sum 𝑆35 re-
quires an exact, tedious calculation. We used the Python module Sympy and obtained O(𝑛12).

For 𝑆4 we use E[𝑍 (𝑑)
�𝑛𝑡 �+𝑖 �̄�] = 1/(𝑛𝜂) and get

𝑆4 − E[𝑆4] =
𝑛𝜂∑
𝑗=1

𝜎2

𝑛𝜂 − 2

(
𝑍 (𝑑)
�𝑛𝑡 �+ 𝑗 �̄�

(𝑑) − 1
𝑛𝜂

)
−−−−→
𝑛→∞

0 (53)

by the conventional SLLN.
For 𝑆5 we again first rewrite 𝑆5 as

𝑆5 =
𝑛𝜂∑
𝑖=1

𝜎2

2𝑛𝜂 − 4
𝑤𝜇 (𝑛𝜂, 𝑖)𝑍 (𝑑)

�𝑛𝑡 �+𝑖
	
� 6
(𝑛𝜂)3 − 𝑛𝜂

𝑛𝜂∑
𝑗=1

𝑤𝜇 (𝑛𝜂, 𝑗)𝑍 (𝑑)
�𝑛𝑡 �+ 𝑗

�� ,
which yields

𝑆5 − E[𝑆5] =
𝑛𝜂∑
𝑖, 𝑗=1

𝑣(𝑛, 𝑖, 𝑗)
(
𝑍 (𝑑)
�𝑛𝑡 �+𝑖𝑍

(𝑑)
�𝑛𝑡 �+ 𝑗 − E

[
𝑍 (𝑑)
�𝑛𝑡 �+𝑖𝑍

(𝑑)
�𝑛𝑡 �+ 𝑗

] )
where we define

𝑣(𝑛, 𝑖, 𝑗) :=
6𝜎2

(2𝑛𝜂 − 4) ((𝑛𝜂)3 − 𝑛𝜂)
𝑤𝜇 (𝑛𝜂, 𝑖)𝑤𝜇 (𝑛𝜂, 𝑗).

Now we are in the setting of the SLLN as in Proposition E.1 because the summands are not
necessarily independent. Therefore we need to verify that the term in (50) is in O(𝑛−2). Note
that we have 𝑆31 + · · · + 𝑆35 = O(𝑛14) and find that the term in (50) in the current setting can
be written as

64𝜎8

(2𝑛𝜂 − 4)4((𝑛𝜂)3 − 𝑛𝜂)4 · (𝑆31 + · · · + 𝑆35)=O(𝑛−2).

For 𝑆6 we first observe that

E

[
�̄� (𝑑) �̂� (𝑑) (𝑍)

]
=

6
𝑛𝜂((𝑛𝜂)3 − 𝑛𝜂)

𝑛𝜂∑
𝑘=1

𝑤𝜇 (𝑛𝜂, 𝑘) E
[
𝑍 (𝑑)2

�𝑛𝑡 �+𝑘

]
︸�������︷︷�������︸

=1

=
6

𝑛𝜂((𝑛𝜂)3 − 𝑛𝜂)

𝑛𝜂∑
𝑘=1

𝑤𝜇 (𝑛𝜂, 𝑘)︸�����������︷︷�����������︸
=0

= 0, (54)
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such that

𝑆6 − E[𝑆6] =
𝑛𝜂∑
𝑖=1

𝜎2

2𝑛𝜂 − 4
𝑤𝜇 (𝑛𝜂, 𝑖) �̄� (𝑑) �̂� (𝑑) (𝑍)

This term vanishes because
𝑛𝜂∑
𝑖=1

𝑤𝜇 (𝑛𝜂, 𝑖) = 0.

In total, each summand of �̂�2(𝑛𝑡, 𝑛𝜂) − 𝜎2 converges to 0 almost surely, which implies

�̂�2(𝑛𝑡, 𝑛𝜂) −−−−→
𝑛→∞

𝜎2 a.s.
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