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Abstract

We consider distributional recursions which appear in the study of random binary search trees
with monomials as toll functions. This extends classical parameters as the internal path length
in binary search trees. As our main results we derive asymptotic expansions for the moments of
the random variables under consideration as well as limit laws and properties of the densities of
the limit distributions. The analysis is based on the contraction method.
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1 Introduction

We consider a sequence (Xn) of random variables with distributions given by X0 = 0 and the
recursion

Xn
d= XbnUc +X∗bn(1−U)c + tn, n ≥ 1, (1)

with (Xn), (X∗n), U being independent, (X∗n) being distributed as (Xn), and U a uniform [0, 1]
distributed random variable. The symbol d= denotes equality of distributions. Throughout this work
we assume monomials tn = nα as toll functions with α ∈ R and α > 1.

For the special choice tn = n − 1 the Xn are distributed as the internal path length in random
binary search trees. By a well-known equivalence this is also the number of key comparisons needed
by Hoare’s sorting algorithm Quicksort to sort a list of n randomly permuted items.

In the context of random search trees it is a common phenomenon that different parameters of
the same tree satisfy distributional recursions of type (1) which only differ in the toll function tn.
Typically, the branching factor of the tree is reflected in the number of independent copies of the
parameter on the right side of the equation (here in (1) these are the two sequences (Xn) and (X∗n)),
the splitting procedure settles the random indices of these sequences, and the special parameter
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under consideration determines the toll function; see, e.g., Devroye [2] for a list of random search
trees fitting in this scheme.

The aim of this note is twofold. First we study the asymptotic behavior of the moments and
distributions of Xn for our toll functions nα. The investigation of (1) with non-standard toll functions
was recently started by Panholzer and Prodinger [6] who considered the harmonic toll function
tn = Hn :=

∑n
i=1 1/i. Their study was motivated by the occurrence of a logarithmic toll function

in Grabner and Prodinger [4]. It is our second intention to add a further example to the list of
applications due to the contraction method which is applied in our analysis.

The contraction method was introduced by Rösler [8] for the distributional analysis of the
Quicksort algorithm, i.e. our recursion (1) with tn = n − 1. This method was further devel-
oped independently in Rösler [9] and Rachev and Rüschendorf [7], and later on in Rösler [10]. A
survey of the method including the major applications is given in Rösler and Rüschendorf [11].

Characteristic for recursion (1) from the point of view of the contraction method is that mean
and standard deviation of Xn are of the same order of magnitude. As long as we make use of
the minimal L2-metric `2 this implies that only knowledge of the leading term in the expansion of
the mean is required in order to derive weak convergence for the scaled versions of Xn. This is in
contrast to the Quicksort case α = 1 where mean and standard deviation are of different orders
of magnitude and the knowledge of the second term in the expansion of the mean is necessary; see
[5] for a discussion of this problem in the context of the internal path length in random split trees.
Note that the limit distributions for the problems considered in this work are determined by a type
of fixed-point equation which has not so far appeared in other applications.

We proceed as follows: In the second section we derive the dominant term in the expansion of
the mean of Xn. The third section gives the limit law for (Xn) by the approach of the contraction
method. In the fourth section first order expansions for the variance and higher moments of Xn and
information on the Laplace transform as well as tail estimates are derived. In the last section it is
proved by arguments of Fill and Janson [3] that the limit distribution has a density which belongs
to the class of rapidly decreasing C∞ functions.

We denote by `2 the minimal L2-metric acting on the space of probability distributions with
finite second moment (see [1]). Convergence in the `2-metric is equivalent to weak convergence plus
convergence of the second moments. We write also `2(X,Y ) := `2(L(X), L(Y )) for random variables
X, Y with laws L(X), L(Y ).

2 Expectations

In our subsequent distributional analysis it turns out that the knowledge of the dominant term in
the expansion of the mean is sufficient in order to obtain a limit law for (Xn). This leading term can
be explored by well-known elementary methods. We denote an := EXn. The random indices in (1)
are uniformly distributed on {0, . . . , n− 1}. Thus, (1) implies

an = nα +
2
n

n−1∑
i=0

ai, n ≥ 1,

with initializing value a0 = 0. This implies for n ≥ 1

nan = nα+1 + 2
n−1∑
i=0

ai and (n− 1)an−1 = (n− 1)α+1 + 2
n−2∑
i=0

ai.
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Subtracting these two relations and using the expansion

(n− 1)α+1 = nα+1 − (α+ 1)nα +O(nα−1) (2)

we deduce nan − (n+ 1)an−1 = (α+ 1)nα +O(nα−1). This implies

an =
n+ 1
n

an−1 + (α+ 1)nα−1 +O(nα−2)

=
n−1∑
i=0

n+ 1
n+ 1− i

(
(α+ 1)(n− i)α−1 +O((n− i)α−2)

)
(3)

= (n+ 1)

(
(α+ 1)

1
α− 1

nα−1 + o(nα−1) +O(nα−2)

)
=

α+ 1
α− 1

nα + o(nα).

For resolving the sum in (3) we used the estimate

n∑
i=1

iα−1

i+ 1
=

n∑
i=1

(
1− 1

i+ 1

)
iα−2

=

[
1
n

n∑
i=1

(
i

n

)α−2 ]
nα−1 +O(nα−2)

=
(

1
α− 1

+ o(1)
)
nα−1 +O(nα−2),

where the Riemann integral
∫ 1

0 x
α−2 dx is convergent due to our general assumption α > 1. Using

more terms in the expansion (2) may give a refined asymptotic expansion for an. For example, for
α = 2, 3, 4 we get the exact expressions

an = 3n2 − 6nHn + 10n− 6Hn for α = 2,
an = 2n3 − 6n2 + 14nHn − 23n+ 14Hn, for α = 3,

an =
5
3
n4 − 10

3
n3 +

40
3
n2 − 30nHn +

148
3
n− 30Hn, for α = 4.

Using an expansion of Hn leads to asymptotic expressions for the an.
For our further probabilistic analysis we will only need the first order growth of (an):

Lemma 2.1 The mean of the sequence (Xn) given in (1) with tn = nα, α > 1, satisfies

EXn = an ∼
α+ 1
α− 1

nα as n→∞. (4)

3 Limit Laws

We will show later in Theorem 4.2 that the variance Var Xn admits an expansion

Var Xn ∼ vn2α,
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with some constant v > 0 depending on α. Therefore mean and standard deviation are of the same
order of magnitude. Thus, in order to derive a limit law for Xn we could scale by

Yn :=
Xn

nα
or Zn :=

Xn − EXn

nα
(5)

and expect that weak limits Y , Z of (Yn) and (Zn) respectively satisfy EY = (α + 1)/(α − 1) and
EZ = 0. For technical reasons we will use both sequences (Zn), (Yn) in our analysis. Our original
recursion (1) modifies for the scaled quantities to

Zn
d=

(
bnUc
n

)α
ZbnUc +

(
bn(1− U)c

n

)α
Z∗bn(1−U)c

+
1
nα

(
abnUc + abn(1−U)c + nα − an

)
(6)

=

(
bnUc
n

)α
ZbnUc +

(
bn(1− U)c

n

)α
Z∗bn(1−U)c

+
α+ 1
α− 1

(
Uα + (1− U)α

)
− 2
α− 1

+ o(1), (7)

where the expansion (4) is used and again (Zn), (Z∗n), U are independent, (Z∗n) is distributed as
(Zn), and U is uniform [0, 1] distributed. The o(1) depends on randomness but the convergence is
uniform. From this modified recursion one can guess a limiting form by looking for stabilization for
n→∞. This suggests that a limit Z of (Zn) should satisfy the fixed-point equation

Z
d= UαZ + (1− U)αZ∗ +

α+ 1
α− 1

(
Uα + (1− U)α

)
− 2
α− 1

, (8)

with Z, Z∗, U being independent, Z, Z∗ identically distributed and U uniformly on [0, 1] distributed.
The translated version Y = Z + (α+ 1)/(α− 1) then solves the simpler fixed-point equation

Y
d= UαY + (1− U)αY ∗ + 1, (9)

with relations analogous to (8). According to the idea of the contraction method the limits Z of
(Zn) and Y of (Yn) should be characterized as the unique solutions of (8), (9) respectively subject
to the constraints EZ = 0 and Var Z <∞, and — for the translated case — EY = (α+ 1)/(α− 1)
and Var Y <∞. For the proof of the uniqueness of such solutions and the weak convergence we can
appeal to general theorems ([9, 10]), due to the standard form of our recursion.

Theorem 3.1 Let (Xn) be given by (1) with tn = nα, α > 1. The fixed-point equation (8) has a
unique distributional solution Z subject to EZ = 0 and Var Z <∞ and it holds the limit law

`2

(
Xn − EXn

nα
, Z

)
→ 0 as n→∞.

Proof: For the uniqueness of the fixed-point we apply Theorem 3 in [9]. The T1, T2, C occurring
there are given here by

T1 := Uα, T2 := (1− U)α, C :=
α+ 1
α− 1

(
Uα + (1− U)α

)
− 2
α− 1

.
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It is

E

2∑
i=1

T 2
i =

2
2α+ 1

< 1, EC2 <∞, and

EC =
α+ 1
α− 1

(
1

α+ 1
+

1
α+ 1

)
− 2
α− 1

= 0.

Thus the conditions of Rösler’s theorem are satisfied and it follows that (8) has a unique distributional
fixed-point in the space of centered probability distributions with finite second moment.

For the `2-convergence we apply Theorem 3 in [10]. The Zn1 , Zn2 , Tn1 , Tn2 , Cn occurring there are
given here by

Zn1 = bnUc, Zn2 = bn(1− U)c, Tn1 =

(
bnUc
n

)α
, and

Tn2 =

(
bn(1− U)c

n

)α
, Cn =

1
nα

(
abnUc + abn(1−U)c + nα − an

)
. (10)

We check the conditions of the theorem: That ECn = 0 holds follows by taking expectations in (6)
and noting that the Zi, Z∗i there are centered. For any n1 ∈ N we have

2∑
i=1

E

[
1{Zni ≤n1}(T

n
i )2
]

=
n1∑
j=0

(
P(bnUc = j) + P(bn(1− U)c = j)

)( j
n

)2α

≤ 2P
(
U <

n1 + 1
n

)
→ 0 as n→∞,

which is condition (21) in the cited theorem. Furthermore, it holds

`22(L(Cn, Tn), L(C, T )) ≤ E (Cn − C)2 + E (Tn1 − T1)2 + E (Tn2 − T2)2

≤ E [o(1)2] + 2
(α
n

)2
→ 0 as n→∞,

where o(1) is the uniformly converging o(1) in (7). Now, Rösler’s theorem implies convergence in the
`2-metric.

4 Higher moments and Laplace transforms

Similarly to Theorem 3.1, `2-convergence of (Yn) to Y holds, where Y is the unique distributional
fixed-point in (9) subject to EY = (α + 1)/(α − 1) and Var Y < ∞. Convergence in the `2-metric
induces convergence of the second moments. This implies

Var Yn → Var Y and
Var Xn = Var(nαYn) ∼ Var(Y )n2α.
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The leading constant Var Y can be obtained form the fixed-point equation (9). We can also pump
higher order moments of Y from the fixed-point equation. This implies asymptotic expansions for
the moments of Xn as soon as we know that convergence of the moments of higher order of (Yn)
holds. This can be shown by analyzing the Laplace transforms of Zn and Z. For this we apply the
tools developed in Lemma 4.1 and Theorem 4.2 in [8].

Theorem 4.1 The scaled sequence (Zn) given in (5) and the fixed-point Z of Theorem 3.1 satisfy
for all λ ∈ R

E exp(λZn)→ E exp(λZ) <∞ as n→∞.

Proof: In place of the random variable Un in the proof of Lemma 4.1 in [8] we use

Vn :=

(
bnUc
n

)2α

+

(
bn(1− U)c

n

)2α

− 1.

Then with Cn given by (10) it holds

∀ n ∈ N : −1 ≤ Vn < 0, (11)
sup
n∈N

EVn < 0, (12)

sup
n∈N
‖Cn‖∞ <∞. (13)

The proof of (12) follows from EVn < 0 for all n ∈ N and from the convergence of the means,
EVn → E [U2α + (1−U)2α − 1] = 2/(2α+ 1)− 1 < 0. Relation (13) follows from the representation
of Cn given in (7). Now, using (11)-(13) we can conclude as in Lemma 4.1 and Theorem 4.2 in [8]
which leads to our assertion.

The convergence of the Laplace transform implies convergence of moments of arbitrary order.
We can also deduce tail estimates from this convergence. Obviously, we do only have a right tail.
Using Markov’s inequality and EXn = (α+ 1)/(α− 1)nα + dn with dn = o(nα) we derive

P(Xn ≥ bn)

= P

(
exp

(
λ
Xn − EXn

nα

)
≥ exp

(
λ

(
bn
nα
− α+ 1
α− 1

+
dn
nα

)))

≤ E exp(λZn) exp

(
−λ

(
bn
nα
− α+ 1
α− 1

+
dn
nα

))

≤ cα,λ exp
(
−λ bn

nα

)
for all positive sequences (bn) with a constant cα,λ > 0. Now, we give the first order asymptotic
expansion for the higher moments of Xn:

Theorem 4.2 Let (Xn) be given by the recursion (1) with tn = nα, α > 1. Then for all k ≥ 0 it
holds

EXk
n ∼ µknkα,
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with µ0 = 1, µ1 = (α+ 1)/(α− 1), and

µk =
kα+ 1
kα− 1

∑
r+s+t=k
r,s<k

(
k

r, s, t

)
B(αr + 1, αs+ 1)µrµs, k ≥ 2,

where B( · , · ) denotes the Eulerian beta-integral. In particular the variance of Xn satisfies

Var Xn ∼
α(α+ 1)2B(α, α) + 2(α2 − 2α− 1)

(2α− 1)(α− 1)2
n2α.

Proof: The convergence of arbitrary moments of Yn implies

EXk
n = E

[
(nαYn)k

]
= EY k

n n
kα ∼ EY knkα,

thus our expansion holds for µk = EY k. This yields the values µ0 = 1, µ1 = (α+ 1)/(α−1). Higher
moments of Y can be derived straightforwardly from the fixed-point equation (9). By the binomial
formula it is (the summation indices r, s, t being nonnegative integers)

µk = EY k = E

∑
r+s+t=k

(
k

r, s, t

)
U rα(1− U)sαY r(Y ∗)s

=
∑

r+s+t=k

(
k

r, s, t

)
B(rα+ 1, sα+ 1)µrµs

=
2

kα+ 1
µk +

∑
r+s+t=k
r,s<k

(
k

r, s, t

)
B(rα+ 1, sα+ 1)µrµs.

Resolving for µk leads to the recursion given in the theorem. The formula for the variance follows
from Var Y = µ2 − ((α+ 1)/(α− 1))2.

5 Densities

In this section we provide information on the densities of the limit distributions following an ap-
proach of Fill and Janson [3] for the analysis of the Quicksort limit distribution. Fill and Janson
analyze decay properties of the Fourier transform of a distributional fixed-point in order to prove
the existence, differentiability properties, and bounds of a density and its derivatives. This analysis
can be carried over to the family of distributions Y given by the fixed-point equation (9). The pure
existence of a density could also be derived by the approach of Tan and Hadjicostas [12].

Let φ(t) := E exp(itY ) be the characteristic function of the fixed-point Y of (9). It is φ(t) =
exp(it(α + 1)/(α − 1))E exp(itZ) with Z the limit distribution of Theorem 3.1, thus |φ(t)| =
|E exp(itZ)|. The fixed-point equation (9) translates into

φ(t) = eit
∫ 1

0
φ(uαt)φ((1− u)αt) du.

This implies in particular

|φ(t)| ≤
∫ 1

0
|φ(uαt)||φ((1− u)αt)| du. (14)
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We define hy,y∗(u) := uαy + (1 − u)αy∗ + 1 for u ∈ [0, 1] and y, y∗ ∈ R. The fixed-point equation
(9) takes then the form Y = hY,Y ∗(U) in distribution. The approach of Fill and Janson consists
of deriving first a decay rate for the characteristic function of hy,y∗(U) for all y, y∗ ∈ R using a
method of van der Corput. This bound carries over to the characteristic function of Y by mixing
over the distribution of Y . Then the bound can be improved by successive substitution into (14).
This leads to integrability properties of the characteristic function which imply the existence and
further properties of a density of the fixed-point.

In contrast to the Quicksort limit distribution the fixed-point Y given by (9) does not have the
whole real line as support. Since Y is the limit of non-negative random variables we obtain Y ≥ 0
almost surely. Plugging this information into (9) we obtain Y ≥ 1 almost surely. By induction and
Uα + (1− U)α ≥ 21−α we increase this bound to Y ≥

∑n
j=0(21−α)j for all n ∈ N, thus

Y ≥ Lα :=
2α−1

2α−1 − 1

almost surely.

Lemma 5.1 It holds |φ(t)| ≤ (32/Bα)1/2|t|−1/2 for all t ∈ R with

Bα :=
{

23−αα(α− 1)Lα for 1 < α ≤ 2 or α ≥ 3,
α(α− 1)Lα for 2 < α < 3.

Proof: It is for u ∈ [0, 1]

h′′y,y∗(u) = α(α− 1)
[
uα−2y + (1− u)α−2y∗

]
,

thus for all y, y∗ ≥ Lα we obtain

h′′y,y∗(u) ≥ α(α− 1)Lα min
u∈[0,1]

{
uα−2 + (1− u)α−2

}
= Bα

for all u ∈ [0, 1]. Now, the argument of Lemma 2.3 in [3] implies for all y, y∗ ≥ Lα

|E exp(ithy,y∗(U))| ≤
(

32
Bα

)1/2

|t|−1/2, t ∈ R.

Note that the optimal choice of γ in the cited proof is here (2/Bα)1/2. Since L(Y ) has no mass on
(−∞, Lα) we obtain by conditioning

|φ(t)| =
∣∣∣∣ ∫ ∞

Lα

∫ ∞
Lα

E exp(ithy,y∗(U)) dσ(y)dσ(y∗)
∣∣∣∣ ≤ ( 32

Bα

)1/2

|t|−1/2

for all t ∈ R, where σ denotes the distribution of Y .

This bound can be improved to superpolynomial decay of φ by successive substitution into (14):

Theorem 5.2 For every real p ≥ 0 there is a smallest constant 0 < cp < ∞ such that the charac-
teristic function φ of Y satisfies

|φ(t)| ≤ cp|t|−p for all t ∈ R. (15)
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The constants cp satisfy c1/2 ≤ (32/Bα)1/2,

c2p ≤
Γ2(1− αp)
Γ(2− 2αp)

c2
p for 0 < p <

1
α
, (16)

cp+1/α ≤ 2αp+1 αp

αp− 1
c1+1/(αp)
p for p >

1
α
. (17)

Proof: First we show that if (15) holds for a 0 < p < 1/α with cp <∞ then (15) holds also with p
replaced by 2p, where the estimate (16) is valid: By (14) we obtain

|φ(t)| ≤
∫ 1

0
c2
p|uαt|−p|(1− u)αt|−p du

= c2
p|t|−2pB(1− αp, 1− αp)

=
Γ2(1− αp)
Γ(2− 2αp)

c2
p|t|−2p.

Next, if (15) holds for a p > 1/α with cp < ∞ then (15) holds as well with p replaced by p + 1/α
with (17) being valid: It is

|φ(t)| ≤
∫ 1

0
min

{
cp

(uαt)p
, 1
}

min
{

cp
((1− u)αt)p

, 1
}
du.

Adapting the estimates of Fill and Janson we consider first t ≥ 2αc1/p
p and split the domain of

integration into the region [c1/(αp)
p t1/α, 1− c1/(αp)

p t1/α] and its complement. This implies (cf. Lemma
2.6 in [3])

|φ(t)| ≤ 2αp+1 αp

αp− 1
c1+1/(αp)
p t−(p+1/α)

for t ≥ 2αc1/p
p . For 0 < t < 2αc1/p

p the right hand side is at least one and negative t are covered by
|φ(−t)| = |φ(t)|.

Now, the proof is completed as follows: The assertion (15) trivially holds for p = 0 with c0 = 1
and, by Lemma 5.1, for p = 1/2 with c1/2 estimated in the Theorem. If α > 2 then we iterate (17)

starting with p = 1/2 and obtain (15) for all p = 1/2+ j/α, j ∈ N. Since c1/q
q ≤ c1/p

p for all 0 < q ≤ p
this gives the assertion for all p ≥ 0. If 1 < α < 2 we apply (16) with p = 1/2 and obtain the
assertion with p = 1. Then we iterate (17) as in the case α > 2. Finally, for α = 2 the assertion is
true for p = 1/2 thus as well for p = 1/3. We apply (16) with p = 1/3 and obtain the assertion for
p = 2/3. Then we can iterate (17) starting with p = 2/3.

As discussed in [3] our Theorems 4.1 and 5.2 together imply that φ belongs to the class of
rapidly decreasing C∞ functions, which is preserved under Fourier transform. Therefore, we obtain
analogous decay properties for the density of the fixed-point Y and its translated version Z:

Theorem 5.3 The limit random variable Z of Theorem 3.1 has an infinitely differentiable density
function f . For all p ≥ 0 and integer k ≥ 0 there is a constant Cp,k such that its k-th derivative f (k)

satisfies

|f (k)(x)| ≤ Cp,k|x|−p for all x ∈ R.

Explicit bounds on the supremum norm of f (k) can as well be established using Theorem 5.2 and
a Fourier inversion formula.
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