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Abstract

The complexity of the algorithm Radix Selection is considered for
independent data generated from a Markov source. The complexity is
measured by the number of bucket operations required and studied as a
stochastic process indexed by the ranks; also the case of a uniformly cho-
sen rank is considered. The orders of mean and variance of the complexity
and limit theorems are derived. We find weak convergence of the appro-
priately normalized complexity towards a Gaussian process with explicit
mean and covariance functions (in the space D[0, 1] of càdlàg functions on
[0, 1] with the Skorokhod metric) for uniform data and the asymmetric
Bernoulli model. For uniformly chosen ranks and uniformly distributed
data the normalized complexity was known to be asymptotically normal.
For a general Markov source (excluding the uniform case) we find that this
complexity is less concentrated and admits a limit law with non-normal
limit distribution.
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1 Introduction

Radix Selection is an algorithm to select an order statistic from a set of data in
[0, 1] as follows. An integer b ≥ 2 is fixed. In the first step the unit interval is
decomposed into the intervals, also called buckets, [0, 1/b), [1/b, 2/b), . . . , [(b −
2)/b, (b − 1)/b) and [(b − 1)/b, 1] and the data are assigned to these buckets
according to their value. If the bucket containing the datum with rank to
be selected contains further data the algorithm is recursively applied by again
decomposing this bucket equidistantly and recursing. The algorithm stops once
the bucket containing the rank to be selected contains no other data. Assigning
a datum to a bucket is called a bucket operation and the algorithm’s complexity
is measured by the total number of bucket operations required.

Radix Selection is especially suitable when data are stored as expansions in
base (radix) b, the case b = 2 being the most common on the level of machine
data. For such expansions a bucket operation breaks down to access a digit (or
bit).

In this extended abstract we study the complexity of Radix Selection in a
probabilistic model. We assume that n data are modeled independently with
b-ary expansions generated from a Markov chain on the alphabet {0, . . . , b− 1}.
For the ranks to be selected we use two models. First, we consider the complexity
of a random rank uniformly distributed over {1, . . . , n} and independent from
the data. This is the model proposed and studied (for independent, uniformly
over [0, 1] distributed data) in Mahmoud, Flajolet, Jacquet and Régnier [15].
The complexities of all ranks are averaged in this model and, in accordance with
the literature, we call it the model of grand averages. Second, all possible ranks
are considered simultaneously. Hence, we study the stochastic process of the
complexities indexed by the ranks 1, . . . , n. We choose a scaling in time and
space which asymptotically gives access to the complexity to select quantiles
from the data, i.e., ranks of the size tn with t ∈ [0, 1]. We call this model for
the ranks the quantile-model.

The main results of this extended abstract are on the asymptotic orders
of mean and variance and limit laws for the complexity of Radix Selection for
our Markov source model both for grand averages and for the quantile-model.
For the quantile-model we find Gaussian limit processes for the uniform model
(defined below) for the data as well as for the asymmetric Bernoulli model
(defined below). For the general Markov source model with b = 2 we identify the
first asymptotic term of the mean complexity. For grand averages and uniform
data it was shown in Mahmoud et al. [15] that the normalized complexity is
asymptotically normal. We find that for Markov sources (with b = 2) other
than uniform the limit distribution is no longer normal and the complexity is
less concentrated. An explanation of this behavior is given at the end of section
3.2.

We present our analysis separately for uniform data in section 2 and for
Markov sources different from the uniformmodel in section 3, where the quantile-
model is discussed in section 3.1, the grand averages in section 3.2.

A general reference on bucket algorithms is Devroye [5]. A large body of
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probabilistic analysis of digital structures is based on methods from analytic
combinatorics, see Flajolet and Sedgewick [7], Knuth [13] and Szpankowski [18].
For an approach based on renewal theory see Janson [10] and the references given
there. Our Markov source model is a special case of the model of dynamical
sources, see Clément, Flajolet and Vallée [4].

We close this introduction defining the Markov source model explicitly, fix-
ing some standard notation and stating corresponding results for the related
Radix Sorting algorithm.

The Markov source model: We model data strings over the alphabet Σ =
{0, . . . , b − 1} with a fixed integer b ≥ 2 generated by a homogeneous Markov
chain. The data strings s = (si)i≥1 are also interpreted as b-ary expansions of
a real number s ∈ [0, 1] via the identification

s =

∞
∑

i=1

sib
−i.

Conversely, if to s ∈ [0, 1) a b-ary expansion s = (si)i≥1 is associated, to avoid
ambiguity, we chose the expansion such that we have si < b − 1 for infinitely
many i ∈ N. (For s = 1 we use the expansion where si = b − 1 for all i ∈ N.)
The most important case is b = 2 where the data are binary strings.

In general, a homogeneous Markov chain on Σ is given by its initial distribu-
tion µ =

∑b−1
ℓ=0 µℓδℓ on Σ and the transition matrix (pij)i,j∈Σ. Here, δx denotes

the Dirac measure in x ∈ R. Hence, the initial state is ℓ with probability µℓ for
ℓ = 0, . . . , b− 1. We have µℓ ∈ [0, 1] and

∑b−1
ℓ=0 µℓ = 1. A transition from state

i to j happens with probability pij , i, j ∈ Σ. Now, a data string is generated
as the sequence of states taken by the Markov chain. In our Markov source
model assumed subsequently all data strings are independent and identically
distributed according to the given Markov chain.

We always assume that pij < 1 for all i, j ∈ Σ. Note that we do not
necessarily assume the Markov chain to converge to a stationary distribution
nor that it starts in a stationary distribution.

The case pij = µi = 1/b for all i, j ∈ Σ is the case where all symbols within
all data are independent and uniformly distributed over Σ. Then the associated
numbers are independent and uniformly distributed over [0, 1]. We call this the
uniform model. For b = 2 the uniform model is also called symmetric Bernoulli
model. The asymmetric Bernoulli model for b = 2 is the case where pi1 = µ1 = p
for i = 0, 1 and a p ∈ (0, 1) with p 6= 1

2 .

Notation. We write
d−→ for convergence in distribution and

d
= for equality in

distribution. By B(n, p) with n ∈ N and p ∈ [0, 1] the binomial distribution
is denoted, by B(p) the Bernoulli distribution with success probability p, by
N (µ, σ2) the normal distribution with mean µ ∈ R and variance σ2 > 0. The
Bachmann–Landau symbols are used.
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Radix Sorting. The Radix Sorting algorithm consists of assigning all data to
the buckets as for Radix Selection. Then the algorithm recurses on all buckets
containing more than one datum. Clearly, this leads to a sorting algorithm.
The complexity of Radix Sorting is also measured by the number of bucket
operations. It has thoroughly been analyzed in the uniform model with refined
expansions for mean and variance involving periodic functions and a central
limit law for the normalized complexity, see Knuth [13], Jacquet and Régnier
[9], Kirschenhofer, Prodinger and Szpankowski [11] and Mahmoud et al. [15].

For the Markov source model (with b = 2 and 0 < pij < 1 for all i, j = 1, 2)
the orders of mean and variance and a central limit theorem for the complexity
of Radix Sorting were derived in Leckey, Neininger and Szpankowski [14].
Acknowledgements. We thank the referees for their careful reading and con-
structive remarks.

2 The uniform model — selection of quantiles

In this section our model consists of independent data, identically and uniformly
distributed over [0, 1]. We fix b ≥ 2 and consider bucket selection using b buckets
in each step. The number Yn(ℓ) of bucket operations needed by bucket selection
to select rank ℓ ∈ {1, . . . , n} in a set of n such data is studied as a process in
1 ≤ ℓ ≤ n. We write Yn := (Yn(ℓ))1≤ℓ≤n. For a refined asymptotic analysis
we normalize the process in space and time and consider Xn = (Xn(t))0≤t≤1

defined for n ≥ 1 and t ∈ [0, 1] by

Xn(t) :=
Yn(⌊tn⌋+ 1)− b

b−1n√
n

, (1)

where we set Yn(n + 1) := Yn(n). The process Xn has càdlàg paths and is
considered as a random variable in D[0, 1] endowed with the Skorokhod metric
dsk, see Billingsley [2, Chapter 3].

Subsequently, we use prefixes of b-ary expansions. For s, t ∈ [0, 1] based
on their b-ary expansions s =

∑∞
i=1 si · b−i, t =

∑∞
i=1 ti · b−i with si, ti ∈

{0, . . . , b − 1} with the conventions stated in the introduction we denote the
length of the longest common prefix by

j(s, t) := max{i ∈ N | (s1, . . . , si) = (t1, . . . , ti)} (2)

with the conventions max ∅ := 0 and maxN := ∞.

Theorem 2.1. Let b ∈ N with b ≥ 2. Consider bucket selection using b buckets
on a set of independent data uniformly distributed on [0, 1]. For the process
Xn = (Xn(t))0≤t≤1 of the normalized number of bucket operations Yn(ℓ) as
defined in (1) we have weak convergence, as n → ∞, in (D[0, 1], dsk):

Xn
d−→ G.
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Here, G = (G(t))t∈[0,1] is a centered Gaussian process (depending on b) with
covariance function

E[G(s)G(t)] =
b

(b− 1)2
− b+ 1

(b− 1)2
b−j(s,t), s, t ∈ [0, 1],

where j(s, t) is the length of the longest common prefix defined in (2) and b−∞ :=
0.

Theorem 2.1 implies the asymptotic behavior of the worst case complexity
maxℓ=1,...,n Yn(ℓ) of Radix Selection:

Corollary 2.2. For the worst case complexity of Radix Selection in the model
and notation of Theorem 2.1 we have, as n → ∞, that

1√
n

(

sup
1≤ℓ≤n

Yn(ℓ)−
b

b− 1
n

)

d−→ sup
t∈[0,1]

G(t).

For the Gaussian process G in Theorem 2.1 we have the following results on
the tails of its supremum and regarding the continuity of its paths.

Theorem 2.3. For the supremum S = supt∈[0,1]G(t) of the Gaussian process
G in Theorem 2.1 we have for any t > 0 that

P(|S − E[S]| ≥ t) ≤ 2 exp

(

− (b− 1)2

2b
t2
)

.

In the Euclidean topology on [0, 1] (induced by absolute value) the Gaus-
sian process G in Theorem 2.1 does not have continuous paths. Typically, in
the study of Gaussian processes a metric on the index set is derived from the
covariance function. We consider

d(s, t) :=
√

E[(G(t) −G(s))2] =

√

2(b+ 1)

b− 1
· b−j(s,t)/2, s, t ∈ [0, 1].

The subsequent results in this section are stated with respect to the (topologi-
cally) equivalent metric

db(s, t) := b−j(s,t), s, t ∈ [0, 1].

Theorem 2.4 (Modulus of continuity). For the Gaussian process G = (G(t))t∈[0,1]

in Theorem 2.1 we have, almost surely,

2

√
log b√
b− 1

≤ lim sup
n→∞

sup
s,t∈[0,1],

db(s,t)=b−n

|G(t)−G(s)|√
nb−n

≤ 2

√
2 log b√

b− 1(1− b−1/2)
.

Theorem 2.5 (Hölder continuity). For any β < 1/2, almost surely, the paths
of the Gaussian process G = (G(t))t∈[0,1] in Theorem 2.1 are Hölder continuous
with exponent β with respect to db. For any β > 1/2, almost surely, the paths of
G are nowhere pointwise Hölder continuous with exponent β with respect to db.
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Outline of the analysis: We outline the analysis leading to Theorems 2.1–
2.5. To set up a recurrence for the process Yn := (Yn(ℓ))1≤ℓ≤n we denote by
In = (In1 , . . . , I

n
b ) the numbers of elements in the b buckets after distribution of

all n elements in the first partitioning stage. We abbreviate Fn
0 := 0 and

Fn
r :=

r
∑

j=1

Inj , 1 ≤ r ≤ b.

Note that we have Fn
b = n. Then, after the first partitioning phase, the element

of rank ℓ is in bucket r if and only if Fn
r−1 < ℓ ≤ Fn

r . This implies the recurrence

Yn
d
=

(

b
∑

r=1

1{Fn

r−1
<ℓ≤Fn

r }Y
r
In
r

(

ℓ− Fn
r−1

)

+ n

)

1≤ℓ≤n

, (3)

where (Y 1
j ), . . . , (Y

b
j ), I

n are independent and the Y r
j have the same distribution

as Yj for all j ≥ 0 and r = 1, . . . , b.
By the model of independent and uniformly distributed data we have that

the vector In has the multinomial M(n; 1
b , . . . ,

1
b ) distribution. Hence, we have

1
nI

n → (1b , . . . ,
1
b ) almost surely as n → ∞ and

In − 1
b (n, . . . , n)√

n
→ (N1, . . . , Nb),

where (N1, . . . , Nb) is a multivariate normal distribution N (0,Ω) with mean
zero and covariance matrix Ω given by Ωij = b−1

b2 if i = j and Ωij = − 1
b2 if

i 6= j. Note that for b = 2 we have N2 = −N1. Below, we denote by

N = (N1, . . . ,Nb)

a vector with distribution b
b−1 (N1, . . . , Nb). Hence (N1, . . . ,Nb) has a multivari-

ate normal distribution with mean zero and covariance matrix Υ = (Υij)i,j∈Σ

given by

Υij =







1
b−1 , if i = j,

− 1
(b−1)2 , if i 6= j.

(4)

For the normalized processes Xn in (1) we thus obtain

Xn
d
=

(

b
∑

r=1

1{Fn

r−1
<⌊tn⌋+1≤Fn

r }

√

Inr
n
Xr

In
r

(

nt− Fn
r−1

Inr

)

+

b
∑

r=1

1{Fn

r−1
<⌊tn⌋+1≤Fn

r }
b

b− 1

Inr − 1
bn√

n

)

0≤t≤1

, (5)

with conditions on independence and identical distributions as in (3).
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To associate to recurrence (5) a limit equation in the spirit of the contraction
method we introduce the indicator functions

Ir(x) := 1[r−1,r)(x) for r = 1, . . . , b− 1, Ib(x) := 1[b−1,b](x)

and the sawtooth function sb : [0, 1] → [0, 1]

sb(t) :=

{

bt− ⌊bt⌋, 0 ≤ t < 1,
1, t = 1.

Moreover, we use the transformations Ar : D[0, 1] → D[0, 1] for r = 1, . . . , b with

f 7→ Ar(f), Ar(f)(t) = Ir(tb)f(sb(t)) for t ∈ [0, 1],

and B : Rb → D[0, 1] with (for v = (v1, . . . , vb))

v 7→ B(v), B(v)(t) =

b
∑

r=1

Ir(tb)vr for t ∈ [0, 1].

Then we associate the limit equation

X
d
=

b
∑

r=1

1√
b
Ar(X

r) +B(N ), (6)

where X1, . . . , Xb,N are independent, the Xr are identically distributed ran-
dom variables with values in (D[0, 1], dsk) and distribution of X , and N has
the centered multivariate normal distribution with covariance matrix Υ given
in (4).

A distributional fixed-point equation related to (6) appeared in Sulzbach et
al. [17], see the map T in equation (2.5) of [17]. The proof of our Theorem
2.1 can be carried out analogously to the proof in sections 2.1, 2.2 and 3.3 of
[17]. Note that in analogy to Lemma 2.3 in [17] our fixed-point equation (6)
characterizes the Gaussian limit process G in Theorem 2.1 as the unique fixed-
point of (6) subject to the constraint E[‖X‖2+ε

∞ ] < ∞ for any ε > 0 and, hence,
in the analysis one has to adapt exponents appropriately. The proofs of our
Theorems 2.3–2.5 can be carried out as the corresponding results in section 4
of [17] which are related to and partly based on fundamental work on Gaussian
processes, see Dudley [6], Talagrand [19], Adler [1] and Boucheron, Lugosi and
Massart [3].

3 The Markov source model

Now the Markov source model is considered for the data. For the rank to be
selected the quantile-model is studied in section 3.1, the model of grand averages
in section 3.2. We restrict ourselves to the study of Radix Selection using b = 2
buckets.
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3.1 Selection of quantiles

We consider the complexity of Radix Selection with b = 2 buckets assuming
the Markov source model for the data and the quantile-model for the rank to
be selected. We first define functions mµ : [0, 1] → (0,∞) which appear in the
average complexity. For n ≥ 1 and i = 0, 1 we recursively define sets Di

n =
{sin,k | k = 0, . . . , 2n} as follows: For n = 1 we set (si1,0, s

i
1,1, s

i
1,2) := (0, pi0, 1)

for i = 0, 1. Further, for all n ≥ 1, i = 0, 1 and 0 ≤ k ≤ 2n we set

sin+1,k :=











sin,k/2, if k mod 4 ∈ {0, 2},
p00s

i
n,(k+1)/2 + p01s

i
n,(k−1)/2, if k mod 4 = 1.

p10s
i
n,(k+1)/2 + p11s

i
n,(k−1)/2, if k mod 4 = 3,

We further define Di
∞ := ∪∞

n=1Di
n. Note that for each n ≥ 1 the set Di

n decom-
poses the unit interval into 2n sub-intervals. For t ∈ [0, 1] \ Di

∞ we denote by
λi
n(t) the length of the (unique) sub-interval of this decomposition that contains

t. Then, for i = 0, 1 and t ∈ [0, 1] \ Di
∞ we set

mi(t) := 1 +

∞
∑

n=1

λi
n(t).

Further, for an initial distribution µ = µ0δ0 + µ1δ1 with µ0 ∈ [0, 1] we denote

Dµ
∞ := µ0D0

∞ ∪
(

µ0 + µ1D1
∞

)

and, for t ∈ [0, 1] \ Dµ
∞,

mµ(t) :=







µ0m0

(

t
µ0

)

+ 1, if t < µ0,

(1− µ0)m1

(

t−µ0

1−µ0

)

+ 1, if t > µ0.

We have the following asymptotic behavior of the average complexity:

Theorem 3.1. Let Y µ
n (ℓ) denote the number of bucket operations of Radix

Selection with b = 2 selecting a rank 1 ≤ ℓ ≤ n among n independent data
generated from the Markov source model with initial distribution µ = µ0δ0+µ1δ1
where µ0 ∈ [0, 1] and transition matrix (pij)i,j∈{0,1} with pij < 1 for all i, j =
0, 1. Then, for all t ∈ [0, 1] \Dµ

∞ as n → ∞, we have

E[Y µ
n (⌊tn⌋+ 1)] = mµ(t)n+ o(n). (7)

Outline of the analysis: We denote by Y 0
n = (Y 0

n (ℓ))1≤ℓ≤n and Y 1
n =

(Y 1
n (ℓ))1≤ℓ≤n the number of bucket operations for a Markov source model as in

Theorem 3.1 for initial distributions p00δ0+p01δ1 and p10δ0+p11δ1 respectively.
Then we have the system of recursive distributional equations, for n ≥ 2,

Y i
n

d
=
(

1{ℓ≤Ji
n
}Y

0
Ji
n

(ℓ) + 1{ℓ>Ji
n
}Y

1
n−Ji

n

(ℓ − J i
n) + n

)

1≤ℓ≤n
, i = 0, 1, (8)

8



where Y 0
0 , . . . , Y

0
n , Y

1
0 , . . . , Y

1
n , J

0
n, J

1
n are independent (the independence between

J0
n and J1

n is not required) and we have that J i
n is B(n, pi0) distributed for

i = 0, 1. Moreover, for general initial distribution µ we further have

Y µ
n

d
=
(

1{ℓ≤Kn}Y
0
Kn

(ℓ) + 1{ℓ>Kn}Y
1
n−Kn

(ℓ −Kn) + n
)

1≤ℓ≤n
, (9)

where Y 0
0 , . . . , Y

0
n , Y

1
0 , . . . , Y

1
n ,Kn are independent and Kn has the binomial

B(n, µ0) distribution.
The proof of Theorem 3.1 is based on k times iterating the system (8) with

k = k(n) = Θ(logn) chosen appropriately. The contributions of the toll func-
tions within these k iterations yield the main contribution, the other terms are
asymptotically negligible.

A distributional analysis of the quantile-model is left for the full paper ver-
sion of this extended abstract as well as the behavior at the t ∈ Dµ

∞. For these t
the expansion (7) still holds when defining mµ(t) as the average of the left-hand
and right-hand limit of mµ at t.

A special case where the analysis is simplified considerably is the asymmetric
Bernoulli model discussed next where we obtain a functional limit law as for
the uniform model in Theorem 2.1.

The asymmetric Bernoulli model: The data model called asymmetric
Bernoulli model consists of all data being independent and having independent
bits all identically distributed over Σ = {0, 1} with Bernoulli B(p) distribution
for a fixed p ∈ (0, 1) with p 6= 1

2 . Note that this can also be considered as a
special case of the Markov source model by choosing µ0 = p00 = p10 = 1 − p
and µ1 = p01 = p11 = p. Here, the analysis simplifies considerably compared
to the general Markov source model due to the fact that the mean function m
corresponding to m0,m1,mµ in Theorem 3.1 becomes an affine function. We
have the following results:

Theorem 3.2. Consider bucket selection using b = 2 buckets on a set of n
independent data generated from the asymmetric Bernoulli model with success
probability p ∈ (0, 1) \ { 1

2}. For the process XasyB
n = (XasyB

n (t))0≤t≤1 of the
normalized number of bucket operations Y asyB

n (ℓ) defined by

XasyB
n (t) :=

Y asyB
n (⌊tn⌋+ 1)−m(t)n√

n
, t ∈ [0, 1],

with Y asyB
n (n+ 1) := Y asyB

n (n) and

m(t) =
2p− 1

p(1− p)
t+

1

p
, t ∈ [0, 1],

we have weak convergence, as n → ∞, in (D[0, 1], dsk):

XasyB
n

d−→ GasyB.

9



Here, GasyB = (GasyB(t))t∈[0,1] is a centered Gaussian process (depending on p)
with covariance function given, for s, t ∈ [0, 1], by

E[GasyB(s)GasyB(t)] = −
r(s,t)
∏

k=1

p[g(t, k)] +

r(s,t)
∑

k=1

∏k
j=1 p[g(t, j)]

p[1− g(t, k)]
,

where p[0] := 1 − p, p[1] := p and the functions r : [0, 1]2 → N0 ∪ {∞} and
g : [0, 1]× N0 → {0, 1} are defined as follows:

r(s, t) = max{n ∈ N0|g(s, ℓ) = g(t, ℓ), 1 ≤ ℓ ≤ n}

and g and h : [0, 1]×N0 → [0, 1] are recursively defined by g(t, 0) = 0, h(t, 0) = t
for t ∈ [0, 1] and for k ≥ 1 by

g(t, k) =

{

0, if h(t, k − 1) < 1− p,
1, if h(t, k − 1) ≥ 1− p,

h(t, k) =

{

h(t,k−1)
1−p , if h(t, k − 1) < 1− p,

h(t,k−1)−(1−p)
p , if h(t, k − 1) ≥ 1− p.

For the maximum of the complexities we obtain the following corollary:

Corollary 3.3. In the model and notation of Theorem 3.2 we have, as n → ∞,
that

1√
n

(

sup
1≤ℓ≤n

(

Y asyB
n (ℓ)−m

(

ℓ

n

)

n

))

d−→ sup
t∈[0,1]

GasyB(t).

Theorem 3.4. For the supremum S′ = supt∈[0,1]G
asyB(t) of the Gaussian

process GasyB in Theorem 3.2 we have for any t > 0 with p∨ := max{p, 1− p}
that

P(|S′ − E[S′]| ≥ t) ≤ 2 exp

(

− (1− p∨)
2

2p∨
t2
)

.

3.2 Selection of a uniform rank

We now consider the complexity of Radix Selection with b = 2 buckets assuming
the Markov source model for the data and the model of grand averages for the
rank. We have the following asymptotic behavior:

Theorem 3.5. Let Wn denote the number of bucket operations of Radix Se-
lection with b = 2 selecting a uniformly distributed rank independent from n
independent data generated from the Markov source model with initial distribu-
tion µ = µ0δ0 + µ1δ1 where µ0 ∈ [0, 1] and transition matrix (pij)i,j∈{0,1} with
pij < 1 for all i, j = 0, 1. Then, as n → ∞, we have

E[Wn] = κµn+ o(n)
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with κµ > 0 given in (15) and

Wn

n

d−→ Zµ,

where the convergence also holds with all moments. The distribution of Zµ is
given by

Zµ
d
= Bµ0

µ0Z
0 + (1−Bµ0

)(1 − µ0)Z
1 + 1, (10)

where Bµ0
, Z0, Z1 are independent and Bµ0

has the Bernoulli distribution B(µ0).
The distributions of Z0 and Z1 are the unique integrable solutions of the system
(12).

Outline of the analysis: We denote by Wµ
n := Wn the complexity as stated in

Theorem 3.5 and, for initial distributions pi0δ0+pi1δ1, write W
i
n := W pi0δ0+pi1δ1

n

for i = 0, 1. We have the system of distributional recurrences, for n ≥ 2,

W i
n

d
= BiiW

0
Ji
n

+ (1−Bii)W
1
n−Ji

n

+ n, i = 0, 1, (11)

where W 0
1 , . . . ,W

0
n ,W

1
1 , . . . ,W

1
n and (J0

n, J
1
n, B00, B11) are independent and we

have that J i
n is Binomial B(n, pi0) distributed and Bii is mixed Bernoulli dis-

tributed with distribution B(J i
n/n) for i = 0, 1. We normalize

Zi
n :=

W i

n
, n ≥ 1, i = 0, 1

and obtain, for all n ≥ 2 that

Zi
n

d
= Bii

J i
n

n
Z0
Ji
n

+ (1 −Bii)
n− J i

n

n
Z1
n−Ji

n

+ 1, i = 0, 1,

with independence relations as in (11). This leads to the limit system

Zi d
= Bpi0

pi0Z
0 + (1−Bpi0

)(1 − pi0)Z
1 + 1, i = 0, 1, (12)

where Z0, Z1 and Bpi0
are independent and Bpi0

has the Bernoulli B(pi0) dis-
tribution for i = 0, 1. It is easy to show that subject to E[|Zi|] < ∞ the limit
system (12) has a unique solution; cf. Knape and Neininger [12, section 5].
Also, the convergences Zi

n → Zi can be shown by a contraction argument in
any Wasserstein ℓp metric with p ≥ 1. From the limit system (12) we obtain for
the expectations κi := E[Zi] for i = 0, 1 that

κ0 =
1 + p201 − p211

2(p00 + p11)(1 + p00p11)− 2(p00 + p11)2
> 0, (13)

κ1 =
1 + p210 − p200

2(p00 + p11)(1 + p00p11)− 2(p00 + p11)2
> 0. (14)

11



Now, for a general initial distribution µ we have

Wµ
n

d
= BµµW

0
Kn

+ (1−Bµµ)W
1
n−Kn

+ n,

where W 0
1 , . . . ,W

0
n ,W

1
1 , . . . ,W

1
n , (Kn, Bµµ) are independent, Kn has the bino-

mial B(n, µ0) distribution and Bµµ has the mixed Bernoulli B(Kn/n) distribu-
tion. This implies for the limit Zµ of Wµ

n /n the representation

Zµ
d
= Bµ0

µ0Z
0 + (1−Bµ0

)(1 − µ0)Z
1 + 1,

whereBµ0
, Z0, Z1 are independent and Bµ0

has the Bernoulli distribution B(µ0).
Hence, we obtain for κµ := E[Zµ] the representation

κµ = µ2
0κ0 + (1− µ0)

2κ1 + 1, (15)

with κ0, κ1 given in (13) and (14). The claims of Theorem 3.5 follow from this
outline by an application of the contraction method within the Wasserstein met-
rics.

A remark on concentration for grand averages: Note that for the special
case pij = µi = 1

2 for i = 0, 1 the Markov source model reduces to the uni-
form model. In this case it was shown (together with more refined results) in
Mahmoud et al. [15] that the complexity Wn in Theorem 3.5 as n → ∞ satisfies

Wn − 2n√
2n

d−→ N (0, 1). (16)

Our Theorem 3.5 also applies: We find that for the uniform model system (12)
is solved deterministically by Zi = 2 almost surely for i = 0, 1, hence plugging
in into (10) we also obtain Zµ = 2 and thus Wn/n → 2, which is, although only
a law of large numbers, consistent with (16). (The full limit law in (16) is a
corollary to our Theorem 2.1.)

However, for (p00, p01, p10, p11) 6= (12 ,
1
2 ,

1
2 ,

1
2 ) the system (12) does no longer

solve deterministically, so that Wn/n then has a nondeterministic limit and is
less concentrated, typical fluctuations are of linear order compared to

√
n for

the uniform model. This behavior becomes transparent when looking at the
quantile-model: In the uniform model we have the same leading linear term 2n
in the expansion of the means of all quantiles, which implies that a uniformly
chosen rank conditional on its size will always lead to a complexity of the same
linear order 2n. This does no longer hold for a non-uniform Markov model.
The constant mµ(t) in the linear growth mµ(t)n of the complexity depends
on the quantiles t ∈ [0, 1], see Theorem 3.1. This implies that the complexity
can no longer remain concentrated: The fluctuations are now forced to be at
least of linear order since different choices of the ranks lead to different linear
orders. This is consistent with the fact that in Theorem 3.5 we then find a
non-deterministic limit for Wn/n and a variance of the order Θ(n2). Further

12



note, that this also implies a simple representation of the limit distribution of
Zµ in Theorem 3.5 as

Zµ
d
= mµ(U),

with mµ as in Theorem 3.1 und U uniformly distributed on [0, 1].
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