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Abstract

A cyclic urn is an urn model for balls of types 0, . . . ,m − 1

where in each draw the ball drawn, say of type j, is returned

to the urn together with a new ball of type j + 1 mod m.

The case m = 2 is the well-known Friedman urn. The

composition vector, i.e., the vector of the numbers of balls

of each type after n steps is, after normalization, known to

be asymptotically normal for 2 ≤ m ≤ 6. For m ≥ 7 the

normalized composition vector does not converge. However,

there is an almost sure approximation by a periodic random

vector. In this paper the asymptotic fluctuations around

this periodic random vector are identified. We show that

these fluctuations are asymptotically normal for all m ≥ 7.

However, they are of maximal dimension m − 1 only when

6 does not divide m. For m being a multiple of 6 the

fluctuations are supported by a two-dimensional subspace.

1 Introduction, phenomena and results.

The aim of this extended abstract is to uncover the
nature of fluctuations around almost surely oscillating
sequences of random variables as they arise in a number
of random combinatorial structures, most commonly
in random trees. We develop an analysis for the
composition vector of cyclic urns and describe new
phenomena and characteristics of the fine fluctuations
around random oscillating sequences at the example of
the cyclic urns.

A cyclic urn is an urn model with a fixed number
m ≥ 2 of possible colours of balls which we call
types 0, . . . ,m − 1. Initially, there is one ball of an
arbitrary type. In each step we draw a ball from the
urn, uniformly from within the balls in the urn and
independently of the history of the urn process. If its
type is j ∈ {0, . . . ,m − 1} it is placed back to the
urn together with a new ball of type j + 1 mod m.
We denote by Rn = (Rn,0, . . . , Rn,m−1)t the (column)
vector of the numbers of balls of each type after n steps
when starting with one ball of type 0. Hence, we have
R0 = e0 where ej denotes the j-th unit vector in Rm,
indexing the unit vectors by 0, . . . ,m − 1. For fixed
m ≥ 2 we denote the m-th elementary root of unity by
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ω := exp( 2πi
m ). Furthermore, for 0 ≤ k ≤ m− 1, we set

λk := <(ωk) = cos

(
2πk

m

)
,

µk := =(ωk) = sin

(
2πk

m

)
,

vk :=
1

m

(
1, ω−k, ω−2k, . . . , ω−(m−1)k

)t
∈ Cm.(1.1)

Note that v0 = 1
m1 := 1

m (1, 1, . . . , 1)t ∈ Rm.
The asymptotic distributional behavior of the se-

quence (Rn)n≥0 has been identified in Janson [8, 9, 10],
see also Pouyanne [15, 16]. Janson also developed a
limit theory for the compositions of rather general urn
schemes. For simplicity of presentation we state the case
when starting with only one ball (of type 0). However,
when starting with one ball of type j ∈ {0, . . . ,m− 1},
the evolution of the corresponding composition vector

R
[j]
n is obtained in distribution by the relation

(R[j]
n )n≥0

d
=
((
At
)j
Rn

)
n≥0

,(1.2)

0 ≤ j ≤ m − 1, where the replacement matrix A is

defined in (2.4) and
d
= denotes equality in distribution.

Hence, it is sufficient to consider the cyclic urn process
started with one ball of colour 0. An extension to
initially having more than one ball is straightforward,
see the discussion in [11, p. 1165].

Janson showed that the normalized composition
vector Rn of the cyclic urn model converges in distri-
bution towards a multivariate normal distribution for
2 ≤ m ≤ 6, whereas for m ≥ 7 there is no convergence
by a conventionally standardized version of the Rn due
to subtle periodicities. For m ≥ 7 there exists a com-
plex valued random variable Ξ1 (depending on m) such
that almost surely, as n→∞, we have

Rn − n
m1

nλ1
− 2<

(
niµ1Ξ1v1

)
→ 0.(1.3)

We now focus on the periodic case m ≥ 7. Ac-
cording to (1.3) the normalization n−λ1(Rn− n

m1) does
not converge but is (strongly) approximated by the os-
cillating random sequence (2<(niµ1Ξ1v1))n≥0. In the
present paper we clarify whether it is still possible that
the fluctuations of n−λ1(Rn − n

m1) around the periodic



sequence (2<(niµ1Ξ1v1))n≥0 do converge although the
sequence itself does not converge. Subsequently, we will
call the differences in (1.3) residuals.

Our main results stated in Theorems 1.1 and 1.2
show that the nature of the asymptotic behavior of the
residuals in (1.3) depends on the number of colours m.
For m ∈ {7, 8, 9, 10, 11} there is a direct normalization
which implies a multivariate central limit law (CLT) for
the residuals. The case m = 12 also allows a multi-
variate CLT with a different scaling. For m > 12 the
residuals cannot directly by normalized to obtain con-
vergence. However, considering refined residuals allows
a multivariate CLT for all m > 12. This in fact gives
a more refined expansion of the Rn, cf. Theorems 1.1
and 1.2. There is a further subtlety in the nature of the
fluctuations of the residuals: If 6 divides m the fluctu-
ations of the residuals are asymptotically supported by
a two-dimensional plane, i.e., the covariance matrix of
the limit normal distribution has rank 2, whereas for all
m ≥ 7 which are not divisible by 6 this support is a
hyperplane (rank m− 1).

By
d−→ convergence in distribution is denoted, for a

symmetric positive semi-definite matrix M by N (0,M)
the centered normal distribution with covariance matrix
M . For v ∈ Cm we denote by v∗ the conjugate transpose
of v. Furthermore, 6 | m and 6 - m are short for 6
divides (resp. does not divide) m.

We distinguish the cases 6 | m and 6 - m as follows.

Theorem 1.1. Let m ≥ 7 with 6 - m and set r :=
b(m − 1)/6c. Then, there exist complex valued random
variables Ξ1, . . . ,Ξr such that, as n→∞, we have

nλ1−1/2

(
Rn − E[Rn]

nλ1
−

r∑
k=1

2nλk−λ1<
(
niµkΞkvk

))
d−→ N

(
0,Σ(m)

)
.

The covariance matrix Σ(m) has rank m−1 and is given
by

Σ(m) =

m−1∑
k=1

1

|2λk − 1|
vkv
∗
k.

When 6 | m the normalization requires an additional√
log n factor and the rank of the covariance matrix is

reduced to 2:

Theorem 1.2. Let m ≥ 7 with 6 | m and set r :=
b(m − 1)/6c. Then, there exist complex valued random
variables Ξ1, . . . ,Ξr such that, as n→∞, we have

nλ1−1/2√
log(n)

(
Rn − E[Rn]

nλ1
−

r∑
k=1

2nλk−λ1<
(
niµkΞkvk

))
d−→ N

(
0,Σ(m)

)
.

The covariance matrix Σ(m) has rank 2 and is given by

Σ(m) = vm/6v
∗
m/6 + v5m/6v

∗
5m/6.

The convergences in Theorems 1.1 and 1.2 also hold
for all moments. For an expansion of E[Rn] see (2.6).

We consider Theorems 1.1 and 1.2 as prototypi-
cal for a phenomenon which we conjecture to occur
frequently in related random combinatorial structures.
E.g., we expect similar behavior for other urn models
with analog almost sure random periodic behavior (see
[9, Theorem 3.24]), for the size of random m-ary search
trees, cf. [4, 2, 6], and for the number of leaves in ran-
dom d-dimensional (point) quadtrees [3]. (For the latter
two instances only the case of Theorem 1.1 is expected
to occur.)

2 Outline of the proof.

In this section we first recall some known asymptotic
behavior of Rn which is used subsequently. Then
we state a more refined result on certain projections
of residuals in Proposition 2.1 which directly implies
Theorems 1.1 and 1.2. Then, an outline of the proof of
Proposition 2.1 is given. Technical steps and estimates
are then sketched in Section 3. Throughout, we fix an
m ≥ 7.

The cyclic urn with m colours has the m × m
replacement matrix

(2.4) A :=


0 1 0 · · 0 0
0 0 1 · · 0 0
0 0 0 · · · ·
· · · · · · ·
· · · · · 0 1
1 0 0 · · 0 0

 ,

where Aij indicates that after drawing a ball of type
i it is placed back together with Aij balls of type j
for all 0 ≤ i, j ≤ m − 1. For the urn we consider the
initial configuration of one ball of type 0 and write Rn
for the composition vector after n steps. The canonical
filtration is given by the σ-fields Fn = σ(R0, . . . , Rn)
for n ≥ 0. The dynamics of the urn process imply the
well-known almost sure relation

E [Rn+1 | Fn] =

m−1∑
k=0

Rn,k
n+ 1

(Rn +Atek)

=

(
Idm +

1

n+ 1
At
)
Rn(2.5)

for n ≥ 0. Here, Idm denotes the m × m identity
matrix and At the transpose of A. The matrices A
and Idm + 1

n+1A
t have the same (right) eigenvectors

v0, . . . , vm−1 given in (1.1).



Note that v0 has the direction of the drift vector 1 in
Theorems 1.1 and 1.2 and v1 determines the directions
of the a.s. fluctuations around the drift there. By
diagonalizing these matrices and using (2.5) one finds
explicit expressions for the mean of the Rn, cf. [11,
Lemma 6.7]. Let 1 ≤ k ≤ r. With

ξk :=
2

Γ(1 + ωk)
vk,

these expressions imply the expansion, as n→∞,

(2.6) E [Rn] =
n+ 1

m
1 +

r∑
k=1

<(niµkξk)nλk + O(
√
n ).

It is also known that the variances and covariances
of Rn are of the order n2λ1 with appropriate periodic
prefactors. This explains the normalization n−λ1(Rn −
n+1
m 1) in Theorems 1.1 and 1.2. The analysis of the

asymptotic distribution as stated in (1.3) has been done
by different techniques (partly only in a weak sense),
by embedding into continuous time multitype branching
processes, by (more direct) use of martingale arguments,
and by stochastic fixed-point arguments, see [9, 15, 11].

For our further analysis we use a spectral decom-
position of the process (Rn)n≥0. We denote by πk the
projection onto the eigenspace in Cm spanned by vk for
0 ≤ k ≤ m− 1. Hence, we have

Rn =

m−1∑
k=0

πk(Rn)

= π0(Rn) +

dm/2e−1∑
k=1

(πk + πm−k)(Rn)

+ 1{m even}πm/2(Rn),

where 1 indicates an indicator. We have deterministi-
cally π0(Rn) = n+1

m 1. For the other projections πk(Rn)
one has similar periodic behavior as for the composi-
tion vector Rn, cf. (1.3), as long as we have λk >

1
2 . We

call the projections πk(Rn) large, if λk >
1
2 , since their

magnitudes have orders larger than
√
n. Projections πk

with λk ≤ 1
2 we call small. For the large projections we

have for all 1 ≤ k ≤ bm/2c with λk >
1
2 almost surely

that

Yn,k :=
1

nλk
(πk + πm−k)(Rn − E[Rn])

− 2<
(
niµkΞkvk

)
→ 0(2.7)

with a complex valued random variable Ξk. The small
projections πk(Rn) behave differently, see [9, 13]. For

those k with λk <
1
2 we have

Xn,k :=
1√
n

(πk + πm−k)(Rn − E[Rn])

d−→ N (0,Σk),(2.8)

with an appropriate covariance matrix Σk, see (3.16)–
(3.18).

If m is even then for Xn,m/2 := n−1/2πm/2(Rn) we
have a multivariate CLT as in (2.8).

Finally, if 6 | m, then there is the pair (m6 ,
5m
6 ) with

λm/6 = λ5m/6 = 1
2 . In this case the scaling requires an

additional
√

log n factor. We have

Xn,m/6 :=
1√

n log n
(πm/6 + π5m/6)(Rn − E[Rn])

d−→ N (0,Σm/6).(2.9)

We identify the orders of the variances and covariances
of Yn,k in Section 3.1. These orders imply that an
appropriate normalization to study the fluctuations of
the large projections is given by

Xn,k := nλk− 1
2Yn,k.(2.10)

Now, the Xn,k are defined for all 1 ≤ k ≤ bm/2c
and describe the normalized fluctuations of all the
projections. For the small projections we already know
that they are asymptotically normally distributed, see
(2.8). As a main contribution of the present paper
we show that the residuals of the large projections as
normalized in (2.10) are also asymptotically normal.
Moreover, we show that all these fluctuations are jointly
asymptotically normally distributed and asymptotically
independent:

Proposition 2.1. For the vector (Xn,1, . . . , Xn,bm/2c)
defined in (2.8) - (2.10) we have

(Xn,1, . . . , Xn,bm/2c)
d−→ N (0,diag(Σ1, . . . ,Σbm/2c)),

where the blocks Σk of the diagonal block matrix
diag(Σ1, . . . ,Σbm/2c) are defined in (3.16)–(3.18).

Proposition 2.1 directly implies Theorems 1.1 and
1.2:

Proof of Theorem 1.1. Let m ≥ 7 with 6 - m, set
r = b(m−1)/6c and let Ξ1, . . . ,Ξr as in (2.7). Moreover,
let Xn,1, . . . , Xn,bm/2c be as in Proposition 2.1. Note
that 6 - m implies that there is no 1 ≤ k ≤ m with



λk = 1
2 . We obtain

nλ1−1/2

(
Rn − E[Rn]

nλ1
−

r∑
k=1

2nλk−λ1<
(
niµkΞkvk

))

= nλ1−1/2

(
n−λ1

r∑
k=1

{(πk + πm−k)(Rn − E[Rn])

− 2nλk<
(
niµkΞkvk

)}
+ n−λ1

dm/2e−1∑
r+1

(πk + πm−k)(Rn − E[Rn])

+ 1{m even}n
−λ1πm/2(Rn − E[Rn])

)
= Xn,1 + · · ·+Xn,bm/2c

d−→ N
(

0,Σ(m)
)
,

by Proposition 2.1 and the continuous mapping theo-
rem, where Σ(m) = Σ1 + · · · + Σbm/2c. That Σ(m) has
rank m− 1 is proven in Theorem 3.1.

Proof of Theorem 1.2. Let m ≥ 7 with 6 | m
and Ξ1, . . . ,Ξr as in (2.8) and Xn,1, . . . , Xn,m/2 as in
Proposition 2.1. Note that 6 | m implies that there is the
pair (m/6, 5m/6) with λm/6 = λ5m/6 = 1

2 . Rearranging
terms as in the proof of Theorem 1.1 we obtain

nλ1−1/2

√
log n

(
Rn − E[Rn]

nλ1
−

r∑
k=1

2nλk−λ1<
(
niµkΞkvk

))

= Xn,m/6 +
1√

log n

m/2∑
k=1

k 6=m/6

Xn,k

d−→ N
(

0,Σ(m)
)
,

by Proposition 2.1 and Slutsky’s Lemma, where Σ(m) =
Σm/6. That Σ(m) has rank 2 is proven in Theorem 3.1.

To prove Proposition 2.1 we first derive moments
and mixed moments needed for the normalization in
Section 3.1. The ranks of the covariance matrices Σ(m)

are identified in Section 3.4. In Section 3.2 a pointwise
recursive equation for the complex random variables
Ξ1, . . . ,Ξr is obtained together with a recurrence for
the sequence (Rn)n≥0 which extends to a recurrence for
the residuals in (1.3) as well as to the residuals of the
projections of the Rn. Finally, the joint convergence
of the normalized residuals of all projections is shown
by an application of a stochastic fixed-point argument
in the context of the contraction method by use of the
Zolotarev metric ζ3. However, only an indication and a
reference are given in Section 3.3.

3 Sketch of the proof of Proposition 2.1.

3.1 Proper normalization of the residuals. De-
noting the inner product in Cm by 〈 · , · 〉 we first write
the spectral decomposition of the centered composition
vector with respect to the orthonormal basis {

√
mvk :

0 ≤ k < m} of the unitary vector space Cm (denoting
coefficients by uk(w) := 〈w, vk 〉 for w ∈ Cm) as

Rn − E[Rn] =

m−1∑
k=0

πk (Rn − E[Rn])

=

m−1∑
k=0

uk (Rn − E[Rn]) vk.

The evolution (2.5) of the process implies that for all
0 ≤ k ≤ m− 1 the random variables M0,k := 0 and

Mn,k :=
Γ(n+ 1)

Γ(n+ 1 + ωk)
uk (Rn − E [Rn]) ,(3.11)

n ≥ 1, define complex-valued, centered martingales.

Note, that the corresponding martingales M
[j]
n,k when

starting with one ball of type j ∈ {0, . . . ,m− 1} satisfy

M
[j+1]
n,k

d
= ωkM

[j]
n,k (convention M

[m]
n,k := M

[0]
n,k).

It is known, see [9, 10, 15], that for all k ∈ {0, . . . ,m−1}
with λk = <

(
ωk
)
> 1/2, there exists a complex random

variable Ξk such that, as n→∞, we have

Mn,k → Ξk almost surely,(3.12)

where the convergence also holds in Lp for every p ≥ 1.
Note, that the Ξk in (3.12) turn out to be identical with
the Ξk appearing in (2.7) and in Theorems 1.1 and 1.2.
The Mn,k with λk = <

(
ωk
)
≤ 1/2 are also known to

converge, after proper normalization, to normal limit
laws.

Our subsequent analysis requires asymptotics for
moments of and correlations between the uk(Rn). Ex-
ploiting the dynamic of the urn in (2.5) elementary cal-
culations imply that:

Lemma 3.1. For all k ∈ {0, . . . ,m − 1} \ {m/2}, we
have

E [uk (Rn)] =

m−1∑
t=0

ωktE [Rn,t] =
Γ(n+ 1 + ωk)

Γ(n+ 1)Γ(1 + ωk)
,

while

E
[
um/2 (Rn)

]
= 0.



For all k, ` ∈ {0, . . . ,m− 1},

E [uk (Rn)u` (Rn)]

=

n∏
s=1

(
1 +

ωk + ω`

s

)

+ ωk+`
n∑
s=1

1

s

s−1∏
t=1

(
1 +

ωk+`

t

) n∏
t=s+1

(
1 +

ωk + ω`

t

)
.

From Lemma 3.1 we obtain the L2-distance of the
residuals of the martingales (Mn,k)n≥0 with λk > 1

2
needed for the proper normalization of these residuals:

Lemma 3.2. For k ≥ 1 such that λk > 1/2, as n→∞,
we have

E
[
|Mn,k − Ξk|2

]
∼ 1

2λk − 1
n1−2λk .

Lemma 3.2 directly implies the asymptotic covariances
of the residuals of the centered projections of the
composition vector, which we denote by

Πn,k :=


Γ(n+1+ωk)

Γ(n+1) (Mn,k − Ξk) vk, if λk >
1
2 ,

uk (Rn − E [Rn]) vk, if λk ≤ 1
2 .

Note that this notation implies the representation

(Rn − E[Rn])−
∑

k≥1: λk>1/2

Γ(n+ 1 + ωk)

Γ(n+ 1)
Ξkvk

=

m−1∑
k=1

Πn,k.

Lemma 3.1 and Lemma 3.2 imply:

Lemma 3.3. For all k ∈ {1, . . . ,m− 1} \ {m6 ,
5m
6 },

as n→∞, we have

Cov (Πn,k) ∼ 1

|2λk − 1|
n · vkv∗k.(3.13)

If 6 | m, then

Cov
(
Πn,m/6

)
∼ n log(n) · vm/6v∗m/6,(3.14)

Cov
(
Πn,5m/6

)
∼ n log(n) · v5m/6v

∗
5m/6.(3.15)

This also determines the covariance matrices Σk
in Proposition 2.1: We have

Σk =
1

|2λk − 1|
· vkv∗k +

1

|2λm−k − 1|
· vm−kv∗m−k

(3.16)

for k ∈ {1, . . . , dm/2e − 1} \ {m6 } as well as

Σm/6 = vm/6v
∗
m/6 + v5m/6v

∗
5m/6, if 6 | m,(3.17)

Σm/2 =
1

|2λm/2 − 1|
· vm/2v∗m/2, if 2 | m.(3.18)

We also need to control correlations of residuals between
different eigenspaces. An explicit calculation implies for
all k, ` ≥ 1 with k 6= ` and λk, λ` >

1
2 that

E [(Mn,k − Ξk) (Mn,` − Ξ`)](3.19)

= O
(
n−1 + nλk+`−λk−λ`

)
.

The bound (3.19) implies:

Lemma 3.4. Let k, ` ≥ 1 with k 6= ` and n→∞.
If λk, λ` >

1
2 or λk, λ` ≤ 1

2 then

Cov (Πn,k,Πn,`) = o(n).

If λk >
1
2 and λ` ≤ 1

2 then

Cov (Πn,k,Πn,`) = 0.

These moments estimates are sufficient to subsequently
properly scale the projections of the residuals and to
guarantee the finiteness of the Zolotarev metric ζ3 used.

3.2 Embedding into a random binary search
tree. In this section we describe the self-similarity
of the martingale limits Ξk by deriving an almost
sure recursive equation for the Ξk and a distributional
recurrence for the sequence (Rn)n≥0 which extends to
a recurrence for the residuals in (1.3) as well as to the
normalized residuals Xn,k of the projections of the Rn.

For this, we embed the cyclic urn process into a
random binary search tree. The random binary search
tree starts with one external node. In each step one of
the external nodes is chosen uniformly at random (and
independently from the previous choices) and replaced
by one internal node with two children, the children
being external nodes attached along a left and right
branch. The cyclic urn is embedded into the evolution
of the random binary search tree by labeling its external
nodes by the types of the balls. The initial external node
is labeled by type 0. Whenever an external node of type
j ∈ {0, . . . ,m − 1} is replaced by an internal node its
(new) left child gets label j, its right child gets label
j+ 1 mod m. Note, that the external nodes of the tree
correspond to the balls in the urn. A related embedding
was exploited in [11, Section 6.3]. Note that the binary
search tree starting with one external node labeled 0
decomposes into its left and right subtree starting with
external nodes of types 0 and 1, respectively. The size
(number of internal nodes) In of the left subtree is



uniformly distributed on {0, . . . , n − 1}. This implies,
with Jn := n− 1− In, the recurrence

R[0]
n = R

[0],(0)
In

+R
[1],(1)
Jn

= R
[0],(0)
In

+AtR[0],(1)
Jn

,(3.20)

where the sequences (R
[0],(0)
n )n≥0 and (R

[1],(1)
n )n≥0 de-

note the composition vectors of the cyclic urns given by
the evolutions of the left and right subtrees of the root
of the binary search tree (upper indices (0) and (1) de-
noting left and right subtree, upper indices [0] and [1]
denoting the initial type). They are independent and
independent of In. Note that the second equation in

(3.20) is due to (1.2) where the R
[0],(1)
n are chosen ap-

propriately for pointwise equality. Now, applying the
transformation and scaling which turns Rn into Mn,k

to the left and right hand side of (3.20), letting n→∞
and using the convergence in (3.12) implies the following
recursive equation for the Ξk:

Proposition 3.1. For all k ≥ 1 with λk > 1
2 there

exist independent random variables U , Ξ
(0)
k , Ξ

(1)
k such

that

Ξk = Uω
k

Ξ
(0)
k + ωk(1− U)ω

k

Ξ
(1)
k + gk(U),(3.21)

where

gk(u) :=
1

Γ(1 + ωk)

(
uω

k

+ ωk(1− u)ω
k

− 1
)

and U has the uniform distribution on [0, 1] and Ξ
(0)
k

and Ξ
(1)
k have the same distribution as Ξk.

Alternatively, the martingale limits Ξk can be written
explicitly as deterministic functions of the limit of
the random binary search tree when interpreting the
evolution of the random binary search tree as a transient
Markov chain and its limit as a random variable in the
Markov chain’s Doob-Martin boundary, see [5, 7]. From
this representation the self-similarity relation (3.21) can
be read off as well. See also [1] for a related explicit
construction.

3.3 Proving convergence. Note that the left and
right hand sides of (3.20) and (3.21) are linked via
the convergence of the Mn,k towards Ξk. This al-
lows to come up with a recurrence for the vector
(Xn,1, . . . , Xn,bm/2c) in Proposition 2.1. The reader is
asked to trust the authors that the techniques devel-
oped in [14] for a univariate problem can be extended
to the multivariate recurrences for (Xn,1, . . . , Xn,bm/2c)
and that the same type of proof as in [14] based on the
Zolotarev metric ζ3 can be applied.

3.4 The rank of the covariance matrices. The
covariance matrices Σ(m) in Theorem 1.1 and 1.2 appear
as the sums of the covariance matrices in (3.16) and
(3.18) if 6 - m and as the covariance matrix in (3.17) if
6 | m. We obtain their ranks as follows:

Theorem 3.1. For 6 - m, the matrix

(3.22) Σ(m) =

m−1∑
k=1

1

|2λk − 1|
vkv
∗
k

has rank m− 1, while for 6 | m,

(3.23) Σ(m) = vm/6v
∗
m/6 + v5m/6v

∗
5m/6

has rank two.

Proof . Note that the matrix-vector product mvkv
∗
kx is

the orthogonal projection of x ∈ Cm onto the eigenspace
spanned by vk. Hence, we have

Idm =

m−1∑
k=0

mvkv
∗
k.

The matrix mΣ(m) can be interpreted as the orthogonal
projection onto span{v1, . . . , vm−1} for the case 6 - m
and onto the subspace span{vm/6, v5m/6} for 6 | m.
Hence, we obtain the ranks m− 1 and 2, respectively.
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