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HIGH POINTS OF A RANDOM MODEL OF THE RIEMANN-ZETA
FUNCTION AND GAUSSIAN MULTIPLICATIVE CHAOS

LOUIS-PIERRE ARGUIN, LISA HARTUNG, AND NICOLA KISTLER

ABSTRACT. We study the total mass of high points in a random model for the Riemann-
Zeta function. We consider the same model as in [, [2]], and build on the convergence
to ’Gaussian’ multiplicative chaos proved in [[14]. We show that the total mass of points
which are a linear order below the maximum divided by their expectation converges al-
most surely to the Gaussian multiplicative chaos of the approximating Gaussian process
times a random function. We use the second moment method together with a branching
approximation to establish this convergence.

1. INTRODUCTION

1.1. The model. Let # denote the set of all prime numbers. Let (6,),ep be independent
identically distributed random variables, being uniformly distributed on [0, 27r]. For N €
N, a good model for the large values of the logarithm of the Riemann-zeta function on a
typical interval of length 1 of the critical line as proposed in [8] is

N

(L) Xv@=)

J=1

: (cos(x In p;) cos(8,,) + sin(x1In p;) sin(@,,j)) xe[0,1].

J

By Theorem 7 in [14], the process Xy can be well approximated by a log-correlated
Gaussian field Gy(x), x € [0, 1]. Namely, take

N
1 .
(1.2) Gr(x) = Z W (W' cos(xIn p;) + W sin(xIn p;)),
j=1

where (WJ@) jenie(1,2} are 1.1.d. standard normal distributed. It is shown in [14] that
(1.3) Xn(x) — Gy(x) = En(x), x€[0,1],

where Ey(x) converges almost surely uniformly to a random function E(x). Moreover, the
error Ey(x) has uniform exponential moments

(1.4) E(e/ISUPNzl,xe[o,nEN(x)) < oo,

where E denotes expectation with respect to the 6,’s.

Some of the behavior of the large values of the process Xy (x), x € [0, 1] is captured by
the random measure

@Xn(x)

(15) MQ,N(d.X) = M—Xdex .

Date: June 21, 2019.

2000 Mathematics Subject Classification. 60J80, 60G70, 82B44.

Key words and phrases. Riemann-Zeta function, high points, Gaussian multiplicative chaos, extreme

values .
The research of L.-P. A. is supported in part by NSF CAREER DMS-1653602.


http://arxiv.org/abs/1906.08573v1

2 L.-P. ARGUIN, L. HARTUNG, AND N. KISTLER

By the independence of the 8,’s, it is not hard to see that M, y converges almost surely as
N — co. By Theorem 4 in [14], the almost sure weak limit of M, y(dx) is non-trivial for
0 < a < 2. We denote the limit of the total mass by M,

1
(1.6) M, = Allim M, n(dx) a.s.
- Jo

For log-correlated Gaussian field the analogous limiting measure is called Gaussian multi-
plicative chaos and M, corresponds to the total mass of the limiting measure. For Gaussian
multiplicative chaos it was first proven by [9] that the limit is nontrivial for small @ and
was recently revisited (see [13,[12]]). Note that in our case the limit of M, y(dx) is almost
a Gaussian multiplicative measure (see [14]). The connection between the Riemann-zeta
function and Gaussian multiplicative chaos has been further analysed in [13].

The fact that the Riemann-zeta function (or a random model of it) can be well approxi-
mated by a log-correlated field have recently been used to study the extremes on a random
interval [4} (11} [2]].

1.2. Main result. Consider the Lebesgue measure of a-high points:
(1.7) W,y = Leb{Xy(x) > %m In N}

The main result of this note is to relate the limit M, to the Lebesgue measure of high points
building on the ideas of [7]:

Theorem 1.1. Forany 0 < a < 2 and M, as in (L.6), we have

Wa,N

1.8 —
(1.8) E(Wo)

M,,

in probability as N — oo.

It was proved in [2] that the maximum of Xy(x) on [0, 1]isInInN — (3/4 + €)InlnIn N
with large probability. In view of this and of Theorem [LL1] it is not surprising to see that
the M, is non-trivial for @ < 2. The critical case where @ — 2 is interesting as it is related
to the fluctuations of the maximum of Xy . It is reasonable to expect that our approach can
be adapted to the method of [S] to prove the critical case. Another upshot of the proof is
that it highlights the fact that M, depends on small primes, cf. Lemma[2.1l

The problem for the Riemann-zeta function is trickier. We expect that the equivalent of
Theorem [L1] still holds:

Conjecture 1.2. Let T be a uniform random variable on [T,2T]. Let W,7 = Leb{h €
[0,1]: In|{(1/2 + i(r + h))| > 5 InInT}. Then we have

C War . hA2+ i@+ )
lim —2'— = lim :
To0 B[Wor]  Tow  EBIZ(1/2 + )]

a.s.

This would be consistent with the conjecture of Fyodorov & Keating for the Lebesgue
measure of high points, see Section 2.5 in [[6] One issue is that it is not obvious that a
result akin to Equation holds, mainly because of the singularities of In { at the zeros.
One way around this would be to restrict to Gaussian comparison to one-point and two-
point large deviation estimates. This seems doable in view of Lemmas[3.2]and [3.3] and the
Gaussian comparison theorem proved for the zeta function in [1]].
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1.3. Outline of the proof. The proof of Theorem is based on a first and a second
moment estimate and follow the global strategy proposed in [7] for branching Brownian
motion. First, we prove convergence of a conditional first moment to the desired limiting
object in Lemma[2.1] Its proof builds on results on the Gaussian comparison and conver-
gence to Gaussian multiplicative chaos established in [14]. Next, a localisation result is
established in Lemma[2.2l Finally, we turn to the proof of Proposition [3.4] which is based
on a second moment computation. We use a branching approximation similar to the one
employed in [2]. Using the obtained first and second moment estimates we are finally in
the position to prove Theorem [l

Acknowledgements. Lisa Hartung and Nicola Kistler thank the Rhein-Main Stochastic
group for creating an interactive research environment leading to this article.

2. FIRST MOMENT ESTIMATES

For R < N, we define ¥ to be the o-algebra generated by (6,),<k. We will often
condition on ¥ to fix the dependence on the small primes. The variance of Gy(x) —Gg(x),
x € [0, 1] is by definition

1
2.1) OTHN) = Var(Gy() = Gr) = 5 p P!

R<p<N

The prime number theorem, see e.g. [10], implies that the density of the primes goes like
(In p)~!. More precisely, we have

N
1
2.2) O'I%(N) = Z p - E(lnlnN —InInR)| = 0o(1) as N — oo and R — co.
R<p<N

It turns out that the non-trivial contribution to Theorem [[.I] comes from the small
primes.

Lemma 2.1. For W,y as in ((L.7), we have for 0 < a < 2

(2.3) lim lim E (WonIFr)

=M, a.s.
R—oc0 N> ]E (W(Z,N)

Proof. We start by computing E (W, y|Fz). Using Fubini’s Theorem we can write the
left-hand side of as

(2.4) fo | P(XN(x) > %mlnN}?-‘R)dx

1
= f P(GN(x) — Gr(x) + (En(x) — Eg(x)) > %ln InN — Ggr(x) - ER(X)‘TR) dx,
0

where we used (I.3). Moreover, again for each € > 0 there is R, such that for all R > Ry
|Er(x) — En(x)| < € almost surely and uniformly in x. Hence, we can again upper bound

2.4) by

1
(2.5) f P(GN(x) — Gp(x) > % Inln N — Gr(x) — Er(x) — 6)'7"13) dx,
0

and a corresponding lower by replacing € by —e. Next, observe that by definition of Xy (x)
and Ey(x), Gy(x) — Gg(x) are independent of Fz. We have that the probability in (2.3) is
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bounded from above by
ar(N) o (_(g Inln N — Gg(x) — Eg(x) — 6)2)
V2r(@Inln N — Gg(x) — Eg(x) — €) 20%(N)
or(N) ( @’(Inln N)?
=———exXp|l-—S 5o
V2r(aInln N) 80x(N)
Next, we turn to E (W, ). We have that
o.(N) ( a@*(Inln N)z)
V27(¢ Inln N) 8oz (N)

(2.6) + a(ER(x) + Gg(x) + 6)) (1 +o(1)),

E (Wa,N) =E (E (WQ,NW:R)) <

1
2.7) X f E (exp (@(Er(x) + Gr(x) — €))) dx(1 + o(1))
0

A corresponding lower bound we obtain by replacing € by —e. Taking the quotient of (2.6))
and and (2.7) and integrating with respect to x we get

I exp (@(Er(») + Gr(x) + )
Jy B (exp (a(Ex(x) + Gy(x) - €))) dx
E(Wanlf) _ &P (@(Ex() + Ga(x) ~ )
EWan) ™ [VE(exp (a(Ex(x) + Gr(x) + €))) dx

(1+0(1))

(2.8) <

(1 +0(1)),

Pulling the terms involving € out of the integral and noting the normalization of M,z is
chosen such that EM, z = 1 and noting that

(2.9) B Iy exp (@(Ex(x) + Gr(x))) dx ,

iV E (exp (U(Ex(x) + Gr(x)))) dx

we can rewrite as

B (Wa NlTR) -2

—= <M, (1 + o(1)).
E(WQ,N) = ,RE€ ( o(1))

Note that (Z.10) holds for all € > 0. When taking N,R T oo M, converges a.s. to M,
hence we have a.s.

(2.11)
. . E(Wa N|7:R) . E(Wa N|7:R) i)
M,e* (1 + o(1)) < liminf ——"=2 < lim sup ————— < M, e 2*(1 + o(1)).
(1+0(1)) < Timinf 5 < lim sup — e (1+o0(1)
As does not depend on r and N anymore, we can take the limit as € — 0 and obtain

E (W,
(2.12) lim tim —WelTR)
R—00 N—oo E (WQ,N)

(2.10) M, ze* (1 + o(1)) <

a -

Next, we want to control
(2.13) W;’N =Leb{x €[0,1] : Xy(x) > alnlnN;dk € [R,N] : X;(x) > (o +¢€)Inlnk}.

The idea is that, at high points, the value Xy (x) is most likely shared equally by the incre-
ments as defined in (3.1)) below.
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Lemma 2.2. For all € > O there exists Ry such that for all R = o(N) and R, N > R, such
that for all c > 0

(2.14) P(W, > CEWoy) < e,
where r = InlnR.

Proof. We want to use Markov’s inequality to bound the probability on . Hence, we
need to bound EW; y from above. First, we bound E (W; NITR) from above by

1
(2.15) f P( {Gy(x) — Gr(x) > @lnIn N — Xz(x) — €}
0
N{AK € [R,N] : Gx(x) — Gr(x) > (@ + €)InIn K — Xp(x) — €} )7—}),

where we used and the fact that Ex(x) converges a.s. uniformly to a continuous
function E(x). Hence, for all € > O there is R, such that for all K > R, and all x we have
|Ex(x) — Er(x)| < €.

Similarly as in (2.)), the variable Gx(x) — Gg(x) is Gaussian with mean 0 and variance

1
ouKy=5 )

R<p<K
Let
ox(K)

(2.16) Bg(x) = Gg(x) = Gg(x) — 2()

(Gn(x) = Gr(x)),

then (Bk(x))}_, are points on a time-changed brownian bridge from zero to zero in time
or(N)?. As a Brownian bridge is independent from its endpoint, Equation (2.13)) is equal
to

1 00
@m‘ff P(Gy(x) — Gg(x) € dy)
0 g Inln N-Xg(x)—€’

2
K

a+61n1nK—XR(x) -€ - %)
Tr(N)

P (31( € [R.N]: By(x)> y '7—}) dx
as |Zpg,(p‘1 —InlnK| < C. Letr = InlnR and n = InIlnN. Next, let us control the
probability that Xz(x) is too large.

(2.18) P(Xe > 5) <2 (Gato) = T)+ P (Eaw > ).

3 4 12
The second probability in (2.I8) is bounded by Ce™© by (L.4). For the first probability
in (2.18) is bounded by Ce™% by Gaussian tail asymptotics and the variance estimate for

Gr(x) for r large enough and uniformly in x. On the event that {Xz(x) < 5} we can bound
the second probability in from above by

(2.19) P(as € [0,07N)| : b(s) > (a + ) ((s + To(R)) - C) - %’ - szN)y),

where b(s) is a Brownian bridge from zero to zero in time o-*(N). Consider the line / from
(0. £r)to (02(N). (e + €)(n/2 - C) - € —y). One checks that I(s) < (a+€) ((s + To(R) - C)-
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§—€ - %y for all r large enough. The probability of Brownian bridge to stay under a

linear function is well known, see e.g., Lemma 2.2 in [3],

10)! (az(N)))

(2.20) P(3s € [0,0%N)]| : b(s) > U(s)) = exp(—Z 2N

Hence, on the event we can bound the expectation of (2.17) by

2.21)
er(a/2+€/2)n—(a+e)C—€ —y)

1 00
f Ef P(Gn(x) — Ggr(x) € dy)e” 37201 (I +o(1))dx + Ce_%E(Wa,N)
0 g Inln N—-X,.(x)

Using the Gaussian tail asymptotics for Gy(x) — Gg(x) together with (2.7)), Equation (2.21))
is bounded above by

(2.22) E(W,y)e 540,
This implies the claim of Lemma[2.2 m|

3. BRANCHING APPROXIMATION AND SECOND MOMENT ESTIMATES

3.1. Definition of the increments. The goal is to use a branching approximation similar
to [2] to compute the necessary second moments. To this end, we define for k € N and
xe(0,1)

1
(3.1) Yi(x) = T (W' cos(xIn p,) + W sin(x1n p;))
ek=1<In p<ek J
By definition, we have
(3.2) Gy = ) (),
k=1

where for the rest of the section we set n = InIn N. The increments Y, are such that
4 4 1 ’
(3.3) P x) S EG@YNG) = ) 5= cosr—x|Inp).
ek=1<In p<ek

The covariances can be computed again by the prime number theorem. This is done in
Lemma 2.1 in [2]. It is convenient to state the result to introduce branching point of
x,x €(0,1) by

(3.4) xAX =|ln|x- x|

Lemma 3.1 (Lemma 2.1 in [2]]). Fork > 1 and x, x" € (0, 1) we have

1
3.5) B((0) = 5 + o(e-”e—"),
and
Lio(e2m-P) 1 0e V") ifk<xAX,
(36) pk(-x’ x,) = 2 —(k(— AX) ) ( ) f ’
O(e I ) ifk>xAx

There is a fast decoupling between the increments after the branching point where the
distribution of Y;(x) and Y;(x") is very close to independent Gaussians with mean zero
and variance 1/2. We introduce a parameter A that gives some room before and after the
branching point to ensure uniform estimates.
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Lemma 3.2. Let A > 0. Let x,x' € (0,1) and m > x A X' + A. Then we have
(3.7)

P Z Yi(x) € A, Y Yk(x’)eB):P(Zn: YkeAJP(Zn: YkeBJ(1+O(e‘C5),

k=m+1 k=m+1 k=m+1 k=m+1

where (Y;)ien are iid Gaussians with mean zero and variance o>

Proof. As(X - i1 Ye(x), Yicme Yi(xX')) is a Gaussian process and its covariance is con-
trolled in Lemma 3.1l it suffices to compare densities. This follows the same lines starting
from Eq. (61) in [2] only that in our setting u = 0. O

Before the branching point we want to show that Y;(x) and Y (x") are almost fully cor-
related. This is specified in the lemma below.

Lemma 3.3. Let A > 0. Let x,x' € (0,1)andr <m < x A X' — A. Then we have
(3.8) P[Z Y (x) € A, Z Yi(x) € BJ = P(Z Y,eAN BJ (1+0e™),
k=r k=r k=r

Proof. As G is a Gaussian process this follows from the density estimates in Lemma [3.11
O

3.2. Second moment computation. The main result of this section is:

Proposition 3.4. There exists k, > 0 such that for R = o(Inln N) as N — oo we have
Wa,N - E (Wa,N|¢R)
E(Wyn)

where r = InlnR and C > 0 a constant depending on c.

(3.9 P(

> c) < (1+o0(1)Ce*",

To prove Proposition 3.4 we essentially need to control the second moment of

W3y = Leb{x €[0,1] : Z Y;(x) > an/2;Vk € [2r,n] : Z Y;(x) < (a + e)k/2).

j<n j<k

Remark. Throughout the proof we restrict our computations to R and N such that r =
InInR and n = InIn N are natural numbers. The general case follows in the same way by
considering the last resp. first summands in the representation in (3.2) of Gy separately.
The desired estimates carry over by minor adjustments but would require a more involved
notation. To keep the computations that follow as clear as possible and not to burden the
reader with heavier notations we restrict ourselves to the case where r,n € N.

Indeed, Markov’s inequality and Lemma[2.2]imply

2
Won — E(W, Wz, —E(W:, |7
(3.10) P(‘ ~ = BE(WonlTr) )SP (Waw —E( x 7)) > 24|+ cere
B (We) B (Wo)

Clearly, we have
(3.11)

< 3\2 x2 ’ ’ a a+e
(W) = Leb®(x, ¥’ €[0,1]: ¥y € {x,x'} ) Y%i(y) > .k € [r.n] DY) < k)

k<n J<k
Let 0 < A < r. We divide the right side into four terms depending on the branching point:
(D :xAx" >n=A D) : r+A < xAx" <n=-A D) : r—=A < xAX" <r+A (V) : xAX < r-A.

The term (/V) is controlled in the following Lemma.
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Lemma 3.5. For R = o(Inln N) we have

2
_ . EUW)IFR - (B(WE, 7))
(3.12) lim lim 5 =0 a.s.
A—o00 N—oco EZ(VV&JV)

Proof of Lemmal3.5 As x A X < r — A and by a similar rewriting in (2.3) we have by
Lemma[3.2] that it is bounded from above by

(3.13) f{ . yw (Z Y > Sn = G(y) = Exy) - e)iﬂ) dx'dx(1+0(e))

k=r+1

fﬁ)m (Z Y, > —n — Gr(y) — Ex(y) — e)‘ﬁe] dx'dx(1+0(e))
ye{x,x'}

k=r+1

We now compare (3.13) with (E (W=, |Fz ? which is bounded below by
a,N

(3.14) f f B(Gr0) ~ Gely) > T~ Galy) ~ Exty) + OFe ) d
[0,1]2

yexx

for any € > 0. By[2.1]and the Gaussian approximation given in (3.I)) the absolute value of
the difference of (3.13) and (3.14) is bounded by

(3.15) Mg NE(W, n) e (1 +0 (e_CA)) - M e

Hence (3.13) divided by E(W,_y)* converges almost surely to

(3.16) Mé o 20€ ( o 20€ _ pae | ,~2aer) ( e—cA))

for all €, A > 0. Note that (3.13) converges to zero as € — 0 and A — oo. O
To control the terms (1), (I1) and (I1I), we prove the following lemma.

Lemma 3.6. Let 0 < a < 2. There exists k, > 0 such that for R = o(InInN) as N — oo

we have
(3.17) E((I) + (D) + (D) < E (W, y)* e
Proof of Lemma We bound E((1)|F%) from above by
(3.18) e A f [Z Yi(x) > n‘TRJ dx = e ""CE(W, v FR),
0 k<n
by @.4). Hence,
—n+A
2 _ 2
(3.19) E((D) < E(Wan) BWon) E(W,n) o(1),

as EW,n) = cn e and 0 < @ < 2.

Next, we turn to E((/I)|¥ ). Using that uniformly in y for all R, N large enough |Ex(y) —
Er(y)| < €, we can bound E((/])|F%) from above by
(3.20)

U a+e
Pl Vyerrr) Yi(y) > —n Xr(y) dxdx’
ff{;+A<x/\x'<n—A} ( > Z (y R(y 2 ]

j=r+l




HIGH POINTS OF THE RANDOMIZED RZF 9

Dropping the barrier constraint except at x A x’ — A and x A X’ + A we can bound the
probability in (3.20) from above by

n k

104
3.21) P (vyE{x,x’} Z Yj(Y) > En - Xr(y) — €, vke{x/\x’—A,x/\x’+A} Z Yj(Y) <

j=r+l J=1

a+e
2

k‘ﬂ] .

We evaluate the probability in the integral at a fixed x A X’ = m, and sum the contributions
over m afterwards. We introduce an extra conditioning. Let 7—”ky = o(Y;,j < k). We
condition on FY_, slightly after the branching point. Lemma 3.2 applied to then

m+A°
yields
(1 +e A)E( 1_[ P[ Z Yi(y) > 5" - Xr(y) —€ - Z Yi(y) LA]
yefx,x'} k=m+A+1 r<j<m+A
o+ €
(322) ;vye{x,x’},kE{m—A,m+A} Z Y](y) S 2 k'TR)

<k

We distinguish two cases. First, consider the case when fory = xory = X/,

(3.23) %n - Xe)-€e— Y V() =<0,

r<j<m+A

Note that due to the barrier in this can only happen jointly with the barrier event if
m > ——n — (e for some constant C" > 0 independent of €. In this case we bound the
probabilities above by one and bound (3.22)) from above by

(3.24)

(1+e) P(%n “X 0 —€e= D V) L0: Vi ). Y0 < QT-'_E(m + A)}?—‘R] .

r<j<m+A Jj<m+A

As for an upper bound we can drop all constraints in the expectation with respect x" (if
y = x) and x otherwise, let us assume without loss of generality that y = x. We need to
distinguish whether $n — Xg(x) — € > 0 or not. On the event Tn — X(x) — € < 0 we bound
the expectation in (3.24]) by one and obtain that the expectation of (3.24) from above by

(3.25) P(XR(x) > %n _ e) < E(eaxk(x)—a(%n—s))

by the exponential Chebyshev inequality. Hence, integrating over x, x’ in (3.28) we get

1 1
e arenC'e f E (e“XR(x)—“(%n—f)) dx <E ( f e“x’(x)) g ni2-ae
0 0

(3.26) < CnE (W, ) e ae"=C'egmarae,

by @.7). When §n — Xg(x) — € > 0, we bound from above using Gaussian tail
asymptotics by

327 (1+ e_CA)P[ Z Yi(x) > %n — Xgz(y) — e‘ﬂ] <(1+e) Rt al

r<j<m+A
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The integral of (3.27]) with respect to x and x” can be bounded from above by

(3.28) (1 +e_CA) Z e fl e—%dx
. 0

a7 _
~en—C’'esm<n-A

1 2
2 (n—20r(m+A)) +nXr(x)
< (1+e) 2 e f e TR 20 lx
aT” C’e<m<n-A 0
1 2
. :: 2 (1=20 (m+A)% ne+nXr(x)
S (1 + e_LA) e_m f e_(a n/2)_0 nS(rrO(—rrn:A) + 4 (2o-r(m+A))e 2lfrrr(lmz-g) d_x
0

'’
(H_En C’e<m<n-A

Using that in the range of summation in (3.28)) o, (m+A) is bounded form above and below
by %(m —r) + C resp. %(m —r)— C, for some constant large enough, we can bound (3.28))
from above by

2
(3.29) (1 +e_CA) > f a2~ Rl [ ot aon
en—C'esm=n

Asm > ==n - C’e, exponantial term in € bounded by €€ and as 0 < @ < 2 we have that
on the one hand "TZ — 1 < 0 and on the other hand we can choose together with we
can bound the corresponding expectation in (3.29) from above by

(3.30) (1+ &) E(W,n)e e,

for some ¢ > 0.
Finally, we turn to bound for $n — X.(y) — € = X < j<msa Yj(y) = 0 we can bound
from above by a Gaussian tail bound and obtain
n—-m-~A)/2
21T Hye{xx ( (I’l —m=A— 6) XR(y) _ 6) Vyena Jhelm-am+a) Dj<k Vi< Gk

(%l’l — XR(y) —€— Zr<j§m+A Yj(y))z
Z (n—m-—A)

(3.31) E(

X exp|—

Fr

YE{x,x'}

Next, we condition on F . The terms depending on Y, _a- j<m+a Yj can be bounded by
the moment generating function:

(3.32) E (eCA Sm-A<j<meA Yj(x)+Yj(X’)) < eC’Az.

Hence, Equation (3.31)) is bounded above by
(3.33)

ox _(‘Yn Xr()-e-37 1, Y(y)) )
(n—-m—-A)
| =m = a2 |
e El — 1s. (1)< € (m— g
27‘[ l_[ ngm—A YJ())S 2 (m=24) %(n - m — A - E) - XR()’) — € "

YE{x,x'}

Using the fact that the variables Y;(x) and Y;(x") almost coincide for j < m — A by Lemma
B3] we have that (3.33)) is bounded above by
(3.34)

C'A? (n=m=A)/2 E
27(§ (n—m—A—€)—Xgr(x)—€)?

2( n—Xg(x)—e~ Z';” r_AH Y,(x))

(n—-m-A)

e

]l ZjSm—A Yj(x)S % (m—A) e

7:R) (1+0(e™™)



HIGH POINTS OF THE RANDOMIZED RZF 11

The expectation in (3.34)) is equal to

% (m_A) 2( % nfxr(x)fefz)2 Zz dZ
(335) f e_ (n—-m—A) e_ m-A=r) — .
o0 Va(m —A—r)

The integrand with respect to z is minimal for

2(4n - Xa(x) =€) (m— A -7)

n+m-—3A-2r

(3.36) 7=

When “T*Em — ¥ <« 0 which is the case when m < (1 — d)n for some 6 > 0, we can use
Gaussian tail asymptotics to bound (3.33) from above by

(3.37) exp [_2 (3~ Xet0 —c—5em)”  (5m)

(n—m~—A) T m=-A-n]

Plugging this bound into (3.34)), summing over m < (1 — &)n, and computing the squares
in the exponential, we obtain that (3.34) is bounded from above by

Aom o\
(3.38) > AT enecemqw, 21+ o1,

I=r+A
If x Ax’ < (1 —6)n we can bound the Gaussian integral by one and get that (3.8)) is bounded
from above by

2(ganR(x)fs )2 d 2 )2
(3.39) e_ 2(n—m—A) ) e ()E A— r)—ye (n(n —A)

-8
Using (3.36) we can bound the expectation of (3.39) for m > (1 — §)n by

2( Ly_X (x)fe)zm
(340 (0408 (W,

Plugging this into (3.34) we can bound the contribution from above

Z(Qn—Xr(x)—e)zm
(3.41) Z 2—meC<A2+f>E(Wa,N)2E(672 e )

m>(1-6)n
Noting that 2n — né < n + m < 2n the above term can be bounded from above by

2£n2

(3.42) Z ot ,,2&,51 eC(A2+e)_

m>(1-06)n

Note that the exponent in is negative for ¢ sufficiently small.
Finally, we want to bound E((//)). By Lemma we have similar to that
E(({11)) is bounded from above by (1 + e‘m) times

r+A n m+A
> I [ P[ D K0 > G- Xe)—e= ) V) ,M]
XAX =m} yE{xx

m=r—A+1 k=m+A+1 j=r+1

(3.43) Nyetear D ¥i0) < S50+ A)] dxdx

Jj<m+A
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If $n — Xg(y) — € - ZTjﬁl Yi(y) > 0 for y € {x, x’} we can use Gaussian tail asymptotics

for the probabilities in (3.43) to bound the expectation in ([3.43) from above by
(3.44)
(}’l _ 7‘)/2 ( n—Xp(x)—e— z’"*rA] y,(;()) ( n-Xg(x)—e— z’]"*ré] Y0 ))
- _
21 [ Loy (5 —1r = 2A — €) — XR(y) — 6)

(n—-m-A) e (n—-m-A)
Noticing that the polynomial prefactor is bounded by C/n and otherwise proceeding as in
(3.32) we can bound (3.43) from above by

N ZA: f f (C (e’ Grord ITR)dx'dx(l+0(e_CA))
{XAX =m}

m=r—A+1

(345) < eCACAp AR (]E (Won)* €2 (1 + O(e_CA))),

by (2.6) for any € > 0 and A > 0. Note first that due to the barrier event in (3.43) the
case 5n — Xg(y) — € — Z';’:,ﬁ 1 Y;(y) < 0 for at least one y € {x,x’} can be excluded for
mef{r—A,r+A}L

This completes the control of (/1) and hence also the proof of Theorem

Proof of Proposition[3.4] We bound (3.10) from above by
2
E((IV)|Fz) — (B (W= ,|F;
(D + (D + (1D >Cz/8)+P{ INITw - (B (Worl7w)

3.46)P
( )( E (W y) E(W,n)

2

E((IV)|Fy) — (B (WS |F;

8 ((I)+(II)+(HI))+P{ AV)IFe) - ( (ZQ,NI 7)) >c2/8]+CeRC(f>
c E (Wa N) E (Woz,N)

> 2 / 8] + Ce Re©

where we used Chebyshev’s inequality. By Lemma 3.6 we can bound (3.10) from above
by

(3.47)

2E (W n) E(Wan)’

which yields Proposition [3.4] by possibly modifying the constants and noting that € in
(B.47D) is arbitrary (but fixed) as the claim of Lemma[3.3/holds almost surely in the N — oo
limit. o

2 —KaT EIV)|Fr) — (E Wj |F ¥
8E (W,n) e +P[ R ( ( N R)) >c/8] j ~al 4 CoRe©,

4. PROOF OF THEOREM

Finally, we are in the position to prove Theorem [L. 1] using Lemma 2.1l and Proposition

B.4

Proof of Theorem[[ 1l First, we rewrite

Won  _ EWonlFr) | Won — E(WonlFr)
E (Wa,N) E(Won) E (Won)
By Proposition [3.4] the second summand on the right hand side of converges to zero
in probability when first N — oo and then R — co. By Lemma the term the first

summand on the right hand side of converges almost surely to M, defined in (L.6).
This completes the proof of Theorem [I.11 |

(4.1)
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