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HIGH POINTS OF A RANDOM MODEL OF THE RIEMANN-ZETA

FUNCTION AND GAUSSIAN MULTIPLICATIVE CHAOS

LOUIS-PIERRE ARGUIN, LISA HARTUNG, AND NICOLA KISTLER

ABSTRACT. We study the total mass of high points in a random model for the Riemann-

Zeta function. We consider the same model as in [8, 2], and build on the convergence

to ’Gaussian’ multiplicative chaos proved in [14]. We show that the total mass of points

which are a linear order below the maximum divided by their expectation converges al-

most surely to the Gaussian multiplicative chaos of the approximating Gaussian process

times a random function. We use the second moment method together with a branching

approximation to establish this convergence.

1. INTRODUCTION

1.1. The model. Let P denote the set of all prime numbers. Let (θp)p∈P be independent

identically distributed random variables, being uniformly distributed on [0, 2π]. For N ∈
N, a good model for the large values of the logarithm of the Riemann-zeta function on a

typical interval of length 1 of the critical line as proposed in [8] is

(1.1) XN(x) =

N
∑

j=1

1
√

p j

(

cos(x ln p j) cos(θp j
) + sin(x ln p j) sin(θp j

)
)

x ∈ [0, 1] .

By Theorem 7 in [14], the process XN can be well approximated by a log-correlated

Gaussian field GN(x), x ∈ [0, 1]. Namely, take

(1.2) GN(x) =

N
∑

j=1

1

2
√

p j

(

W
(1)

j
cos(x ln p j) +W

(2)

j
sin(x ln p j)

)

,

where (W
(i)

j
) j∈N,i∈{1,2} are i.i.d. standard normal distributed. It is shown in [14] that

(1.3) XN(x) −GN(x) ≡ EN(x), x ∈ [0, 1],

where EN(x) converges almost surely uniformly to a random function E(x). Moreover, the

error EN(x) has uniform exponential moments

(1.4) E

(

eλ supN≥1,x∈[0,1] EN (x)
)

< ∞,
where E denotes expectation with respect to the θp’s.

Some of the behavior of the large values of the process XN(x), x ∈ [0, 1] is captured by

the random measure

(1.5) Mα,N(dx) =
eαXN (x)

EeαXN (x)
dx .
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By the independence of the θp’s, it is not hard to see that Mα,N converges almost surely as

N → ∞. By Theorem 4 in [14], the almost sure weak limit of Mα,N(dx) is non-trivial for

0 < α < 2. We denote the limit of the total mass by Mα

(1.6) Mα = lim
N→∞

∫ 1

0

Mα,N(dx) a.s.

For log-correlated Gaussian field the analogous limiting measure is called Gaussian multi-

plicative chaos and Mα corresponds to the total mass of the limiting measure. For Gaussian

multiplicative chaos it was first proven by [9] that the limit is nontrivial for small α and

was recently revisited (see [13, 12]). Note that in our case the limit of Mα,N(dx) is almost

a Gaussian multiplicative measure (see [14]). The connection between the Riemann-zeta

function and Gaussian multiplicative chaos has been further analysed in [15].

The fact that the Riemann-zeta function (or a random model of it) can be well approxi-

mated by a log-correlated field have recently been used to study the extremes on a random

interval [4, 11, 2].

1.2. Main result. Consider the Lebesgue measure of α-high points:

(1.7) Wα,N = Leb{XN(x) >
α

2
ln ln N}

The main result of this note is to relate the limit Mα to the Lebesgue measure of high points

building on the ideas of [7]:

Theorem 1.1. For any 0 < α < 2 and Mα as in (1.6), we have

(1.8)
Wα,N

E
(

Wα,N
) → Mα,

in probability as N → ∞.

It was proved in [2] that the maximum of XN(x) on [0, 1] is ln ln N − (3/4 ± ǫ) ln ln ln N

with large probability. In view of this and of Theorem 1.1, it is not surprising to see that

the Mα is non-trivial for α < 2. The critical case where α→ 2 is interesting as it is related

to the fluctuations of the maximum of XN . It is reasonable to expect that our approach can

be adapted to the method of [5] to prove the critical case. Another upshot of the proof is

that it highlights the fact that Mα depends on small primes, cf. Lemma 2.1.

The problem for the Riemann-zeta function is trickier. We expect that the equivalent of

Theorem 1.1 still holds:

Conjecture 1.2. Let τ be a uniform random variable on [T, 2T ]. Let Wα,T = Leb{h ∈
[0, 1] : ln |ζ(1/2 + i(τ + h))| > α

2
ln ln T }. Then we have

lim
T→∞

Wα,T

E[Wα,T ]
= lim

T→∞

∫ 1

0
|ζ(1/2 + i(τ + h))|α

E[|ζ(1/2 + iτ|α] a.s.

This would be consistent with the conjecture of Fyodorov & Keating for the Lebesgue

measure of high points, see Section 2.5 in [6] One issue is that it is not obvious that a

result akin to Equation (1.3) holds, mainly because of the singularities of ln ζ at the zeros.

One way around this would be to restrict to Gaussian comparison to one-point and two-

point large deviation estimates. This seems doable in view of Lemmas 3.2 and 3.3 and the

Gaussian comparison theorem proved for the zeta function in [1].
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1.3. Outline of the proof. The proof of Theorem 1.1 is based on a first and a second

moment estimate and follow the global strategy proposed in [7] for branching Brownian

motion. First, we prove convergence of a conditional first moment to the desired limiting

object in Lemma 2.1. Its proof builds on results on the Gaussian comparison and conver-

gence to Gaussian multiplicative chaos established in [14]. Next, a localisation result is

established in Lemma 2.2. Finally, we turn to the proof of Proposition 3.4 which is based

on a second moment computation. We use a branching approximation similar to the one

employed in [2]. Using the obtained first and second moment estimates we are finally in

the position to prove Theorem 1.1.

Acknowledgements. Lisa Hartung and Nicola Kistler thank the Rhein-Main Stochastic

group for creating an interactive research environment leading to this article.

2. FIRST MOMENT ESTIMATES

For R ≤ N, we define FR to be the σ-algebra generated by (θp)p≤R. We will often

condition on FR to fix the dependence on the small primes. The variance of GN(x)−GR(x),

x ∈ [0, 1] is by definition

(2.1) σ2
R(N) ≡ Var(GN(x) −GR(x)) =

1

2

∑

R<p≤N

p−1

The prime number theorem, see e.g. [10], implies that the density of the primes goes like

(ln p)−1. More precisely, we have

(2.2) σ2
R(N) =

∣

∣

∣

∣

∣

∣

∣

N
∑

R<p≤N

p−1 − 1

2
(ln ln N − ln ln R)

∣

∣

∣

∣

∣

∣

∣

= o(1) as N →∞ and R→∞.

It turns out that the non-trivial contribution to Theorem 1.1 comes from the small

primes.

Lemma 2.1. For Wα,N as in (1.7), we have for 0 < α < 2

(2.3) lim
R→∞

lim
N→∞

E
(

Wα,N |FR

)

E
(

Wα,N
) = Mα a.s.

Proof. We start by computing E
(

Wα,N |FR

)

. Using Fubini’s Theorem we can write the

left-hand side of (2.3) as
∫ 1

0

P

(

XN(x) >
α

2
ln ln N

∣

∣

∣

∣

FR

)

dx(2.4)

=

∫ 1

0

P

(

GN(x) −GR(x) + (EN(x) − ER(x)) >
α

2
ln ln N −GR(x) − ER(x)

∣

∣

∣

∣

FR

)

dx,

where we used (1.3). Moreover, again for each ǫ > 0 there is R0 such that for all R ≥ R0

|ER(x) − EN(x)| < ǫ almost surely and uniformly in x. Hence, we can again upper bound

(2.4) by

(2.5)

∫ 1

0

P

(

GN(x) −GR(x) >
α

2
ln ln N −GR(x) − ER(x) − ǫ)

∣

∣

∣

∣

FR

)

dx,

and a corresponding lower by replacing ǫ by −ǫ. Next, observe that by definition of XN(x)

and EN(x), GN(x) − GR(x) are independent of FR. We have that the probability in (2.5) is
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bounded from above by

σR(N)
√

2π(α ln ln N −GR(x) − ER(x) − ǫ)
exp













−
(α

2
ln ln N −GR(x) − ER(x) − ǫ)2

2σ2
R
(N)













=
σR(N)

√
2π(α ln ln N)

exp

(

−α
2(ln ln N)2

8σ2
R
(N)

+ α(ER(x) +GR(x) + ǫ)

)

(1 + o(1)),(2.6)

Next, we turn to E
(

Wα,N
)

. We have that

E
(

Wα,N
)

= E
(

E
(

Wα,N |FR

)) ≤ σr(N)
√

2π(α
2

ln ln N)
exp

(

−α
2(ln ln N)2

8σ2
R
(N)

)

×
∫ 1

0

E
(

exp (α(ER(x) +GR(x) − ǫ))) dx(1 + o(1))(2.7)

A corresponding lower bound we obtain by replacing ǫ by −ǫ. Taking the quotient of (2.6)

and and (2.7) and integrating with respect to x we get
∫ 1

0
exp (α(ER(x) +GR(x) + ǫ))

∫ 1

0
E

(

exp (α(ER(x) +GR(x) − ǫ))) dx
(1 + o(1))

≤ E
(

Wα,N |FR

)

E
(

Wα,N
) ≤

∫ 1

0
exp (α(ER(x) +GR(x) − ǫ))

∫ 1

0
E

(

exp (α(ER(x) +GR(x) + ǫ))
)

dx
(1 + o(1)),(2.8)

Pulling the terms involving ǫ out of the integral and noting the normalization of Mα,R is

chosen such that EMα,R = 1 and noting that

(2.9) E



















∫ 1

0
exp (α(ER(x) +GR(x))) dx

∫ 1

0
E

(

exp (α(ER(x) +GR(x)))
)

dx



















= 1,

we can rewrite (2.7) as

(2.10) Mα,Re2αǫ(1 + o(1)) ≤ E
(

Wα,N |FR

)

E
(

Wα,N
) ≤ Mα,Re−2αǫ (1 + o(1)).

Note that (2.10) holds for all ǫ > 0. When taking N,R ↑ ∞ Mα,R converges a.s. to Mα
hence we have a.s.

(2.11)

Mαe
2αǫ(1 + o(1)) ≤ lim inf

N,r→∞

E
(

Wα,N |FR

)

E
(

Wα,N
) ≤ lim sup

N,r→∞

E
(

Wα,N |FR

)

E
(

Wα,N
) ≤ Mαe

−2αǫ(1 + o(1)).

As (2.11) does not depend on r and N anymore, we can take the limit as ǫ → 0 and obtain

(2.12) lim
R→∞

lim
N→∞

E
(

Wα,N |FR

)

E
(

Wα,N
) = Mα .

�

Next, we want to control

(2.13) W>
α,N = Leb{x ∈ [0, 1] : XN(x) ≥ α ln ln N;∃k ∈ [R,N] : Xk(x) > (α + ǫ) ln ln k} .

The idea is that, at high points, the value XN(x) is most likely shared equally by the incre-

ments as defined in (3.1) below.
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Lemma 2.2. For all ǫ > 0 there exists R0 such that for all R = o(N) and R,N > R0 such

that for all c > 0

(2.14) P

(

W>
α,N > cEWα,N

)

≤ e−ǫr,

where r = ln ln R.

Proof. We want to use Markov’s inequality to bound the probability on (2.14). Hence, we

need to bound EW>
α,N from above. First, we bound E

(

W>
α,N |FR

)

from above by

∫ 1

0

P

(

{GN(x) −GR(x) ≥ α ln ln N − XR(x) − ǫ′}(2.15)

∩ {∃K ∈ [R,N] : GK(x) −GR(x) > (α + ǫ) ln ln K − XR(x) − ǫ′}
∣

∣

∣

∣

FR

)

,

where we used (1.3) and the fact that ER(x) converges a.s. uniformly to a continuous

function E(x). Hence, for all ǫ′ > 0 there is R0 such that for all K ≥ R0 and all x we have

|EK(x) − ER(x)| < ǫ′.
Similarly as in (2.1), the variable GK(x) −GR(x) is Gaussian with mean 0 and variance

σ2
R(K) =

1

2

∑

R<p≤K

p−1 .

Let

(2.16) BK(x) = GK(x) −GR(x) −
σ2

R(K)

σ2
R
(N)

(GN(x) −GR(x)),

then (BK(x))N
K=1

are points on a time-changed brownian bridge from zero to zero in time

σR(N)2. As a Brownian bridge is independent from its endpoint, Equation (2.15) is equal

to
∫ 1

0

∫ ∞

α
2

ln ln N−XR(x)−ǫ′
P(GN(x) −GR(x) ∈ dy)(2.17)

×P
(

∃K ∈ [R,N] : BK(x) >
α + ǫ

2
ln ln K − XR(x) − ǫ′ −

σ2
R(K)

σ2
R
(N)

y

∣

∣

∣

∣

FR

)

dx

as |∑p≤K p−1 − ln ln K| < C. Let r = ln ln R and n = ln ln N. Next, let us control the

probability that XR(x) is too large.

(2.18) P

(

XR(x) ≥ ǫr
3

)

≤ P
(

GR(x) ≥ ǫr
4

)

+ P

(

ER(x) ≥ ǫr
12

)

.

The second probability in (2.18) is bounded by Ce−
ǫr
12 by (1.4). For the first probability

in (2.18) is bounded by Ce−
ǫr
32 by Gaussian tail asymptotics and the variance estimate for

GR(x) for r large enough and uniformly in x. On the event that {XR(x) ≤ ǫr
3
} we can bound

the second probability in (2.17) from above by

(2.19) P

(

∃s ∈
[

0, σ2
r (N)

]

: b(s) > (α + ǫ)
(

(s + σ0(R)2) − C
)

− ǫr
3
− ǫ′ − s

σ2
r (N)

y

)

,

where b(s) is a Brownian bridge from zero to zero in time σ2
r (N). Consider the line l from

(0, ǫ
6
r) to

(

σ2
r (N), (α + ǫ)(n/2 −C) − ǫ′ − y

)

. One checks that l(s) ≤ (α+ǫ)
(

(s + σ0(R)2) −C
)

−



6 L.-P. ARGUIN, L. HARTUNG, AND N. KISTLER

ǫr

3
− ǫ′ − s

σ2
r (N)

y for all r large enough. The probability of Brownian bridge to stay under a

linear function is well known, see e.g., Lemma 2.2 in [3],

(2.20) P

(

∃s ∈
[

0, σ2
r (N)

]

: b(s) > l(s)
)

= exp

















−2
l(0)l

(

σ2
r (N)

)

σ2
r (N)

















Hence, on the event we can bound the expectation of (2.17) by

(2.21)
∫ 1

0

E

∫ ∞

α
2

ln ln N−Xr(x)

P(GN(x) −GR(x) ∈ dy)e−
ǫr(α/2+ǫ/2)n−(α+ǫ)C−ǫ′−y)

3/2(n−r) (1 + o(1))dx + Ce−
ǫr
32E(Wα,N)

Using the Gaussian tail asymptotics for GN(x)−GR(x) together with (2.7), Equation (2.21)

is bounded above by

(2.22) E(Wα,N)e−r ǫ
2

6
+o(r).

This implies the claim of Lemma 2.2. �

3. BRANCHING APPROXIMATION AND SECOND MOMENT ESTIMATES

3.1. Definition of the increments. The goal is to use a branching approximation similar

to [2] to compute the necessary second moments. To this end, we define for k ∈ N and

x ∈ (0, 1)

(3.1) Yk(x) =
∑

ek−1<ln p≤ek

1

2
√

p j

(

W
(1)

j
cos(x ln p j) +W

(2)

j
sin(x ln p j)

)

.

By definition, we have

(3.2) GN(x) =

n
∑

k=1

Yk(x),

where for the rest of the section we set n ≡ ln ln N. The increments Yk are such that

(3.3) ρk(x, x′) ≡ E(Yk(x)Yk(x′)) =
∑

ek−1<ln p≤ek

1

2p
cos(|x − x′| ln p j).

The covariances can be computed again by the prime number theorem. This is done in

Lemma 2.1 in [2]. It is convenient to state the result to introduce branching point of

x, x′ ∈ (0, 1) by

(3.4) x ∧ x′ ≡ ⌊ln |x − x′|−1⌋.

Lemma 3.1 (Lemma 2.1 in [2]). For k ≥ 1 and x, x′ ∈ (0, 1) we have

(3.5) E(Y2
k (x)) =

1

2
+ O

(

e−c
√

ek

)

,

and

(3.6) ρk(x, x′) =















1
2
+ O

(

e−2(x∧x′−k)
)

+ O
(

e−c
√

ek
)

if k ≤ x ∧ x′,

O
(

e−(k−x∧x′ )
)

if k > x ∧ x′

There is a fast decoupling between the increments after the branching point where the

distribution of Yk(x) and Yk(x′) is very close to independent Gaussians with mean zero

and variance 1/2. We introduce a parameter ∆ that gives some room before and after the

branching point to ensure uniform estimates.
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Lemma 3.2. Let ∆ > 0. Let x, x′ ∈ (0, 1) and m > x ∧ x′ + ∆. Then we have

(3.7)

P















n
∑

k=m+1

Yk(x) ∈ A,

n
∑

k=m+1

Yk(x′) ∈ B















= P















n
∑

k=m+1

Yk ∈ A















P















n
∑

k=m+1

Yk ∈ B















(

1 + O(e−cδ
)

,

where (Yi)i∈N are iid Gaussians with mean zero and variance σ2.

Proof. As
(∑n

k=m+1 Yk(x),
∑n

k=m+1 Yk(x′)
)

is a Gaussian process and its covariance is con-

trolled in Lemma 3.1 it suffices to compare densities. This follows the same lines starting

from Eq. (61) in [2] only that in our setting µ = 0. �

Before the branching point we want to show that Yk(x) and Yk(x′) are almost fully cor-

related. This is specified in the lemma below.

Lemma 3.3. Let ∆ > 0. Let x, x′ ∈ (0, 1) and r < m < x ∧ x′ − ∆. Then we have

(3.8) P















m
∑

k=r

Yk(x) ∈ A,

m
∑

k=r

Yk(x′) ∈ B















= P















m
∑

k=r

Yk ∈ A ∩ B















(

1 + O(e−c∆
)

,

Proof. As G is a Gaussian process this follows from the density estimates in Lemma 3.1.

�

3.2. Second moment computation. The main result of this section is:

Proposition 3.4. There exists κα > 0 such that for R = o(ln ln N) as N → ∞ we have

(3.9) P

(
∣

∣

∣

∣

∣

∣

Wα,N − E
(

Wα,N |FR

)

E
(

Wα,N
)

∣

∣

∣

∣

∣

∣

> c

)

≤ (1 + o(1))Ce−kαr,

where r ≡ ln ln R and C > 0 a constant depending on c.

To prove Proposition 3.4 we essentially need to control the second moment of

W≤
α,N = Leb

{

x ∈ [0, 1] :
∑

j≤n

Y j(x) ≥ αn/2;∀k ∈ [2r, n] :
∑

j≤k

Y j(x) ≤ (α + ǫ)k/2
}

.

Remark. Throughout the proof we restrict our computations to R and N such that r =

ln ln R and n = ln ln N are natural numbers. The general case follows in the same way by

considering the last resp. first summands in the representation in (3.2) of GN separately.

The desired estimates carry over by minor adjustments but would require a more involved

notation. To keep the computations that follow as clear as possible and not to burden the

reader with heavier notations we restrict ourselves to the case where r, n ∈ N.

Indeed, Markov’s inequality and Lemma 2.2 imply

(3.10) P

(
∣

∣

∣

∣

∣

∣

Wα,N − E
(

Wα,N |FR

)

E
(

Wα,N
)

∣

∣

∣

∣

∣

∣

> c

)

≤ P





















(

W≤
α,N
− E

(

W≤
α,N
|FR

))2

E
(

Wα,N
)2

> c2/4





















+ Ce−Rc(ǫ).

Clearly, we have

(3.11)

(W≤
α,N)2

= Leb×2{x, x′ ∈ [0, 1] : ∀y ∈ {x, x′}
∑

k≤n

Yk(y) >
α

2
n,∀k ∈ [r, n]

∑

j≤k

Y j(y) ≤ α + ǫ
2

k}

Let 0 < ∆ < r. We divide the right side into four terms depending on the branching point:

(I) : x∧x′ > n−∆ (II) : r+∆ < x∧x′ ≤ n−∆ (III) : r−∆ < x∧x′ ≤ r+∆ (IV) : x∧x′ ≤ r−∆ .
The term (IV) is controlled in the following Lemma.
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Lemma 3.5. For R = o(ln ln N) we have

(3.12) lim
∆→∞

lim
N→∞

E((IV)|FR) −
(

E

(

W≤
α,N
|FR

))2

E
(

Wα,N
)2

= 0 a.s.

Proof of Lemma 3.5. As x ∧ x′ < r − ∆ and by a similar rewriting in (2.5) we have by

Lemma 3.2 that it is bounded from above by

"
{x∧x′≤r−∆}

∏

y∈{x,x′}
P















n
∑

k=r+1

Yk >
α

2
n −GR(y) − ER(y) − ǫ)

∣

∣

∣

∣

FR















dx′dx
(

1 + O
(

e−c∆
))

(3.13)

≤
"

[0,1]2

∏

y∈{x,x′}
P















n
∑

k=r+1

Yk >
α

2
n −GR(y) − ER(y) − ǫ)

∣

∣

∣

∣

FR















dx′dx
(

1 + O
(

e−c∆
))

We now compare (3.13) with
(

E

(

W≤
α,N
|FR

))2
which is bounded below by

(3.14)

"
[0,1]2

∏

y∈{x,x′}
P

(

GN(y) −GR(y) >
α

2
n −GR(y) − ER(y) + ǫ)|FR

)

dx′dx

for any ǫ > 0. By 2.1 and the Gaussian approximation given in (3.1) the absolute value of

the difference of (3.13) and (3.14) is bounded by

(3.15) M2
α,NE(Wα,N)2e−2ǫ

(

1 + O
(

e−c∆
))

− M2
α,Ne2αǫ .

Hence (3.15) divided by E(Wα,N)2 converges almost surely to

(3.16) M2
αe
−2αǫ

(

e−2αǫ − e2αǫ
+ e−2αǫO

(

e−c∆
))

for all ǫ,∆ > 0. Note that (3.15) converges to zero as ǫ → 0 and ∆→∞. �

To control the terms (I), (II) and (III), we prove the following lemma.

Lemma 3.6. Let 0 < α < 2. There exists κα > 0 such that for R = o(ln ln N) as N → ∞
we have

(3.17) E ((I) + (II) + (III)) ≤ E (

Wα,N
)2

e−καr.

Proof of Lemma 3.6. We bound E((I)|FR) from above by

(3.18) e−n+∆

∫ 1

0

P















∑

k≤n

Yk(x) >
α

2
n
∣

∣

∣

∣

FR















dx = e−n+∆
E(Wα,N |FR),

by (2.4). Hence,

(3.19) E((I)) ≤ E(Wα,N)2 e−n+∆

E(Wα,N)
= E(Wα,N)2o(1),

as E(Wα,N) = cn−1/2e−
α2

4
n and 0 < α < 2.

Next, we turn to E((II)|FR). Using that uniformly in y for all R,N large enough |EN(y)−
ER(y)| ≤ ǫ, we can bound E((II)|FR) from above by

(3.20)"
{r+∆≤x∧x′≤n−∆}

P

















∀y∈{x,x′ }

n
∑

j=r+1

Y j(y) >
α

2
n − XR(y) − ǫ,∀k∈[r,n]

k
∑

j=r

Y j(y) ≤ α + ǫ
2

k

∣

∣

∣

∣

FR

















dxdx′
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Dropping the barrier constraint except at x ∧ x′ − ∆ and x ∧ x′ + ∆ we can bound the

probability in (3.20) from above by

(3.21) P

















∀y∈{x,x′ }

n
∑

j=r+1

Y j(y) >
α

2
n − XR(y) − ǫ, ∀k∈{x∧x′−∆,x∧x′+∆}

k
∑

j=1

Y j(y) ≤ α + ǫ
2

k
∣

∣

∣

∣

FR

















.

We evaluate the probability in the integral at a fixed x∧ x′ = m, and sum the contributions

over m afterwards. We introduce an extra conditioning. Let F Y
k
= σ(Y j, j ≤ k). We

condition on F Y
m+∆

, slightly after the branching point. Lemma 3.2 applied to (3.21) then

yields

(

1 + e−c∆
)

E

(

∏

y∈{x,x′}
P

















n
∑

k=m+∆+1

Yk(y) >
α

2
n − XR(y) − ǫ −

∑

r< j≤m+∆

Y j(y)
∣

∣

∣

∣

F Y
m+∆

















;∀y∈{x,x′},k∈{m−∆,m+∆}
∑

j≤k

Y j(y) ≤ α + ǫ
2

k

∣

∣

∣

∣

FR

)

.(3.22)

We distinguish two cases. First, consider the case when for y = x or y = x′,

(3.23)
α

2
n − XR(y) − ǫ −

∑

r< j≤m+∆

Y j(y) ≤ 0.

Note that due to the barrier in (3.22) this can only happen jointly with the barrier event if

m ≥ α

α+ǫ
n − C′ǫ for some constant C′ > 0 independent of ǫ. In this case we bound the

probabilities above by one and bound (3.22) from above by

(3.24)
(

1 + e−c∆
)

P

















α

2
n − Xr(y) − ǫ −

∑

r< j≤m+∆

Y j(y) ≤ 0 : ∀y∈{x,x′}
∑

j≤m+∆

Y j(y) ≤ α + ǫ
2

(m + ∆)
∣

∣

∣

∣

FR

















.

As for an upper bound we can drop all constraints in the expectation with respect x′ (if

y = x) and x otherwise, let us assume without loss of generality that y = x. We need to

distinguish whether α
2
n − XR(x) − ǫ > 0 or not. On the event α

2
n − XR(x) − ǫ ≤ 0 we bound

the expectation in (3.24) by one and obtain that the expectation of (3.24) from above by

(3.25) P

(

XR(x) ≥ α
2

n − ǫ
)

≤ E
(

eαXR(x)−α( α2 n−ǫ)
)

by the exponential Chebyshev inequality. Hence, integrating over x, x′ in (3.28) we get

e−
α
α+ǫ

n−C′ǫ

∫ 1

0

E

(

eαXR(x)−α( α2 n−ǫ)
)

dx ≤ E
(∫ 1

0

eαXr(x)

)

e−α
2n/2−αǫ

≤ CnE
(

Wα,N
)2

e−
α
α+ǫ

n−C′ǫe−αr−αǫ ,(3.26)

by (2.7). When α

2
n − XR(x) − ǫ > 0, we bound (3.24) from above using Gaussian tail

asymptotics by

(3.27)
(

1 + e−c∆
)

P

















∑

r< j≤m+∆

Y j(x) ≥ α
2

n − XR(y) − ǫ
∣

∣

∣

∣

FR

















≤
(

1 + e−c∆
)

e−
( α2 n−XR(x)−ǫ)

2

2σr (m+∆) .
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The integral of (3.27) with respect to x and x′ can be bounded from above by

(

1 + e−c∆
)

∑

α
α+ǫ

n−C′ǫ≤m≤n−∆
e−m

∫ 1

0

e−
( α2 n−Xr (x)−ǫ)

2

2σr(m+∆) dx(3.28)

≤
(

1 + e−c∆
)

∑

α
α+ǫ

n−C′ǫ≤m≤n−∆
e−m

∫ 1

0

e−(α2n/4)− α
2n(n−2σr(m+∆))

8σr (m+∆) eα
nǫ+nXr (x)
2σr(m+∆) dx

≤
(

1 + e−c∆
)

∑

α
α+ǫ

n−C′ǫ≤m≤n−∆
e−m

∫ 1

0

e−(α2n/2)− α
2(n−2σr(m+∆))2

8σr (m+∆)
+
α2

4
(2σr(m+∆))eα

nǫ+nXr (x)
2σr (m+∆) dx

Using that in the range of summation in (3.28) σr(m+∆) is bounded form above and below

by 1
2
(m − r)+C resp. 1

2
(m − r) −C , for some constant large enough, we can bound (3.28)

from above by

(3.29)
(

1 + e−c∆
)

∑

α
α+ǫ

n−C′ǫ≤m≤n

∫ 1

0

e−(α2n/2)− α
2(n−(m−r)−C)2

4(m−r+C) e

(

α2

4
−1

)

m
eα

n(ǫ+Xr (x))
m+∆−r−C

+C∆dx.

As m ≥ α

α+ǫ
n − C′ǫ, exponantial term in ǫ bounded by eCǫ and as 0 < α < 2 we have that

on the one hand α
2

4
− 1 < 0 and on the other hand we can choose together with (2.7) we

can bound the corresponding expectation in (3.29) from above by

(3.30)
(

1 + e−c∆
)

E(Wα,N)2e−cnecr,

for some c > 0.

Finally, we turn to bound (3.22) for α
2
n − Xr(y) − ǫ −∑

r< j≤m+∆ Y j(y) ≥ 0 we can bound

(3.22) from above by a Gaussian tail bound and obtain

E

(

(n − m − ∆)/2

2π
∏

y∈{x,x′}(
α
2
(n − m − ∆ − ǫ) − XR(y) − ǫ)1∀y∈{x,x′ },k∈{m−∆,m+∆}

∑

j≤k Y j(y)≤ α+ǫ
2

k(3.31)

× exp





















−
∑

y∈{x,x′}

(

α

2
n − XR(y) − ǫ −∑

r< j≤m+∆ Y j(y)
)2

(n − m − ∆)





















|FR





















Next, we condition on F Y
m−∆. The terms depending on

∑

m−∆< j≤m+∆ Y j can be bounded by

the moment generating function:

(3.32) E

(

eC∆
∑

m−∆< j≤m+∆ Y j(x)+Y j(x′)
)

≤ eC′∆2

.

Hence, Equation (3.31) is bounded above by

(3.33)

eC′∆2

E

































(n − m − ∆)/2

2π

∏

y∈{x,x′}
1

∑

j≤m−∆ Y j(y)≤ α+ǫ
2

(m−∆)

exp

(

−
(

α
2

n−XR(y)−ǫ−∑m−∆
j=r+1 Y j(y)

)2

(n−m−∆)

)

α
2
(n − m − ∆ − ǫ) − XR(y) − ǫ

∣

∣

∣

∣

FR

































Using the fact that the variables Y j(x) and Y j(x′) almost coincide for j ≤ m−∆ by Lemma

3.3, we have that (3.33) is bounded above by

(3.34)

eC′∆2 (n−m−∆)/2

2π( α
2

(n−m−∆−ǫ)−XR(x)−ǫ)2E















1

∑

j≤m−∆ Y j(x)≤ α+ǫ
2

(m−∆)e
−

2

(

α
2

n−XR(x)−ǫ−∑m−∆
j=r+1

Y j(x)

)2

(n−m−∆)

∣

∣

∣

∣

FR















(1 + O(e−c∆))
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The expectation in (3.34) is equal to

∫ α+ǫ
2

(m−∆)

−∞
e−

2( α2 n−Xr (x)−ǫ−z)
2

(n−m−∆) e−
z2

(m−∆−r)
dz

√
π(m − ∆ − r)

.(3.35)

The integrand with respect to z is minimal for

(3.36) z∗ =
2
(

α
2
n − XR(x) − ǫ

)

(m − ∆ − r)

n + m − 3∆ − 2r
.

When α+ǫ
2

m − z∗ ≪ 0 which is the case when m < (1 − δ)n for some δ > 0, we can use

Gaussian tail asymptotics to bound (3.35) from above by

(3.37) exp





















−
2
(

α
2
n − XR(x) − ǫ − α+ǫ

2
m
)2

(n − m − ∆)
−

(

α+ǫ
2

m
)2

(m − ∆ − r)





















.

Plugging this bound into (3.34), summing over m < (1 − δ)n, and computing the squares

in the exponential, we obtain that (3.34) is bounded from above by

(3.38)

(1−δ)n
∑

l=r+∆

e

(

α2

4
−1

)

l
eC∆+Cǫ

E(Wα,N)2(1 + o(1)),

If x∧ x′ < (1−δ)n we can bound the Gaussian integral by one and get that (3.8) is bounded

from above by

(3.39) e−
2( α2 n−XR(x)−ǫ)

2

(n−m−∆) e+
(z∗)2

(m−∆−r)
dy

√
π(m − ∆ − r)

e−
2(z∗)2

(n−m−∆)

Using (3.36) we can bound the expectation of (3.39) for m > (1 − δ)n by

(3.40) eC(∆+ǫ)
E

(

Wα,N
)2
E













e
2( α2 n−XR(x)−ǫ)

2
m

n(n+m)













Plugging this into (3.34) we can bound the contribution from above

(3.41)
∑

m>(1−δ)n
2−meC(∆2

+ǫ)
E

(

Wα,N
)2
E













e
2( α2 n−Xr (x)−ǫ)

2
m

n(n+m)













Noting that 2n − nδ ≤ n + m ≤ 2n the above term can be bounded from above by

(3.42)
∑

m>(1−δ)n
2
−m+

2 α
2

4
n2

n2(2−δ)l eC(∆2
+ǫ).

Note that the exponent in (3.42) is negative for δ sufficiently small.

Finally, we want to bound E((III)). By Lemma 3.2 we have similar to (3.22) that

E((III)) is bounded from above by
(

1 + e−c∆
)

times

r+∆
∑

m=r−∆+1

"
{x∧x′=m}

E

















∏

y∈{x,x′}
P

















n
∑

k=m+∆+1

Yk(y) >
α

2
n − XR(y) − ǫ −

m+∆
∑

j=r+1

Y j(y)
∣

∣

∣

∣

F Y
m+∆

















; ∀y∈{x,x′}
∑

j≤m+∆

Y j(y) ≤ α + ǫ
2

(m + ∆)

















dxdx′(3.43)
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If α
2
n − XR(y) − ǫ − ∑m+∆

j=r+1 Y j(y) > 0 for y ∈ {x, x′} we can use Gaussian tail asymptotics

for the probabilities in (3.43) to bound the expectation in (3.43) from above by

(3.44)

E















(n − r)/2

2π
∏

y∈{x,x′}(
α

2
(n − r − 2∆ − ǫ) − XR(y) − ǫ)e−

(

α
2

n−XR(x)−ǫ−∑m+∆
j=r+1

Y j(x)

)2

(n−m−∆) e−

(

α
2

n−XR(x′)−ǫ−∑m+∆
j=r+1

Y j(x′)
)2

(n−m−∆)















.

Noticing that the polynomial prefactor is bounded by C/n and otherwise proceeding as in

(3.32) we can bound (3.43) from above by

eC′∆2
r+∆
∑

m=r−∆+1

"
{x∧x′=m}

E













C

n
e

( α2 n−XR(x)−ǫ)
2

(n−m−∆) e
( α2 n−XR(x′)−ǫ)

2

(n−m−∆) |FR













dx′dx
(

1 + O
(

e−c∆
))

≤ eC′∆2−C∆e−r+∆
E

(

E
(

Wα,N
)2

e2αǫ
(

1 + O
(

e−c∆
)))

,(3.45)

by (2.6) for any ǫ > 0 and ∆ > 0. Note first that due to the barrier event in (3.43) the

case α
2
n − XR(y) − ǫ − ∑m+∆

j=r+1 Y j(y) ≤ 0 for at least one y ∈ {x, x′} can be excluded for

m ∈ {r − ∆, r + ∆}.
This completes the control of (III) and hence also the proof of Theorem 3.6.

�

Proof of Proposition 3.4. We bound (3.10) from above by

P













(I) + (II) + (III)

E
(

Wα,N
)2

> c2/8













+ P





















E((IV)|FR) −
(

E

(

W≤
α,N
|FR

))2

E
(

Wα,N
)2

> c2/8





















+Ce−Rc(ǫ)(3.46)

≤ 8

c2
E













(I) + (II) + (III)

E
(

Wα,N
)2













+ P





















E((IV)|FR) −
(

E

(

W≤
α,N
|FR

))2

E
(

Wα,N
)2

> c2/8





















+Ce−Rc(ǫ)

where we used Chebyshev’s inequality. By Lemma 3.6 we can bound (3.10) from above

by

(3.47)
8E

(

Wα,N
)2

e−καr

c2E
(

Wα,N
)2
+ P





















E((IV)|FR) −
(

E

(

W≤
α,N
|FR

))2

E
(

Wα,N
)2

> c2/8





















≤ 4

c2
e−καr

+ Ce−Rc(ǫ),

which yields Proposition 3.4 by possibly modifying the constants and noting that ǫ in

(3.47) is arbitrary (but fixed) as the claim of Lemma 3.5 holds almost surely in the N → ∞
limit. �

4. PROOF OF THEOREM 1.1

Finally, we are in the position to prove Theorem 1.1 using Lemma 2.1 and Proposition

3.4.

Proof of Theorem 1.1. First, we rewrite

(4.1)
Wα,N

E
(

Wα,N
) =
E

(

Wα,N |FR

)

E
(

Wα,N
) +

Wα,N − E
(

Wα,N |FR

)

E
(

Wα,N
) .

By Proposition 3.4 the second summand on the right hand side of (4.1) converges to zero

in probability when first N → ∞ and then R → ∞. By Lemma 2.1 the term the first

summand on the right hand side of (4.1) converges almost surely to Mα defined in (1.6).

This completes the proof of Theorem 1.1. �
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