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ABSTRACT. We show that for low enough temperatures, but still above the AT line, the
Jacobian of the TAP equations for the SK model has a macroscopic fraction of eigenvalues
outside the unit interval. This provides a simple explanation for the numerical instability
of the fixed points, which thus occurs already in high temperature. The insight leads to
some algorithmic considerations on the low temperature regime, also briefly discussed.

1. INTRODUCTION

Let N € N, > 0,h € R, and consider independent standard Gaussians g = (g;;)1<i<j<n
issued on some probability space (2, F,P). The TAP equations [19, after Thouless, An-
derson and Palmer] for the spin magnetizations m = (m;)¥, € [-1,1]" in the SK-model
[12, after Sherrington and Kirkpatrick] at inverse temperature 5 and external field h read

mi:tanh(h—i——Zg,]mJ 21— q)m ) i=1,...,N. (1.1)

JijFi

The $%term is the (limiting) Onsager correction: it involves the high temperature order
parameter ¢ which is the (for 5 < 1 or h # 0 unique, see [13, Proposition 1.3.8]) solution
of the fixed point equation

q = Etanh® (h + 3\/qZ), (1.2)

Z being a standard Gaussian, and E its expectation.
The concept of high temperature is related to the AT-line [2, after de Almeida and
Thouless], i.e. the (3, h)-region satisfying
2E 1 —
cosh*(h + 8,/42)

(1.3)

For (3, h) where the Lh.s. is strictly less than unity, the system is allegedly in the replica
symmetric phase (high temperature), see e.g. Adhikari et.al. [1] for a recent thorough
discussion of this issue, and Chen [9] for evidence supporting the conjecture.

Due to the fixed point nature of the TAP equations (1.2), one is perhaps tempted to
solve them numerically via classical Banach iterations, i.e. to approximate solutions via

mz(k+1) = tanh ( Z gz] - (1 - q)mz(k)> ) 1= 17 R N7 (14>

J J#i
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As it turns out, these plain iterations are astonishingly in-efficient in finding stable fixed
points! insofar the mean squared error between two iterates, to wit:

N
MSE (m(kﬂ), m®) = % (mgkﬂ) - mgk)>2 : (1.5)
i=1

often remains large, even for very large k’s. Even more surprising, this issue is not
restricted to the low temperature phase, cfr. Figure 1 below. Bolthausen [6] bypasses
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FIGURE 1. MSE between (the last) two iterates as a function of 3, to fixed
magnetic field h = 0.5, a single realization of the disorder, and system
size N = 25. We have run Banach algorithm k£ = 1000 times, randomly
initialized (uniformly chosen m(%)). Visibly, iterations stabilize for small 3,
but diverge beyond the threshold ~ 0.6, way below the AT-line (red).

this problem by means of a modification of the Banach algorithm (recalled below) which
converges up to the AT-line. Notwithstanding, the origin of the phenomenon captured by
Figure 1 has not yet been, to our knowledge, identified. It is the purpose of this work to
fill this gap. Precisely, we show in Theorem 1 below that classical Banach iterates become
unstable for the simplest reason: for large enough (3, but still below the AT-line, TAP
equations become repulsive. This should be contrasted with the classical counterpart of
the SK-model: it is well known (and a simple fact) that relevant solutions of the fixed
point equations for the Curie-Weiss model are attractive at any temperature, with the
1rrelevant solution even becoming repulsive in low temperature.

2. MAIN RESULT

2.1. Iterative procedure for the magnetizations. Bolthausen [6] constructs magne-

tizations m®*) = <m§k)> for given disorder (g;;)1<i<j<n through an iterative procedure
i<N -

in k=1,2,.... These magnetizations approximate fixed points of the TAP equations in

the limit N — oo followed by k& — co. The algorithm uses the initial values m® = 0,

Ithis observation has been made, at times anecdotally, ever since: it is already present in Mézard,
Parisi and Virasoro [14, Section IT.4].
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m = v/q1. The iteration step reads

(k+1) 5 (k) 2 (k—1)
m, =tanh | h + — g giim:’ — (1 — m; , 2.1
! ( \/Nj:j : T ( Q) > ( )

for + < N, and k£ € N. Remark in particular that contrary to the classical Banach
algorithm, the above scheme invokes a time delay in the Onsager correction: we will thus
refer to (2.1) as Two Steps Banach algorithm, 2STEB for short. By [6, Proposition 2.5],
the quantity gy := N~! Zf\;l(mgk))Q converges to ¢ in probability and in expectation, as
N — oo followed by k — co. Moreover, by [6, Theorem 2.1],

1 & A\ 2
=3 (m = m{) ] =0, (2.2)

=1

lim limsupE
kK =00 N_soo

provided (3, h) is below the AT-line, i.e. if the left-hand side of (1.3) is less than unity.

2.2. Spectrum of the Jacobian. Denote by Fj(m*)) the right-hand side of (1.4), and
consider the Jacobi matrix J*) with entries

5 2\ ., .
S0 o 0Py _ [ 0 (1= Fm)') i 4 (2.3
i om, ~8(1—q) (1= F (m®)") 1i = j,

omitting the obvious N-dependence to lighten notations.
The Jacobi matrix J® is not symmetric, but we claim that it is nonetheless diagonal-
izable, and that all eigenvalues are real. To see this we write the Jacobian as a product

0 = Jdiag (1= F (m®)°), (2.4)
where
\/iﬁgij i <],
Jij == Tx95 j<i, (2.5)

—(1-q) i=j.
The first matrix on the r.h.s. of (2.4) is symmetric, whereas the second is negative definite:
it thus readily follows from [10, Theorem 2] that J®*) itself is diagonalizable, and that all
its eigenvalues are real, settling our claim.
Denoting the ordered sequence of the real eigenvalues of a matrix M by A (M) > ... >
An(M), we then consider the empirical spectral measure of the Jacobian

N
1
(k) .— E
12 = N - (5/\1_(](19)). (26)

Our main result? states that in a region below the AT-line, ;*) has mass outside the unit
interval.

2See also [8] for a treatment similar in spirit to our considerations, albeit with radically different tools,
for Zs-synchronization.
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Theorem 1. For all B € (v/2—1,1) and € > 0, there exists hg > 0 such that the following
holds true: for all h € [0, ho], there exists kg € N, and for all k > ko, there ezists Ny € N,
such that P (u®(—co,—1) > 0) > 1 —¢, for all N > N,

TAP equations thus become repulsive due a macroscopic fraction of low-lying (< —1)
eigenvalues. Before giving a proof of this statement, we remark that the measures p(*
converge to a limiting measure p which can be stated as a free multiplicative convolution

n= )‘B,q X, (27>

where Ag, is the law of X — %(1 — ¢) for X distributed according to the standard
semicircular law with density = 3 [-2,2] — (27)7'y/(4 — 22, and v is the law of 1 —
tanh’*(h + 8,/qZ) for Z standard Gaussian. To sketch a proof of this claim, we use
the decomposition (2.4) and make the following observations: i) The empirical spectral
distribution of the first factor J weakly-converges almost surely to the scaled /shifted
semicircular law Ag,; i) The empirical spectral distribution of the second factor 1 —
F.(m®)? can similarly be shown to converge to v. These observations, together with
the (asymptotic) independence of the two factors which follows from [7], and finally [4,
Theorem 5.4.2] then yield the representation (2.7).

The free convolution can also be evaluated more explicitly using Voiculescu’s S-transform
via inversion of moment generating functions, see e.g. [4, Chapter 5.3]. We believe this
approach allows to remove the small-h condition in Theorem 1. The ensuing analysis is
however both long and (tediously) technical. As the outcome arguably adds little to the
main observation of this work, we refrain from pursuing this route here.

Proof of Theorem 1. In a first step we consider a simplified version of the Jacobian,
namely the matrix .J from (2.5) in place of J®). We write J = W —p%(1—q)I, where W is
a Wigner matrix. As a consequence of Wigner’s theorem, see e.g. [18, Theorem 2.4.2], the
empirical spectral measure ji associated with J converges a.s. with respect to the vague
topology to the law of X — $%(1 — ¢), where X has the standard semicircular density.
We note that this limit law has mass in any right vicinity of —28 — 82(1 — q).

Next we show that x*) and /i converge to the same limit as N — oo followed by k — oo,
and finally h — 0. To this aim, let R®(z) = (J® — 2I)"! and R(z) = (J — 2I)~" denote
the resolvents of J® and J, respectively. It suffices to show that the Stieltjes transforms
N~'tr R(z) and N~'tr R®)(2) of ji and pu®, respectively, converge to the same limit in
probability as N — oo followed by k& — oo and h — 0, pointwise for all z € C with
Sz > 0 (see e.g. [18, Section 2.4.3] for properties of the Stieltjes transform). By the
resolvent identity,

N=Yr RW(2) — N~ltr R(z) = N~tr R¥)(2) (j - J<k>) R(2). (2.8)

The p-Schatten norm of an N x N matrix M whose eigenvalues are all real is defined by

N 1/p
| M|, := (Z \)\i(M)\p> forpe[l,00), [[M|s :=max{|\(M)|:i=1,...,N}
i=1

(2.9)
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which satisfies || M]|; > |tr M| and the Hélder inequality. Hence, the expression in (2.8)
is bounded in absolute value by

| RS @) llocl Bl o N ling  (m )1, (2:10)

where we evaluated J —.J® using (2.4). Each of the first two terms in (2.10) is bounded by
1/|Sz|, which follows from the definition of the resolvent. The third term ||.J|| converges
in probability to 28+ 3%(1—¢q) as N — oo by Wigner’s theorem in conjunction with edge
scaling for Wigner matrices, see e.g. [4, Chapter 3|, and [3] for a recent reference. From
the definitions of F;(m®) and m"*" and as the function z ~» tanh?(z) is 2-Lipschitz

continuous, we obtain

Fy(m®)? — m (k+1) ‘ _

tanh” <h+—zgu — B*(1—q)m ”)

Jig#

— tanh’ (h T Z gym$" — 31— gym{" )> ‘ <2B3%*(1—q) ‘mfk) —m{ Y|
J#z

(2.11)
Hence, by definition of the 1-Schatten norm,

N7 diagF (m®)?[|, < N~ Z( (’“) +2N- Z‘l (m® =m0 a2

The second term on the r.h.s. is bounded by

N 112
oN~1/2 [Z (m§’“) - ml(.’“*”> ] (2.13)

i=1
by the Cauchy-Schwarz inequality and thus converges to 0 in probability as N — oo

followed by k — oo by (2.2). The first term on the r.h.s. of (2.12) equals ¢y and thus
converges to ¢ in probability as N — oo followed by k& — oco. From (1.2), we obtain

= Etanh® (h + 8,/¢Z) < h* + 3¢, (2.14)

and
2

1— 32’

0<qg< (2.15)

for 5 € (0,1), hence h — 0 implies ¢ — 0.

From the above, it follows that u* and j converge in probability to the same vague
limit p as N — oo followed by k — oo and h — 0. For h = 0 and 3 € (v2 — 1,1), we
have p(—o0,—1) > 0 a.s. as a consequence of the first part of the proof. The assertion
now follows from the vague convergence in probability of u* to pu. 0J

3. YET ANOTHER ALGORITHM, AND SIMULATIONS

The above considerations pertain to high temperature, but naturally lead to insights
into the low temperature regime, where finding solutions of the TAP equations is notori-
ously hard. Indeed, Theorem 1 suggests that the numerical instability of classical iteration
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schemes is “nothing structural”, but heavily depends on the way TAP equations are writ-
ten. Under this light, the following iteration scheme, which we refer to as e-BANACH, is
quite natural: for ¢ € R an additional free parameter, it reads

m*D = em® 4 (1 &) tanh (h b= Z giymy” — B*(1 - w)mE“) ;o (3D

J J#i

for i = 1...N,k € N. The idea® behind the “c-splitting” is of course to mitigate the

impact of large negative Jacobian-eigenvalues. We emphasize that:

e Here and henceforth we consider the finite-N Onsager reaction term?

1 N )
k
gn ‘= _N E m§ )
i=1

e Iterations are classical: unlike (2.1), no time-delay appears in Onsager’s correction.

In this section we present a summary of numerical simulations run on the High Perfor-
mance Computer ELWETRITSCH; additional material may be found in [11].

Anticipating, 2STEB is largely outperformed, in low temperature, by e-BANACH: this
is due to the fact that the former is extremely sensitive to the initialization, to the point of
becoming eventually hopeless at finding stable fixed points; this limitation is not shared by
the latter, in virtue (also) of the additional “degree of freedom” e which may be tweaked
at our discretion.

3.1. Calibrating s-Banach: high temperature. Given our limited theoretical under-
standing, effective choices of the € parameter can only be found empirically. Here we show
that a proper calibration does lead to an algorithmic performance of e-BANACH which is,
in high temperature, fully comparable to 2STEB. To do so, we appeal to the TAP free
energy, TAP FE for short, which we recall is given by

N frap(m \/_Zgummj+h2ml QNZ (1—=m;)(1—m —ZI(mi),

1<J i<N 1<J <N
(3.2)

where m € [—1,1]V, and I(z) = = log(1 + z) + 5% log(1 — z).

Critical points of the TAP FE are solutions of the TAP equations: in our simulations
we have thus computed the TAP FE of the fixed points found by both 2STEB and e-
BANAcCH. This is no simple task, for multiple reasons. First, the choice of the system’s
size is a priori not clear: we have chosen this to be N = 25 throughout. This might look at
first sight unreasonably small, but numerical evidence rejects the objection. As a matter
of fact, we show below that the (way) more delicate issue pertains to the number of initial
values where iterations must be started for algorithms to find anything reasonable at all.

Cl. Even more challenging is the number of iterations, i.e. to decide whether these
have stabilized. In this regard, our simulations (see also [11]) suggest that the

3This scheme is well-known in the numerical literature: it has been implemented e.g. by Aspelmeier
et. al [5] to probe marginal stability of TAP solutions “at the edge of chaos”.
4Analogously for 2STEB: the approximation (1.2) is of course wrong in low temperature.
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MSE (1.5) is way too inaccurate a tool: we have thus discarded it in favor of the
mazxtmum absolute error between iterates, i.e.
MAE (), m®) = miax " — m{ (3.3)
=1 7 7 ) .
thereby stopping iterations as soon as MAE < 1077,

C2. Criteria for the validity of the TAP-Plefka expansions (which lead to the TAP FE)
are vastly unknown. The only criterion which seems to be unanimously accepted
is the one by Plefka [17]. We thus require that (approximate) fixed points also
satisfy Plefka’s condition, i.e.

oy By (2) 2
Plefka (m!®) = W; <1 —m; > < 1. (3.4)
Yet another key test for an approximate solution to be physically relevant is the associated
TAP FE, which in turn should coincide® with the Parisi FE [15]. Figure 2 summarizes
our findings concerning the calibration of e-BANACH to yield TAP solutions which fulfill
all above criteria.

0.8
o

FI1GURE 2. TAP FE (y-axis) vs. ¢ (x-axis) for § = 1 and h = 0.5 (way
below AT-line). The red line is the FE computed from Parisi replica sym-
metric formula. We have run e-BANACH for 1000 uniformly distributed
start values: blue dots correspond to solutions which lie in the hypercube
after £ = 1000 iterations. The rightmost dot corresponds to the TAP FE
of the (approximate) fixed point found by 2STEB. For ¢ ~ 0.5, say, the
performance of e-BANACH is thus fully equivalent to the 2STEB.

3.2. 2SteB vs. e-Banach: low temperature. Henceforth the physical parameters are
h = 0.5 and § = 3 (well above the AT-line). The size of the system is again N = 25.

In low temperature, the issue of initialization becomes salient. Since Plefka criterion
must be satisfied, this amounts to starting the algorithm close to the facets of the hyper-
cube: by this we mean that we will consider m® drawn uniformly in the subset of the
hypercube where coordinates satisfy m'” € [0.98,1] U [—1, —0.98].

A second issue is the e-calibration: the somewhat counterintuitive upshot is summarized
in Figure 4 below. Anticipating, one evinces that calibrating e-BANACH with positive €

5The low temperature SK-model allegedly requires co-many replica symmetry breakings (RSB). We
use the Parisi FE obtained from a 2RSB approximation as the numerical error is mostly irrelevant [14].
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F1GURE 3. Eigenvalues of the Jacobian evaluated in one solution fulfilling
C1-2). The Plefka value is 0.073206039645813 < 1.

1500 |-
3s [3s

16 18 19

(A) Number of iterations
(y-axis) fulfilling criteria
C1-2) for negative ¢ =
—0.705 — 5 - 0.001,; =
0,...,20 vs. disorder re-

(B) Number of iterations
(y-axis) fulfilling criteria
C1-2) for positive ¢ =
0.705 + j - 0.001,57 =
0,...,20 vs. disorder re-

(c) Histogram of TAP
FE satisfying C1-2) with
positive ¢ = 0.705 + j -
0.001,5 = 0,...,20. The
red line corresponds to

alisations (x-axis). alisations (x-axis). the 2RSB Parisi FE.
FIGURE 4. e-BANACH: 500 start values close to the facets of the hypercube,
1000 disorder realizations. 1000 iterations for each start value and €. Since
the Parisi FE is an upper-bound [16], fixed points to the right of the red

line in (C) must be rejected.

leads to a wealth of approximate fixed points with unphysical TAP FE. We do not have
any compelling explanation to this riddle, but it is tempting to believe that it finds its
origin in the following: Plefka’s criterion (3.4), which is known to be a necessary condition
for convergence of the TAP-Plefka expansion, is possibly one of (many?) still unknown
criteria. Finally, e-BANACH to negative ¢ possibly yields iterates that temporarily exit
the hypercube: curiously, this appears to be an efficient way to overcome the repulsive
nature of the fixed points which, as manifested by Figure 3 below, becomes even more
dramatic in low temperature.

3.3. One, or more solutions? The Parisi theory predicts, in low temperature, a large
number of TAP solutions per realization. As can be evinced from Figure 7 below, numer-
ical evidence for this is hard to come by: all solutions differ only after the 7th digit. The
crux of the matter seems to lie in the following: upon closer inspection, one finds that even
after 1000 iterations, solutions (barely, but) still move. We have thus performed a more
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the 2RSB approximation). hypercube. The red line is at y = 1.

FIGURE 5. e-BANACH vs. 2STEB: 1000 uniformly chosen initializations,
1000 iterations each. One clearly evinces that 2STEB comes, in low tem-
perature, to a stall: the algorithm doesn’t even come close to a reasonable
TAP FE (Figure A). In case of e-BANACH, two choices lead to reasonable
TAP free energies, but caution is needed: positive ¢ = 0.5 yields solutions
violating Plefka’s criterion (Figure B). Only negative ¢ ~ —0.7 lead to vi-
able solutions: a numerical analysis of these is presented in Figure 6.
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(A) TAP FE (y-axis) vs. (B) TAP FE (y-axis) of (c) TAP FE Histogram.
¢ (x-axis). the realizations (x-axis).

FIGURE 6. e-BANACH: TAP FE of all solutions satisfying C1-2), 500 ini-
tializations close to the facets of the hypercube, 1000 disorder realizations,
e =—0.705—-0.001- 5 for j =0,...,20. Red is the 2RSB Parisi FE.

accurate numerical study, thereby recursively validating a fixed point as nmew whenever
its /-distance to all previously validated is greater than 10~7. In order to facilitate the
search for viable solutions we have also increased the accuracy of the e-mesh: the outcome
is summarized in Figure 8 below. All fixed points appearing in Figure 9 satisfy C1-2):
one evinces that e-BANACH has indeed found multiple solutions. However, many of these
still yield TAP FE larger than the Parisi FE and must therefore be discarded. We be-
lieve this to be yet another instance of the aforementioned issue of unknown convergence
criteria for the TAP-Plefka expansion.
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FIGURE 7. {.-Distance (MAE) to a reference solution, C1-2) being satis-
fied, found by e-BANACH in 1000 realizations, each with 500 start values
close to the facets of the hypercube, and e = —0.705—0.001-5,7 = 0, ..., 20.
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(A) As in Fig. 7, but finer e-mesh. (B) # solutions per realization.

FIGURE 8. Iterations satisfying C1-2), and ¢ = —0.505 4 0.001 - j, j < 250.
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(A) For each ¢ all TAP (B) TAP FE of all realiza- (¢) Histogram of the TAP
free energy values of all tions and all different so- free energy values of all
different solutions found. lutions. different solutions found.

FIGURE 9. TAP FE as in Fig. 6, but with ¢ = —0.505 4+ 0.001 - 5, j < 250.

REFERENCES

[1] Adhikari, Arka, Christian Brennecke, Per von Soosten, and Horng-Tzer Yau. Dynamical Approach to
the TAP Equations for the Sherrington-Kirkpatrick Model. J. Stat. Phys. 183, 35 (2021).

[2] de Almeida J.R.L, and David J. Thouless. Stability of the Sherrington-Kirkpatrick solution of a spin
glass model. J. Phys. A: Math. Gen. 11, pp. 983-990 (1978).



TAP EQUATIONS ARE REPULSIVE. 11

[3] Alt, Johannes, Lészl6 Erdés, Torben Kriiger and Dominik Schroder. Correlated random matrices:
Band rigidity and edge universality. Ann. Probab. 48 (2) 963 - 1001 (2020).

[4] Anderson, Greg, Alice Guionnet and Ofer Zeitouni. An introduction to random matrices. Cambridge
University Press (2011).

[6] Aspelmeier, T., Blythe, R. A., Bray, A. J., and Moore, M. A.. Free-energy landscapes, dynamics, and
the edge of chaos in mean-field models of spin glasses. Physical Review B, 74(18), 184411. (2006)

[6] Bolthausen, Erwin. An iterative construction of solutions of the TAP equations for the Sherring-
ton-Kirkpatrick model. Commun. Math. Phys. 325, 333-366 (2014).

[7] Bolthausen, Erwin. A Morita type proof of the replica-symmetric formula for SK. In: Statistical
Mechanics of Classical and Disordered Systems. Springer (2019).

[8] Celentano, Michael, Zhou Fan, and Song Mei. Local convexity of the TAP free energy and AMP
convergence for Z2-synchronization. arXiv:2106.11428 (2021).

[9] Chen, Wei-Kuo. On the Almeida-Thouless transition line in the SK model with centered Gaussian
external field. arXiv:2103.04802 (2021).

[10] Drazin, Michael P. and Emilie V. Haynsworth. Criteria for the reality of matriz eigenvalues. Math.
Zeitschr. 78, 449-452 (1962).

[11] Gufler, Stephan, Jan Lukas Igelbrink and Nicola Kistler. TAP equations are repulsive. Supplementary
material. arXiv preprint (2021).

[12] Sherrington, David, and Scott Kirkpatrick. Solvable model of a spin-glass. Physical review letters
35.26: 1792 (1975).

[13] Talagrand, Michel. Mean field models for spin glasses. Springer (2011).

[14] Mézard, Marc, Giorgio Parisi, and Miguel A. Virasoro. Spin glass theory and beyond. World Scientific,
Singapore (1987).

[15] Chen, Wei-Kuo, Dmitry Panchenko, and Eliran Subag. The generalized TAP free energy.
arXiv:1812.05066 (2018).

[16] Guerra, Francesco. Broken replica symmetry bounds in the mean field spin glass model. Comm. in
Math. Phys. Vol. 233 (2002).

[17] Plefka, Timm. Convergence condition of the TAP equation for the infinite-ranged Ising spin glass
model. Journal of Physics A: Mathematical and general 15.6 (1982): 1971.

[18] Tao, Terence. Topics in random matriz theory. AMS (2012).

[19] Thouless, David J., Philip W. Anderson, and Robert G. Palmer. Solution of ‘solvable model of a
spin glass’. Philosophical Magazine 35.3 (1977): 593-601.

STEPHAN GUFLER, J.W. GOETHE-UNIVERSITAT FRANKFURT, GERMANY.
Email address: gufler@math.uni-frankfurt.de

JAN LUKAS IGELBRINK, INSTITUT FUR MATHEMATIK, JOHANNES GUTENBERG-UNIVERSITAT MAINZ,
GERMANY.
Email address: jigelbriQuni-mainz.de

NicorLa KISTLER, J.W. GOETHE-UNIVERSITAT FRANKFURT, GERMANY.
Email address: kistler@math.uni-frankfurt.de



