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ORIENTED FIRST PASSAGE PERCOLATION IN THE MEAN FIELD
LIMIT, 2. THE EXTREMAL PROCESS.

By Nicola Kistler∗, Adrien Schertzer∗ and Marius† A. Schmidt

Goethe University Frankfurt a. M. ∗ and University of Basel†

This is the second, and last paper in which we address the be-
havior of oriented first passage percolation on the hypercube in the
limit of large dimensions. We prove here that the extremal process
converges to a Cox process with exponential intensity. This entails,
in particular, that the first passage time converges weakly to a ran-
dom shift of the Gumbel distribution. The random shift, which has
an explicit, universal distribution related to modified Bessel func-
tions of the second kind, is the sole manifestation of correlations
ensuing from the geometry of Euclidean space in infinite dimensions.
The proof combines the multiscale refinement of the second moment
method with a conditional version of the Chen-Stein bounds, and a
contraction principle.

1. Introduction and main results. The model we consider is constructed as follows. We
first embed the n-dimensional hypercube in Rn, for e1, .., en the standard basis, we identify the
hypercube as the graph Gn ≡ (Vn, En), where Vn = {0, 1}n and En ≡ {(v, v + ej) : v, v + ej ∈
Vn, j ≤ n}. The set of shortest (directed) paths connecting diametrically opposite vertices, say
0 ≡ (0, .., 0) and 1 ≡ (1, .., 1), is given by

(1.1) Σn ≡ {π ∈ V n+1
n : π1 = 0, πn+1 = 1, (πi, πi+1) ∈ En,∀i ≤ n}.

A graphical rendition is given in Figure 1 below.
Let now (ξe)e∈E be a family of independent standard exponentials, i.e. exponentially dis-

tributed random variables with parameter 1, and assign to each oriented path π ∈ Σn its weight

Xπ ≡
∑
k≤n

ξ[π]k ,

where [π]i = (πi, πi+1) is the i-th edge of the path.
A key question in first passage percolation, FPP for short, concerns the so-called first passage

time,

(1.2) mn ≡ min
π∈Σn

Xπ ,
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Fig 1. The 10-dimensional hypercube (left), and two oriented connecting paths (right). Blue edges are common to
both paths, whereas paths do not overlap on red edges.

namely the smallest weight of connecting paths. The limiting value of mn to leading order has
been settled by Fill and Pemantle [12], who proved that

(1.3) lim
n→∞

mn = 1,

in probability.
The ”law of large numbers” (1.3) naturally raises questions on fluctuations and weak limits,

and calls for a description of the paths with minimal weight. As a first step towards this goal
we presented in [15] an alternative, ”modern” approach to (1.3) much inspired by the recent
advances in the study of Derrida’s random energy models (see [13] and references therein) and
which relies on the hierarchical approximation to the FPP. In this companion paper we bring
the approach to completion by establishing the full limiting picture, i.e. identifying the weak
limit of the extremal process

Ξn ≡
∑
π∈Σn

δn(Xπ−1) .

Theorem 1 (Extremal process). Let Ξ be a Cox process with intensity Zex−1dx, where Z
is distributed like the product of two independent standard exponentials. Then

(1.4) lim
n→∞

Ξn = Ξ,

weakly. In particular, it follows for the first passage time mn that

(1.5) lim
n→∞

P(n(mn − 1) ≤ t) =

∞∫
0

x

e1−t + x
e−xdx .



FPP IN THE HYPERCUBE 3

It will become clear below, see in particular Remark 6, that the assumption on the distri-
bution of the edge-weights is no restriction, any distribution in the same extremality class of
the exponentials (i.e. any distribution with similar behavior for small values, to leading order)
will lead to the same limiting picture and weak limits. Although not needed, we also point out
that the distribution of the mixture is given by f(z) = 2z2K0(2

√
z), with K0 a modified Bessel

function of the second kind.
What lies behind the onset of the Cox processes is a decoupling whose origin can be traced

back to the high-dimensional nature of the problem at hand. Indeed, the following mechanism,
depicted in Figure 2 below, holds with overwhelming probability in the limit n → ∞ first, and
r → ∞ next: Walkers connecting 0 to 1 through paths of minimal weight may share at most
the first r steps of their journey. Yet, and crucially, whenever they depart from one another
(’branch off’), they cannot meet again until they lie at distance at most r from the target. If
meeting happens, they must continue on the same path (no further branching is possible). The
long stretches during which optimal paths do not overlap are eventually responsible for the
Poissonian component of the extremal process, whereas the mixing is due to the relatively short
stretches of tree-like (early and late) evolution of which the system keeps persistent memory. The
picture is thus very reminiscent of the extremes of branching Brownian motion [BBM], see [4]
and references therein. More specifically, the extremal process of FPP on the hypercube can be
(partly) seen as the ”gluing together” of two extremal processes of BBM in the weak correlation
regime as studied by Bovier and Hartung [5, 6], see also [9, 10, 11].

The backbone of the proof of Theorem 1 will be presented in Section 2 below. We anticipate
that we will check the assumptions of a well-known theorem by Kallenberg by means of the
Chein-Stein method [2]. This is arguably the classical route for this type of problems, see e.g.
[3, 7, 8, 16]. Contrary to these works, we will however need here a conditional version of the
Chen-Stein method which we haven’t found in the literature, and which may be of independent
interest. Section 3 and the Appendix are devoted to the proofs.

2. Strategy of proof. We lighten notation by setting, for A ⊂ R a generic subset and π
an oriented path,

Iπ(A) ≡ δn(Xπ−1)(A), and Ξn(A) ≡
∑
π∈Σn

Iπ(A) .

We then claim that with Z as in Theorem 1, and A a finite union of bounded intervals, one has

• Convergence of the intensity:

(2.1) limEΞn(A) −→
n→∞

E
∫
A
Zex−1dx =

∫
A
ex−1dx .
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Fig 2. Four extremal paths. Remark in particular the tree-like evolution close to 0 and 1 (blue edges) and the
(comparatively) longer stretch where paths share no common edge (red). This should be contrasted with the low-
dimensional scenario: ”loops” in the core of the hypercube, as depicted in Figure 1, become less and less likely
with growing dimension.

• Convergence of the avoidance function:

(2.2) P (Ξn(A) = 0) −→
n→∞

P (Ξ(A) = 0) = E
[
exp

(
−Z

∫
A
ex−1dx

)]
.

Theorem 1 then immediately follows in virtue of Kallenberg’s Theorem [14, Theorem 4.15].

In the remaining part of this Section we provide a bird’s eye view of the main steps involved
in the analysis of intensity and avoidance functions. The former is rather straightforward: it
only requires tail-estimates which we now state for they will be constantly used throughout the
paper. (The simple proof may be found in [15, Lemma 5]).

Lemma 2. Let {ξi}i≤n be independent standard exponentials, and set Xn ≡
∑n

i=1 ξi. Then

(2.3) P (Xn ≤ x) = (1 +K(x, n))
e−xxn

n!
,

for x > 0 and with the error-term satisfying 0 ≤ K(x, n) ≤ exx/(n+ 1).

Armed with these estimates we can proceed to the short proof of (2.1). Here and below, we
will always consider sets of the form A = (−∞, a] , a ∈ R. This is enough for our purposes since
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the general case follows by additivity. It holds that

(2.4)

EΞn(A) =
∑
π∈Σn

P (n(Xπ − 1) ≤ a)

= n!P (n(Xπ∗ − 1) ≤ a) (symmetry, π∗ ∈ Σn is arbitrary)

= n!
{

1 +K
(

1 +
a

n
, n
)}

e−1− a
n

((
1 +

a

n

)+
)n

(n!)−1 (Lemma 2)

= (1 + on(1))e−1+a

= (1 + on(1))

∫
A
ex−1dx,

as claimed. Convergence of the intensity (2.1) is thus already settled.

Contrary to convergence of the intensity, convergence of avoidance functions (2.2) will require a
fair amount of work. This will be split in a number of intermediate steps. The main ingredient
is a conditional version of the Chen-Stein bounds, a variant of the classical Chen-Stein method
[2] which is tailor-suited to our purposes. Since we haven’t found in the literature any similar
statement, we provide the proof in the appendix for completeness.

Theorem 3 (Conditional Chen-Stein Method). Consider a probability space (Ω,F ,P), a
sigma-algebra F ⊂ F , a finite set I, and a family (Xi)i∈I of Bernoulli random variables issued
on this space. Let furthermore

W =
∑
i∈I

Xi and λ =
∑
i∈I

E(Xi|F) .

Denote by Ni, i ∈ I a collection of conditionally dissociating neighborhoods, i.e. with the property
that Xi and {Xj : j ∈ (Ni ∪ {i})c} are independent, conditionally upon F . Finally, consider a

random variable Ŵ with the property that its law conditionally upon F is Poisson, i.e. L(Ŵ |F) =
Poi(λ). It then holds:

(2.5) dTV |F (W, Ŵ ) ≤
∑
i∈I

E(Xi|F)2 +
∑
i∈I

∑
j∈Ni

(E(Xi|F)E(Xj |F) + E(XiXj |F)) ,

where
dTV |F (W, Ŵ ) ≡ sup

A∈F

(
PW (A|F)− P

Ŵ
(A|F)

)
is the total variation distance conditionally upon F .

We will apply Theorem 3 by conditioning on the left- and rightmost regions of Figure 2,
namely those regions where tree-like evolutions eventually kick in. Specifically, we make the
following choices:
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a) I ≡ Σn, the set of admissible (oriented) paths connecting 0 to 1 .
b) F is the sigma-algebra generated by the weights of edges at distance at most r from 0 or

1, to wit

F = Fr,n ≡ σ(ξe : e = (u, v) ∈ E,min{d(u,0), d(v,0)} ∈ [0, r) ∪ [n− r, n)) .

c) The family of Bernoulli random variables is given by (Iπ(A))π∈Σn
.

d) The (random) Poisson-parameter is

λ = λr,n(A) ≡
∑
π∈Σn

E [Iπ(A) | Fr,n]

e) The dissociating neighborhoods are given, for π ∈ Σn, by

Nπ ≡ {π′ ∈ Σn \ {π} : ∃i ∈ {r + 1, .., n− r} s.t. [π]i = [π′]i}

A first, fundamental observation concerns item d), namely the weak convergence of the Poisson-
parameter in the double limit n→∞ first and r →∞ next.

Proposition 4. (The double weak-limit). For π1, .., πi−1 ∈ N and i ≤ r, denote by(
ηπ1,..,πi−1,πi

)
πi∈N

, and
(
η̃π1,..,πi−1,πi

)
πi∈N

independent Poisson point processes with intensity 1R+dx, and set

(2.6) Zr ≡
∑
π∈Nr

exp

− r∑
j=1

ηπ1π2...πj

 , Z̃r ≡
∑
π∈Nr

exp

− r∑
j=1

η̃π1π2...πj

 .

For A ⊂ R, the following ”n-convergence” then holds:

lim
n→∞

λr,n(A) = Zr × Z̃r
∫
A
ex−1dx,

weakly. Furthermore, Zr and Z̃r weakly converge, as r →∞, to independent standard exponen-
tials.

The proof of the double weak-limit goes via a contraction argument which is given in Section
3.1. Here we shall only point out that both limits Zr and Z̃r are constructed outgoing from
hierarchical1 superpositions of Poisson point processes (PPP for short), and this accounts for

1Superpositions of PPP such as those involved in (2.6) are ubiquitous in the Parisi theory of mean field sping
glasses, see [13] and references, where they are referred to as Derrida-Ruelle cascades. Although no knowledge of
the Parisi theory is assumed/needed, our approach to the oriented FPP in the limit of large dimensions heavily
draws on ideas which have recently crystallised in that field.
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the somewhat surprising fact that close to 0 and 1 only tree-like structures contribute to the
extremal process in the mean field limit, as depicted in Figure 2.

Most of the technical work will go into the proof of (2.2), which addresses the convergence
of avoidance functions. The line of reasoning here goes as follows: recalling that Ξn(A) =∑

π∈Σn
Iπ(A), we write

(2.7)
|P (Ξn(A) = 0)− P (Ξ(A) = 0)| = |EP (Ξn(A) = 0 | Fr,n)− EP (Ξ(A) = 0 | Z)|

≤ |EP (Ξn(A) = 0 | Fr,n)− P (Poi (λr,n(A)) = 0 | Fr,n)|
+ |EP (Poi (λr,n(A)) = 0 | Fr,n)− EP (Ξ(A) = 0 | Z)| ,

by the triangle inequality. Furthermore, by convexity,

(2.8)

|EP (Ξn(A) = 0 | Fr,n)− P (Poi (λr,n(A)) = 0 | Fr,n)|
≤ E |P (Ξn(A) = 0 | Fr,n)− P (Poi (λr,n(A)) = 0 | Fr,n)|
≤ EdTV,Fr,n (Ξn(A),Poi (λr,n(A))) ,

and therefore

(2.9)
|P (Ξn(A) = 0)− P (Ξ(A) = 0)| ≤EdTV,Fr,n (Ξn(A),Poi (λr,n(A)))

+ |EP (Poi (λr,n(A)) = 0 | Fr,n)− EP (Ξ(A) = 0 | Z)| .

Concerning the second term on the right-hand side above, it follows from Proposition 4 that
(2.10)

|EP (Poi (λr,n(A)) = 0 | Fr,n)− EP (Ξ(A) = 0 | Z)| =
∣∣∣E(e−λr,n(A) − e−Z

∫
A e

x−1dx
)∣∣∣ −→ 0,

in the double-limit n→∞ first, and r →∞ next.
We finally claim that the first term on the right-hand side of (2.9), the ”Chen-Stein term”,

also vanishes in the considered double-limit,

(2.11) lim
r→∞

lim
n→∞

EdTV,Fr,n (Ξn(A),Poi (λr,n(A))) = 0 .

This is, in fact, the key claim, and its proof is given in Section 3.2 as an application of the
conditional Chen-Stein method, Theorem 3. Assuming this for the time being, by combining
(2.10) and (2.11), we obtain convergence of the avoidance function and the main Theorem 1
therefore follows.

3. Proofs.
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3.1. The double weak-limit. The goal of this section is to prove Proposition 4. To see how
the limiting objects come about, we lighten notation by setting V ≡ Vn, and denote the set of
all pairs of paths leading r-steps away from the start/end respectively, and which can be part
of an oriented path from 0 to 1 by

(3.1)
Vr,n ={(x, y) ∈ V r+1 × V r+1 : x1 = 0, d(xr+1,0) = r, d(y1,1) = r, yr+1 = 1,

y1 − xr+1 ∈ V, (xi, xi+1), (yi, yi+1) ∈ E,∀i ≤ r}.

Note that y1 − xr+1 ∈ V is equivalent to there being a directed path from 0 to 1 containing x
and y. For (x, y) ∈ Vr,n we define the set of paths connecting x and y by

(3.2)
Σx,y ≡{π′ ∈ V n−2r+1 : ∃π ∈ Σn s.t. ([π]i)i≤r = ([x]i)i≤r and

([π]i)r<i≤n−r = ([π′]i)r<i≤n−r, ([π]i)i>n−r = ([y]i)i>n−r}.

By definition,

(3.3)

λr,n(A) =
∑
π∈Σn

P
(
n(Xπ − 1) ≤ a

∣∣∣Fr,n)

=
∑

(x,y)∈Vr,n

∑
π′∈Σx,y

P

(
n−2r∑
i=1

ξ[π′]i ≤ 1 +
a

n
−

r∑
i=1

ξ[x]i + ξ[y]i

∣∣∣Fr,n) .
Shorten

Xx,y ≡
r∑
i=1

ξ[x]i + ξ[y]i .

By Lemma 2, and since |Σx,y| = (n− 2r)!, the right-hand side of (3.3) equals
(3.4) ∑

(x,y)∈Vr,n

(
1 +K(1 +

a

n
−Xx,y, n− 2r)

)
exp

(
−1− a

n
+Xx,y

)((
1 +

a

n
−Xx,y

)+
)n−2r

.

By the tail-estimates from Lemma 2, the following holds

K
(

1 +
a

n
−Xx,y, n− 2r

)
≤ 2e2

n− 2r
,

for all non-zero summands, and n ≥ a. Remark that there are O(n2r) such summands, while
r and a are fixed. One easily checks that dropping all summands where Xx,y > (lnn)2/n only
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causes a deterministically vanishing error, hence
(3.5)

(3.4) = (1 + on(1))

on(1) + e−1
∑

(x,y)∈Vr,n

1
{Xx,y≤ (lnn)2

n
}

exp

(
(n− 2r) ln

(
1 +

a

n
−Xx,y

)+
)

= (1 + on(1))

on(1) + e−1+a
∑

(x,y)∈Vr,n

exp (−nXx,y)


= (1 + on(1))

on(1) + e−1+a
∑

(x,y)∈Vr,n

exp−n
r∑
i=1

(
ξ[x]i + ξ[y]i

) ,

the second step follows by Taylor-expanding the logarithm around 1 to first order, and the third
by definition. We now address the sum on the right-hand side of (3.5), on which we perform the
aforementioned double limit n→∞ first and r →∞ next.

We first address the n-convergence, which states that

(3.6) lim
n→∞

∑
(x,y)∈Vr,n

exp

(
−n

r∑
l=1

ξ[x]l + ξ[y]l

)
= Zr × Z̃r,

weakly, where Zr, Z̃r are defined in (2.6). The idea here is to enlarge the set of paths over which
the sum is taken, as this enables a useful decoupling, see (3.12) below. Precisely, consider the
set of directed paths of length r from 0,

(3.7) V←r,n = {x ∈ V r+1 : x1 = 0, d(xr+1,0) = r, [x]i ∈ E,∀i ≤ r} ,

and respectively to 1,

(3.8) V→r,n = {y ∈ V r+1 : yr+1 = 1, d(y1,1) = r, [y]i ∈ E,∀i ≤ r} .

One easily checks that

(3.9)
∣∣V←r,n × V→r,n \ Vr,n∣∣ = O(n2r−1) .

We split the sum over the larger subset into a sum over Vr,n and a ”rest-term”,

(3.10)

∑
(x,y)∈V→r,n×V←r,n

exp

(
−n

r∑
l=1

ξ[x]l + ξ[y]l

)
=

=
∑

(x,y)∈Vr,n

exp

(
−n

r∑
l=1

ξ[x]l + ξ[y]l

)

+
∑

(x,y)∈(V→r,n×V←r,n)\Vr,n

exp

(
−n

r∑
l=1

ξ[x]l + ξ[y]l

)
.
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and claim that the term on the right-hand side vanishes in probability. Indeed, by a simple
computation involving the moment generating function of the exponential distribution, we have

(3.11)

E

∣∣∣∣∣∣
∑

(x,y)∈(V→r,n×V←r,n)\Vr,n

exp

(
−n

r∑
l=1

ξ[x]l + ξ[y]l

)∣∣∣∣∣∣ =
∣∣(V→r,n × V←r,n) \ Vr,n

∣∣ (n+ 1)−2r

= O

(
1

n

)
−→
n→∞

0,

by (3.9). It thus follows from Markov’s inequality that the contribution of paths in (V→r,n×V←r,n)\
Vr,n is irrelevant for our purposes. The weak limit when summing over Vr,n, and that when
summing over V→r,n × V←r,n coincide, provided one of them exists. On the other hand, the sum
over the enlarged set of paths ”decouples” into two independent identically distributed terms,
(3.12) ∑

(x,y)∈V→r,n×V←r,n

exp

(
−n

r∑
l=1

ξ[x]l + ξ[y]l

)
=
∑
x∈V→r,n

exp

(
−n

r∑
l=1

ξ[x]l

) ∑
y∈V←r,n

exp

(
−n

r∑
l=1

ξ[y]l

)
.

The n-convergence will therefore follow as soon as we show that

(3.13) Zr,n ≡
∑
x∈V→r,n

exp

(
−n

r∑
l=1

ξ[x]l

)
−→
n→∞

∑
π∈Nr

exp

(
r∑
l=1

−ηπ1π2...πj

)
≡ Zr

holds weakly. This will be done by induction on r. The base-case r = 1 is addressed in

Lemma 5. Consider η ≡
∑

i∈N δηi a PPP(1R+dx) and independent standard exponentials
(ξi)i∈N. It then holds:

(3.14)

n∑
i=1

δξin −→n→∞ η

weakly. Furthermore, the following weak limit holds:

(3.15)

n∑
i=1

exp (−ξin) −→
n→∞

∑
i∈N

exp (−ηi) .

Proof of Lemma 5. Claim (3.14) is a classical result in extreme value theory. We thus omit
its elementary proof. As for the second claim, it is steadily checked (e.g. by Markov’s inequality)
that the sum on the left-hand side of (3.15) is almost surely finite. In order to prove (3.15) it
thus suffices to compute the Laplace transform of the two sums. For t ∈ R+, since the ξ′s are
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independent, we have

(3.16)

E exp−t
n∑
i=1

e−ξin = E
(
ete
−ξ1n

)n
=

1 +

+∞∫
0

e−x(ete
−xn − 1)dx

n

=

1 +
1

n

+∞∫
0

e−u/n(ete
−u − 1)du

n

.

But e−u/n(ete
−u−1) ≤ (ete

−u−1), which is integrable, hence by dominated convergence we have
that the right-hand side of (3.16) converges, as n ↑ ∞, to the limit

(3.17) exp

 +∞∫
0

(e−te
−x − 1)dx

 = E exp−t
∑
i∈N

e−ηi ,

(3.15) is therefore settled.

Remark 6. In virtue of Lemma 5, Theorem 1 holds for any choice of edge-weights falling
in the same universality class of the exponential distribution, i.e. for which (3.14) holds.

For the n-convergence, we will work with the Prohorov metric, which we recall is defined as
follows: for µ, ν ∈M1(R) two probability measures, the Prohorov distance is given by

dP (µ, ν) ≡ inf {ε > 0 : µ(A) ≤ ν(Aε) + ε, ∀A ⊂ R closed} ,

where Aε ≡ {x ∈ R : d(A, x) ≤ ε} is the ε-neighborhood of the set A. It is a classical fact that
the Prohorov distance metricizes weak convergence. We also recall the following implication, as
it will be used at different occurences: for two random variables X,Y , slightly abusing notation,
one has

(3.18) P(|X − Y | > ε) ≤ ε⇒ dP(X,Y ) ≤ ε .

We now proceed to the induction step, we thus assume that Zr,n converges weakly to Zr for
some r ∈ N and show how to deduce that Zr+1,n converges weakly to Zr+1. First, we observe
that by definition

(3.19)

Zr+1,n =
∑
i≤n

exp
(
−nξ(0,ei)

) ∑
x∈V→r+1,n:x2=ei

exp

(
−n

r+1∑
l=2

ξ[x]l

)

=
∑
i≤n

exp
(
−nξ(0,ei)

)
× Zeir,n ,
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changing notation for the second sum to lighten exposition.
We claim that it suffices to consider small ξ-values in the first sum. Precisely, let ε > 0, set

Kε = −2 ln ε, and restrict the first sum to those ξ′s such that ξ(0,ei) ≤ Kε/n. We claim that this
causes only an ε-error in Prohorov distance:

(3.20) sup
n,r

dP

Zr+1,n,
∑
i≤n

1{ξ(0,ei)≤Kε/n}
e−nξ(0,ei) × Zeir,n

 ≤ ε.
In fact, for the contribution of large ξ′s Markov inequality yields

(3.21)

P

∑
i≤n

1{ξ(0,ei)>Kε/n}
e−nξ(0,ei) × Zeir,n > ε


≤ 1

ε
E

∑
i≤n

1{ξ(0,ei)>Kε/n}
e−nξ(0,ei) × Zeir,n


=
n

ε
E
[
1{ξ(0,ei)>Kε/n}

e−nξ(0,ei)
]
× E

[
Zeir,n

]
,

the last step by independence. One furthermore checks that

(3.22) E
[
Zeir,n

]
=

(n− 1)!

(n− r − 1)!

 ∞∫
0

e−(n+1)xdx

r

=
(n− 1)!

(n− r − 1)!
(n+ 1)−r .

Thus the right-hand side of (3.21) is at most

(3.23)
n

ε

∞∫
Kε/n

e−(n+1)xdx× (n− 1)!

(n− r − 1)!
(n+ 1)−r ≤ exp−Kε

ε
= ε,

since Kε = −2 ln ε. This settles (3.20).
Consider now the permutation p of {1, .., n} such that (ξp(i))i≤n is increasing, and set K̂ε ≡

dKε/εe. We clearly have

(3.24) Zr+1,n ≥
∑
i≤K̂ε

e−nξp(i)Z
ep(i)
r,n .

On the other hand, using that P (A) ≤ P (A ∩B) + P (Bc) with obvious identification of the
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events, we have

(3.25)

P

Zr+1,n ≥
∑
i≤K̂ε

e−nξp(i)Z
ep(i)
r,n + ε


≤ P

Zr+1,n ≥
∑
i≤n

1{ξ(0,ei)≤Kε/n}
e−nξ(0,ei) × Zeir,n + ε


+ P

∑
i≤K̂ε

e−nξp(i)Z
ep(i)
r,n ≤

∑
i≤n

1{ξ(0,ei)≤Kε/n}
e−nξ(0,ei) × Zeir,n

 .

While the first term on the right-hand side of (3.25) is at most ε by (3.21) and (3.23), the second
term equals

(3.26)
P
(

#{i ≤ n : ξ(0,ei) ≤ Kε/n} > K̂ε

)
≤ nP(ξ(0,e1) ≤ Kε/n)

/
K̂ε ≤ Kε

/
K̂ε ≤ ε ,

the first estimate follows by Markov inequality and the second using (1− e−x) ≤ x.
All in all, in virtue of (3.18), the above considerations imply that

(3.27) sup
n,r

dP

Zr+1,n,
∑
i≤K̂ε

e−nξp(i)Z
ep(i)
r,n

 ≤ 2ε .

A fixed, finite number of paths therefore carries essentially all weight. We will now show that
these paths are, with overwhelming probability, organised in a ”tree-like fashion”. Towards this
goal, we go back to the original formulation

(3.28)
∑
i≤K̂ε

e−nξp(i)Zeir,n =
∑
i≤K̂ε

e−nξp(i)
∑

x∈V→r+1,n:x2=ep(i)

exp

(
−n

r+1∑
l=2

ξ[x]l

)
.

Note that any directed path of length r + 1 with first step (0, ei), can only share an edge with
another path starting with (0, ej), i 6= j if it goes in the direction ej at some point. By this
observation for i 6= j and i, j ∈ {1, .., n}

(3.29) |{x ∈ V→r+1,n : x2 = ei,∃x′ ∈ V→r+1,n s.t. x′2 = ej and x ∩ x′ 6= ∅}| = O(nr−1)

holds. Combining this fact with the observation

(3.30) E exp

(
−n

r+1∑
l=2

ξ[x]l

)
= (n+ 1)−r
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we see that the total contribution of such paths converges in probability to zero, by Markov
inequality, and swapping the intersecting summands for copies that are independent of paths
with different start edge does not change the weak limit. The weak limit of (3.33) therefore
coincides with the weak limit of

(3.31)
∑
i≤K̂ε

exp
(
−nξp(i)

) ∑
x∈V→r,n−1

exp

(
−n

r∑
l=1

ξ
(p(i))
[x]l

)

where ξ
(p(i))
[x]l

= ξ[x]l if [x]l cannot be part of a path starting with ep(j) for some j 6= i with j ≤ K̂ε.

On the other hand, the ξ
(p(i))
[x]l

’s are exponentially distributed and independent of each other for

different p(i) and or different [x]l as well as independent of all (ξe)e∈En . Finally, we realize that
replacing

(3.32) exp

(
−n

r∑
l=1

ξ
(p(i))
[x]l

)
by exp

(
−(n− 1)

r∑
l=1

ξ
(p(i))
[x]l

)

causes, by the restriction argument (3.5), an error which vanishes in probability. Collecting all
changes and estimates, we have thus shown that the distribution of Zr+1,n is at most 2ε+on(1)-
Prohorov distance away from the weak limit of

(3.33)
∑
i≤K̂ε

exp
(
−nξp(i)

)
Z

(i)
r,n−1,

where Z
(i)
r,n−1, i ∈ N are independent copies of Zr,n−1. By assumption Zr,n−1 converges weakly

to Zr and by Lemma 5 the smallest finitely many nξ’s converge weakly to the first that many
points of a PPP(1R+dx). We conclude that the Prohorov distance of Zr+1,n and

(3.34)
∑
i≤K̂ε

exp (−η̂i)Z(i)
r ,

is at most by an in n vanishing sequence larger than 2ε. Checking using Markov inequality that
the contibution of i > K̂ε is vanishing in probability gives that

(3.35) dP (L(Zr+1,n),L(Zr+1))→ 0

has to hold as n → ∞. This finishes the induction, and the proof of the n-convergence is thus
settled.

We move to the proof of the second claim of Proposition 4, the r-convergence. This will be
done via a contraction argument on the space P2 of probability measures on R with finite second
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moment. To this end, denote again by (ηi)i∈N a PPP(1R+dx). Define

(3.36)

T : P2 → P2,

µ 7→ L

(∑
i∈N

e−ηiXi

)
,

where (Xi)i∈N are independent and identically µ-distributed, and independent of η. Note that
T is well-defined, i.e., we have that Tµ has a finite second moment for all µ ∈ P2 by applying
the triangle inequality, E[

∑
i∈N

e−2ηi ] = 1/2 and independence. Moreover, since E[
∑

i∈N e
−ηi ] = 1

the map T does not change the first moment. Hence, for the subset

P2,1 :=

{
µ ∈ P2 :

∫
x dµ = 1

}
the restriction of T to P2,1 maps to P2,1. By construction, it holds that

(3.37) L(Zr+1) = TL(Zr).

We now endow P2 with the minimal L2-distance `2, also called Wasserstein distance of order 2.
For µ, ν ∈ P2 this is defined by

`2(µ, ν) = inf{‖V −W‖2 : L(V ) = µ,L(W ) = ν},

where the infimum is taken over all probability distributions on P × P whose marginals are
µ and ν respectively. Convergence in `2 implies weak convergence, (P2, `2) and (P2,1, `2) are
complete metric spaces. For these topological properties and the existence of optimal couplings
used below see, e.g., Ambrosio, Gigli and Savaré [1] or Villani [18]. Within the present setting,
in order to prove the r-convergence it suffices to prove that

• The restriction of T to P2,1 is a strict `2-contraction.
• The standard exponential distribution is a fixed point of T restricted to P2,1.

We remark that T as a map on P2 has infinitely many fixed points and that our argument below
also implies that these fixed points are exactly the exponential distributions with arbitrary
parameter, their negatives, and the Dirac measure in 0. Uniqueness of the fixed point on P2,1 is
immediate by Banach fixed point theorem and the strict contraction property.

Contractivity goes as follows. For µ, ν ∈ P2,1, let (Xi, Yi)i∈N be a sequence of independent
optimal `2-couplings, which are also independent of η; optimal `2-couplings means here that the
pair (Xi, Yi) has marginal distributions µ and ν, and that it attains the infimum in the definition
of `2. It then holds:

(3.38) `2(Tµ, Tν)2 ≤ E

(∑
i∈N

e−ηi(Xi − Yi)

)2
 .
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Remark that the off-diagonal terms on the right-hand side above vanish, since Xi − Yi has zero
expectation. Using this, we thus obtain

(3.39) `2(Tµ, Tν)2 ≤ E

[∑
i

e−2ηi

]
E
[
(X1 − Y1)2

]
=

1

2
`2 (µ, ν)2 ,

the last step follows by optimality of the coupling. This implies that the restriction of the map
T to P2,1 is an `2-contraction.

It thus remains to prove that the standard exponential distribution is the fixed point of
T in P2,1. This can be checked via Laplace transformation. Consider independent standard
exponentials X1, X2, ... which are also independent of η. For t > 0,

(3.40)

E

[
exp

(
−t

∞∑
i=1

e−ηiXi

)]
= E

[
exp

(
−
∞∑
i=1

ln
(
1 + te−ηi

))]

= exp

 ∞∫
0

1

1 + te−x
− 1dx

 =
1

1 + t
,

which is the Laplace transform of a standard exponential. This implies ii). The r-convergence
therefore immediately follows from Banach fixed point theorem.

�

3.2. Vanishing of the Chen-Stein term.. The goal here is to prove (2.11), namely that

(3.41) lim
r→∞

lim
n→∞

EdTV,Fr,n (Ξn(A),Poi (λr,n(A))) = 0 .

This requires some additional notation. Let

Σn,r ≡
{

(π, π′) ∈ Σn × Σn : π, π′ have at least a common edge e,

e = (u, v) ∈ E, {d(u,0), d(v,0)} ∈ [r, n− r)
}
.

For paths (π, π′) ∈ Σn × Σn, we denote by π ∧ π′ their overlap, i.e. the number of edges shared
by both paths. Working out the conditional Chen-Stein bound (2.5), we get

(3.42)

EdTV,Fr,n (Ξn(A),Poi (λn(A))) ≤
∑
π∈Σn

E
[
E[Iπ(A)|Fr,n]2

]
+
∑
?

E [E[Iπ(A)|Fr,n]E[Iπ′(A)|Fr,n]]

+
∑
?

E [E[Iπ(A)Iπ′(A)|Fr,n]] ,
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where
∑

? denotes summation over all (π, π′) ∈ Σn,r : 1 ≤ π ∧ π′ ≤ n− 2.
We will prove that all three terms on the right-hand side of (3.42) vanish in the limit n→∞

first, and r → ∞ next. As the proof is long and technical, we formulate the statements in the
form of three Lemmata.

Lemma 7.
lim
r→∞

lim
n→∞

∑
π∈Σn

E
[
E[Iπ(A)|Fr,n]2

]
= 0 .

Lemma 8.
lim
r→∞

lim
n→∞

∑
?

E [E[Iπ(A)|Fr,n]E[Iπ′(A)|Fr,n]] = 0 .

Lemma 9.
lim
r→∞

lim
n→∞

∑
?

E [E[Iπ(A)Iπ′(A)|Fr,n]] = 0 .

The first contribution is easily taken care of:

Proof of Lemma 7. By symmetry we have that

(3.43)

∑
π∈Σn

E[E[Iπ(A)|Fr,n]2] = n!E[E[Iπ∗(A)|Fr,n]2] ,

where π∗ ∈ Σn is arbitrary. It thus follows from the tail-estimates of Lemma 2 that

(3.44)

(3.43) = n!

∫ 1+ a
n

0

(
1 +K(1 +

a

n
− x, n− 2r)

)2 e−2(1+ a
n

)+x(1 + a
n − x)2n−4rx2r−1

(n− 2r)!2(2r − 1)!
dx

≤ n!

∫ 1+ a
n

0

(
1 + e(1+ a

n
) (1 + a

n)

n− 2r

)2 e−(1+ a
n

)(1 + a
n)2n−4r(1 + a

n)2r−1

(n− 2r)!2(2r − 1)!
dx

=
n!e2a

(n− 2r)!2(2r − 1)!
(1 + on(1)) .

Since the right-hand side of (3.44) is vanishing in the large n-limit, the proof of Lemma 7 is
concluded.

Lemma 8 and 9 require more work. In particular, we will make heavy use of the following
combinatorial estimates, which have been established by Fill and Pemantle [12] (see Lemma 2.3,
2.4 and 2.5 p. 598):

Proposition 10 (Path counting). Let π′ be any reference path on the n-dim hypercube
connecting 0 and 1. Denote by f(n, k) the number of paths π that share precisely k edges (k ≥ 1)
with π′. Finally, shorten ne ≡ n− 5e(n+ 3)2/3.
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• For any K(n) = o(n) as n→∞,

(3.45) f(n, k) ≤ (1 + o(1))(k + 1)(n− k)!

uniformly in k for k ≤ K(n).
• Suppose k ≤ ne. Then, for n large enough,

(3.46) f(n, k) ≤ n6(n− k)! .

• Suppose k ≥ ne. Then, for n large enough,

(3.47) f(n, k) ≤ (2n
7
8 )
n−k

(n− k + 1) .

Proof of Lemma 8. Here and below, κa > 0 will denote a universal constant not necessarily
the same at different occurences, and which depends solely on a. By symmetry,

(3.48)
∑
?

E[Iπ(A)Iπ′(A)] = n!
∑
?,?

E[Iπ∗(A)Iπ′(A)]

where π∗ ∈ Σn is arbitrary and
∑

?,? standing for summation over

π′ ∈ Σn : (π∗, π′) ∈ Σn,r, 1 ≤ π∗ ∧ π′ ≤ n− 2.

Let k ∈ {1, n− 2} and π′ ∈ Σn, π
∗ ∧ π′ = k. Splitting Xπ∗ and Xπ′ into common/non-common

edges, we obtain

(3.49)

E[Iπ∗(A)Iπ′(A)] = P
(
Xπ∗ ≤ 1 +

a

n
,Xπ′ ≤ 1 +

a

n

)
=

∫
R
P
(
x+Xn−k ≤ 1 +

a

n
, x+X ′n−k ≤ 1 +

a

n
| Xk = x

)
P(Xk ∈ dx) .

In the above, Xn−k and X ′n−k correspond to the compound weights of the non-common edges,
these are Gamma(n − k, 1)-distributed random variables; Xk corresponds to the weight of the
common edges, this is a Gamma(k, 1)-distributed random variable. By construction, Xn−k, X

′
n−k

and Xk are independent. All in all, with the tail-estimate of Lemma 2, one has

(3.50)

E[Iπ∗(A)Iπ′(A)] =

∫ +∞

0
P
(
x+Xn−k ≤ 1 +

a

n

)2 e−xxk−1

(k − 1)!
dx

≤ κa

(n− k)!2

∫ 1+ a
n

0

(
1 +

a

n
− x
)2(n−k) xk−1

(k − 1)!
dx .

Integration by parts then yields

(3.51)

∫ 1+ a
n

0

(
1 +

a

n
− x
)2(n−k)

xk−1dx ≤ κa
(k − 1)!(2(n− k))!

(2n− k)!
.
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and therefore

(3.52) E[Iπ∗(A)Iπ′(A)] ≤ κa
(2(n− k))!

(2n− k)!(n− k)!2
.

Denoting by f(n, k, r) the number of paths π′ that share precisely k edges (1 ≤ k ≤ n− 2) with
π∗ and that satisfy (π′, π∗) ∈ Σn,r, we thus have that

(3.53)

n!
∑
?,?

E[Iπ∗(A)Iπ′(A)] = n!
n−2∑
k=1

f(n, k, r)E[Iπ∗(A)Iπ′(A)]

(3.54)

≤ κa

n−2∑
k=1

f(n, k, r)

(n− k)!
× n!(2(n− k))!

(n− k)!(2n− k)!

hence

(3.54) n!
∑
?,?

E[Iπ∗(A)Iπ′(A)] ≤ κa
n−2∑
k=1

f(n, k, r)

(n− k)!
×

(1− k
n)n−k

2k(1− k
2n)2n−k

,

by Stirling approximation. To lighten notation, remark that with γ ≡ k/n ∈ [0, 1], the second
factor in the last sum above can be written as

(3.55)
(1− k

n)n−k

2k(1− k
2n)2n−k

=

(
(4(1− γ))(1−γ)

(2− γ)(2−γ)

)n
≡ g(γ)n .

With this, (3.53) takes the form

(3.56) n!
∑
?,?

E[Iπ∗(A)Iπ′(A)] ≤ κa
n−2∑
k=1

f(n, k, r)

(n− k)!
× g

(
k

n

)n
.

The following observation, whose elementary proof is postponed to the end of this section, will
be useful.

Fact 1. The function g : [0, 1]→ R+ defined in (3.55) is increasing on [2/3, 1). Furthermore,

(3.57) ∀γ ≤ 2/3 : g(γ) ≤
(

3

4

)γ
.

In view of Proposition 10, recalling that ne = n− 5e(n+ 3)2/3 and with

(3.58) C ≡ 7

ln (4/3)
,
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we split the sum on the right-hand side of (3.56) into three regimes, to wit:

(3.59)

C ln(n)∑
k=1

+

ne∑
k=C ln(n)+1

+

n−2∑
k=ne+1

 f(n, k, r)

(n− k)!
× g

(
k

n

)n
.

Concerning the first sum, by (3.57) it holds

(3.60)

C ln(n)∑
k=1

f(n, k, r)

(n− k)!
g

(
k

n

)n
≤

C ln(n)∑
k=1

f(n, k, r)

(n− k)!

(
3

4

)k

≤
r−1∑
k=1

f(n, k, r)

(n− r + 1)!

(
3

4

)k
+

C ln(n)∑
k=r

f(n, k)

(n− k)!

(
3

4

)k

≤
r−1∑
k=1

f(n, k, r)

(n− r + 1)!

(
3

4

)k
+ κa

C ln(n)∑
k=r

(k + 1)

(
3

4

)k
,

by Proposition 10.
The function f(n, k, r) counts the number of paths π′ that share precisely k edges (1 ≤ k ≤

n− 2) with π∗ and that satisfy (π′, π∗) ∈ Σn,r: we claim that

(3.61) f(n, k, r) ≤ r!(n− r − 1)!n.

To see this, recall that the vertices of the hypercube stand in correspondence with the stan-
dard basis of Rn: every edge is parallel to some unit vector ej , where ej connects (0, . . . , 0) to
(0, . . . , 0, 1, 0, . . . , 0) with a 1 in position j. We identify a directed path π from 0 to 1 by a permu-
tation of 12 . . . n, say π1π2 . . . πn. πl is giving the direction the path π goes in step l, hence after
i steps the path π1π2 . . . πn is at vertex

∑
j≤i eπj . (By a slight abuse of notation, π1 will refer

here below to a number between, 1 and n). Let now π∗ be the reference path, say π∗ = 12...n.
We set ui = l if the l-th traversed edge by π′ is the i-th shared edge of π′ and π∗, setting by
convention r0 = 0 and rk+1 = n+ 1. Shorten then u ≡ u(π′) = (u0, ..., uk+1), and si ≡ ui+1−ui,
i = 0, ..., k. For any sequence u0 = (u0, ..., uk+1) with 0 = u0 < u1 < ... < uk < uk+1 = n+ 1, let
C(u0) denote the number of paths π′ with u(π′) = u0. Since the values π′ui+1, ..., π

′
ui+si−1 must

be a permutation of {ui + 1, ..., ui + si − 1}, one easily sees that C(u) ≤ G(u), where

(3.62) G(u) =
k∏
i=0

(si − 1)! .

We also observe that two such paths must have a common edge in the middle region (π′, π∗) ∈
Σn,r. Let e be such an edge: as it turns out, this is quite restrictive. Indeed, it implies that there
exists uj ∈ {r+ 1, n− r} for j ∈ {1, ..., k}. In virtue of (3.62) and log-convexity of factorials, one
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has at most r!(n− r − 1)! paths π′ sharing the edge e with the reference-path π∗, and at most(
n
1

)
= n ways to choose this edge: combining all this settles (3.61).

It follows that

(3.63)

C ln(n)∑
k=1

f(n, k, r)

(n− k)!
g

(
k

n

)n
≤

r−1∑
k=1

r!(n− r − 1)!n

(n− r + 1)!

(
3

4

)k
+ κa

+∞∑
k=r

(k + 1)

(
3

4

)k
.

The first sum above clearly tends to 0 as n→∞, whereas the second sum vanishes when r →∞:
the first regime in (3.59) therefore yields no contribution in the double limit.

As for the second regime, by Proposition 10,

(3.64)

ne∑
k=C ln(n)

f(n, k, r)

(n− k)!
g

(
k

n

)n
≤

ne∑
k=C ln(n)

f(n, k)

(n− k)!
g

(
k

n

)n

≤ n6
ne∑

k=C ln(n)

g

(
k

n

)n

= n6

 2n/3∑
k=C ln(n)

g

(
k

n

)n
+

ne∑
k=2n/3+1

g

(
k

n

)n .

As pointed out in Fact 1, the g-function is increasing on [2/3, 1), whereas on the ”complement”
(3.57) holds: these observations, together with (3.64) imply that

(3.65)

ne∑
k=C ln(n)

f(n, k, r)

(n− k)!
g

(
k

n

)n
≤ n6

 2n/3∑
k=C ln(n)

(
3

4

)k
+

ne∑
k=2n/3+1

g
(ne
n

)n
≤ 4n6

(
3

4

)C ln(n)

+ n7g
(ne
n

)n
= 4 exp {(6 + C ln(3/4)) ln(n)}+ n7g

(ne
n

)n
.

In virtue of the choice (3.58) we have that 6 + C ln(3/4) = −1, hence

(3.66) (3.65) = on(1) + n7g
(ne
n

)n
.

By definition of the g-function (3.55) and ne, it holds:

(3.67)

g
(ne
n

)n
=

(1− ne
n )n−ne

2ne(1− ne
2n)2n−ne

=

(
5e(n+ 3)

2
3

n

)5e(n+3)
2
3

210e(n+3)
2
3

(
1 +

5e(n+ 3)
2
3

n

)−n−5e(n+3)2/3

.
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Notice that

(3.68) 1 +
5e(n+ 3)

2
3

n
≥ 1 and (n+ 3)

2
3 ≤ 2n

2
3 for n ≥ 3,

thus

(3.69) g
(ne
n

)n
≤
(

40e

n1/3

)10en
2
3

= o(n−7) ,

implying that the second regime in (3.59) yields no contribution in the limit n→ +∞.

As for the third, and last regime, by definition of the g-function,

(3.70)

n−2∑
k=ne+1

f(n, k, r)

(n− k)!
g

(
k

n

)n
≤

n−2∑
k=ne+1

f(n, k)

(n− k)!

(1− k
n)n−k

2k(1− k
2n)2n−k

≤
n−2∑

k=ne+1

(2n
7
8 )
n−k

(n− k + 1)

(n− k)!

(1− k
n)n−k

2k(1− k
2n)2n−k

,

the last step in virtue of Proposition 10. By change of variable, n− k 7→ u, we get

(3.71)

n−2∑
k=ne+1

(2n
7
8 )
n−k

(n− k + 1)

(n− k)!

(1− k
n)n−k

2k(1− k
2n)2n−k

=

5e(n+3)
2
3−1∑

u=2

(
8un

7
8

n

)u
(u+ 1)

(1 + u
n)n+uu!

≤
∞∑
u=2

(
8e

n
1
8

)u
(u+ 1)

by Stirling’s approximation. It thus follows that the contribution of the third and last regime in
(3.59) also vanishes as n→ +∞. The proof of Lemma 8 is concluded.

We finally provide the elementary

Proof of Fact 1. The sign of g′ is given by the sign of

d

dγ
(ln(4− 4γ)(1− γ)− ln(2− γ)(2− γ)) = ln

(
2− γ
4− 4γ

)
.

It follows that g′(γ) ≤ 0 ∀γ ≤ 2/3 and g′(γ) ≥ 0 ∀γ ≥ 2/3. Furthermore, since

1− γ ≤
(

1− γ

2

)2
,
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we have

(3.72) g(γ) =
(4(1− γ))(1−γ)

(2− γ)(2−γ)
≤ (2− γ)−γ ≤

(
3

4

)γ
,

∀γ ≤ 2/3, settling (3.57).

Proof of Lemma 9. Again by symmetry,

(3.73)

∑
?

E[E[Iπ(A)|Fr,n]E[Iπ′(A)|Fr,n]]

= n!
∑
?,?

E[E[Iπ∗(A)|Fr,n]E[Iπ′(A)|Fr,n]]

= n!
∑
?,?

E
[
P
(
Xπ∗ ≤ 1 +

a

n
|Fr,n

)
P
(
Xπ′ ≤ 1 +

a

n
|Fr,n

)]
,

where π∗ ∈ Σn and
∑

?,? stands for summation over

π′ ∈ Σn, (π
∗, π′) ∈ Σn,r : 1 ≤ π∗ ∧ π′ ≤ n− 2.

We split this sum into two parts, the first contribution will stem from paths π′ which share less
than 2r edges with π∗, in which case π′ and π∗ are almost independent when n tends to +∞;
the second contribution will come from the (fewer) paths which are more correlated with π∗.
Precisely, we write

(3.74)

(3.73) =n!
∑
?,?,1

E
[
P
(
Xπ∗ ≤ 1 +

a

n
|Fr,n

)
P
(
Xπ′ ≤ 1 +

a

n
|Fr,n

)]
+ n!

∑
?,?,2

E
[
P
(
Xπ∗ ≤ 1 +

a

n
|Fr,n

)
P
(
Xπ′ ≤ 1 +

a

n
|Fr,n

)]
while

∑
?,?,1 denotes summation over

π′ ∈ Σn, (π
∗, π′) ∈ Σn,r : 1 ≤ π∗ ∧ π′ ≤ 2r ,

whereas
∑

?,?,2 stands for summation over

π′ ∈ Σn, (π
∗, π′) ∈ Σn,r : 2r + 1 ≤ π∗ ∧ π′ ≤ n− 2.

We now proceed to estimate these two sums: in the first case we will exploit the fact that the
involved paths are almost independent. To see how this goes, let

(3.75)
Cr,n,π′ ≡

{
e = (u, v) ∈ En,min{d(u,0), d(v,0)} ∈ [0, r) ∪ [n− r, n) ,

e is a common edge of π′ and π∗
}
,

and denote by #C ≡ |Cr,n,π′ | the cardinality of this set. We now make the following observations:
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• #C = 0 (i.e. Cr,n,π′ = ∅) implies that π′ and π∗ are, conditionally upon Fr,n, independent.
• If #C > 0, by positivity of exponentials,

(3.76)
P
(
Xπ′ ≤ 1 +

a

n
|Fr,n

)
≤ P

Xπ′ −
∑

e∈Cr,n,π′

ξe ≤ 1 +
a

n

∣∣∣∣∣Fr,n


= P
(
Xn−#C ≤ 1 +

a

n

∣∣∣Fr,n) ,
where Xn−#C is a Gamma(n−#C, 1)-distributed random variable which is, conditionally
upon Fr,n, independent of Xπ∗ .

Altogether,

(3.77)

n!
∑
?,?,1

E
[
P
(
Xπ∗ ≤ 1 +

a

n
|Fr,n

)
P
(
Xπ′ ≤ 1 +

a

n
|Fr,n

)]
≤ n!P

(
Xπ∗ ≤ 1 +

a

n

)∑
?,?,1

P
(
Xn−#C ≤ 1 +

a

n

)
.

Convergence of the intensity functions (2.1), implies that the first term n!P
(
Xπ1 ≤ 1 + a

n

)
converges; in particular, it remains bounded as n → ∞. It therefore suffices to prove that∑

?,?,1 P
(
Xn−#C ≤ 1 + a

n

)
tends to 0 in the double limit. To see this, denote by f(n, k, r) the

number of paths π′ that share precisely k edges (1 ≤ k ≤ n−2) with π∗ and with (π′, π∗) ∈ Σn,r.
We then have

(3.78)

∑
?,?,1

P
(
Xn−#C ≤ 1 +

a

n

)
=

2r∑
k=1

f(n, k, r)P
(
Xn−#C ≤ 1 +

a

n

)

≤
2r∑
k=1

f(n, k)P
(
Xn−#C ≤ 1 +

a

n

)
,

where f(n, k) is the number of paths π′ that share precisely k ≥ 1 edges with π∗. By the
tail-estimates from Lemma 2,

(3.79) P
(
Xn−#C ≤ 1 +

a

n

)
≤ κa

(n−#C)!
≤ κa

(n− k + 1)!
.

The second inequality holds since two paths in Σn,r must share an edge in the complement of
Cr,n,π′ . Using (3.79) and Proposition 10 we obtain

(3.80)
∑
?,?,1

P
(
Xn−#C ≤ 1 +

a

n

)
≤ κa

2r∑
k=1

(n− k)!(k + 1)

(n− k + 1)!
,



FPP IN THE HYPERCUBE 25

which vanishes as n → ∞, the first sum in (3.74) therefore yields a vanishing contribution. As
for the second sum, by Cauchy-Schwarz,

(3.81) n!
∑
?,?,2

E[E[Iπ∗(A)|Fr,n]E[Iπ′(A)|Fr,n]] ≤ n!
∑
?,?,2

E
[
P
(
Xπ′ ≤ 1 +

a

n
|Fr,n

)2
]
.

By the tail-estimates from Lemma 2, for the expectation on the right-hand side above it holds

(3.82)

E
[
P
(
Xπ′ ≤ 1 +

a

n
|Fr,n

)2
]

=

∫ 1+ a
n

0

(
1 +K(1 +

a

n
− x, n− 2r)

)2 e−2(1+ a
n

)+x(1 + a
n − x)2n−4rx2r−1

(n− 2r)!2(2r − 1)!
dx

≤ κa

(n− 2r)!2(2r − 1)!

∫ 1+ a
n

0

(
1 +

a

n
− x
)2n−4r

x2r−1dx.

Integration by parts then yields

(3.83)

∫ 1+ a
n

0

(
1 +

a

n
− x
)2n−4r

x2r−1dx ≤ κa
(2n− 4r)!(2r − 1)!

(2n− 2r)!
,

Using (3.82) and (3.83) we get

(3.84) (3.81) ≤ κa
n−2∑

k=2r+1

f(n, k, r)

(n− 2r)!

n!(2n− 4r)!

(n− 2r)!(2n− 2r)!
.

It clearly holds that

(3.85)
n!(2n− 4r)!

(n− 2r)!(2n− 2r)!
≤ 1,

hence

(3.86)

(3.84) ≤
n−2∑

k=2r+1

f(n, k, r)

(n− 2r)!

=

 2r+7∑
k=2r+1

+

ne∑
k=2r+8

+
n−2∑

k=ne+1

 f(n, k, r)

(n− 2r)!

=: (A) + (B) + (C).
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By Proposition 10, and worst-case estimates, the following upperbounds hold:

(3.87)

(A) ≤
2r+7∑

k=2r+1

(k + 1)(n− k)!

(n− 2r)!
≤ κa

7(2r + 8)(n− 2r − 1)!

(n− 2r)!

(B) ≤
ne∑

k=2r+8

n6(n− k)!

(n− 2r)!
≤ n6

ne∑
k=2r+8

(n− k)!

(n− 2r)!
≤ n7 (n− 2r − 8)!

(n− 2r)!

(C) ≤
n−2∑

k=ne+1

(2n7/8)
n−k

(n− k + 1)

(n− 2r)!
≤ n2(2n7/8)

5e(n+3)2/3

(n− 2r)!
.

All three terms are clearly vanishing in the limit n → ∞. This implies that the second sum in
(3.74) yields no contribution, and the proof of Lemma 9 is thus concluded.

Appendix: the conditional Chein-Stein method. All random variables in the course
of the proof are defined on the same probability space (Ω,F ,P). Let F ⊂ F be a sigma algebra,
I is a finite (deterministic) set, and (Xi)i∈I a family of Bernoulli random variables. We set

W ≡
∑
i∈I

Xi, λ ≡
∑
i∈I

E(Xi|F) .

Since the claim is trivial for λ = 0 we assume λ > 0 from here onwards. Additionally we denote
by Ŵ a random variable which is, conditionally upon F , Poi(λ)-distributed, i.e.

(3.88) P(Ŵ = k|F)(ω) =
λ(ω)k

k!
e−λ(ω).

(To lighten notation, we will omit henceforth the ω-dependence). Assume to be given a bounded,
F-measurable (possibly random) real-valued function f which satisfies

E(f(Ŵ )|F) = 0,

and define gf : N→ R by

(3.89) gf (0) ≡ 0, gf (n) ≡ (n− 1)!

λn

n−1∑
k=0

f(k)λk

k!
n > 0 .

We claim that gf is F-measurable, bounded, and satisfies the following identities:

(3.90) f(n) = λgf (n+ 1)− ngf (n), n ≥ 0 ,

and

(3.91) gf (n) = −(n− 1)!

λn

∞∑
k=n

f(k)λk

k!
n > 0.
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Measurability and first identity follow steadily from the definition. The second identity follows
from the fact that E(f(Ŵ )|F) = 0, whereas boundedness follows from the integral representation
of the Taylor rest-term of the exponential function,

(3.92) | gf (n) |≤ (n− 1)! maxk∈N | f(k) |
λn

λ∫
0

tn−1

(n− 1)!
etdt ≤ maxk∈N | f(k) | eλ

n
.

Let now A ⊂ N0, and consider the function

(3.93) fA,λ(n) ≡ 1n∈A − P(Ŵ ∈ A|F), n ∈ N.

This is clearly a bounded, F-measurable function which satisfies E(fA,λ(Ŵ )|F) = 0. Therefore,
by the above and in particular (3.90), there exists a bounded F-measurable function, denoted
by gA,λ, which satisfies

(3.94) 1n∈A − P(Ŵ ∈ A|F) = λgA,λ(n+ 1)− ngA,λ(n),

almost surely for any n ∈ N. It follows that

(3.95) 1W∈A − P(Ŵ ∈ A|F) = λgA,λ(W + 1)−WgA,λ(W ).

Taking conditional expectations thus yields

(3.96)

P(W ∈ A|F)− P(Ŵ ∈ A|F) = λE(gA,λ(W + 1)|F)− E(WgA,λ(W )|F)

=
∑
i∈I

E(Xi|F)E(gA,λ(W + 1)|F)− E(XigA,λ(W )|F).

Consider now the random subset

Ni ≡ {j ∈ I \ {i} : Xj and Xi are not conditionally independent given F},

and denote by S(i) a random variable which is distributed like
∑
j∈Ni

Xj conditionally upon F and

{Xi = 1}, i.e.

(3.97) P(S(i) = k|F) = P

∑
j∈Ni

Xj = k,Xi = 1
∣∣∣F
/P(Xi = 1

∣∣F) .

if P(Xi = 1|F) > 0, and arbitrarily defined otherwise.
We remark that Xi and (Xj)j∈(Ni∪{i})c are conditionally on F independent. Therefore

(3.98) E(XigA,λ(W )|F) = P(Xi = 1|F)E

gA,λ
1 + S(i) +

∑
j∈I\(Ni∪{i})

Xj

∣∣∣∣∣F
 ,
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since Xi and Xj are conditionally independent given F . Plugging this into the right-hand side
of (3.96) yields

(3.99)

P(W ∈ A|F)− P(Ŵ ∈ A|F)

=
∑
i∈I

E(Xi|F)E

gA,λ(1 +W )− gA,λ(1 + S(i) +
∑

j∈I\(Ni∪{i})

Xj)

∣∣∣∣∣F
 .

Set now

(3.100) M ≡ sup{|gA,λ(n+ 1)− gA,λ(n)| : n ∈ N0} .

(Notice that M is F-measurable). By the triangle inequality, and worstcase-scenario,

(3.101)

| P(W ∈ A|F)− P(Ŵ ∈ A|F) |≤M
∑
i∈I

E(Xi|F)E(Xi + S(i) +
∑
j∈Ni

Xj |F)

= M
∑
i∈I

E(Xi|F)2 +
∑
j∈Ni

(E(XjXi|F) + E(Xj |F)E(Xi|F))

 .

It remains to prove that M ≤ 1. To this end we observe that additivity of g.,λ is inherited from
f.,λ, hence

(3.102) gA,λ =
∑
j∈A

g{j},λ .

Furthermore,

(3.103)

∞∑
j=0

g{j},λ(n+ 1)− g{j},λ(n) = 0,

since by (3.102) it holds

(3.104)

∞∑
j=0

g{j},λ(n) = gN0,λ(n) = 0 ∀n ∈ N.

(fN0,λ is the zero function). Therefore, for any A ⊂ N0,

(3.105) |gA,λ(n+ 1)− gA,λ(n)| ≤
∞∑
j=0

(g{j},λ(n+ 1)− g{j},λ(n))+.

By (3.89), the definition of f and elementary computations we have, for 0 < n ≤ j, that

(3.106) g{j},λ(n) = −P(Ŵ = j|F)

n−1∑
l=0

(n− 1)!

λl+1(n− 1− l)!
.
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This implies in particular that g{j},λ(n) is decreasing in n on [0, j], hence all summands j ≥
n+ 1 in (3.105) vanish. On the other hand, by (3.91), again the definition of f and elementary
computations we have for n > j

(3.107) g{j},λ(n) = P(Ŵ = j|F)
∞∑
l=0

λl(n− 1)!

(n+ l)!
.

Since this is also decreasing in n, it follows that j = n is the only non-zero summand in (3.105).
All in all,

(3.108) M = sup
n∈N
| gA,λ(n+ 1)− gA,λ(n) |≤ sup

n∈N
| g{n},λ(n+ 1)− g{n},λ(n) | .

Now, for n > 0, by (3.106) and (3.107),

(3.109)

| g{n},λ(n+ 1)− g{n},λ(n) |=

=
λne−λ

n!

( ∞∑
l=0

λl(n− 1)!

(n+ l)!
+
n−1∑
l=0

(n− 1)!

λl+1(n− 1− l)!

)

=
e−λ

n

( ∞∑
l=n

λl

l!
+
n−1∑
l=0

λl

l!

)
=

1

n
≤ 1.

On the other hand, for n = 0, we have

(3.110) | g{0},λ(1)− g{0},λ(0) |= 1

λ
(1− e−λ) ≤ 1

by Taylor estimate. Using (3.109) and (3.110) in (3.108) shows that M ≤ 1 as claimed, and
concludes the proof of the conditional Chen-Stein method.
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