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Abstract. We show that spin systems with generic (ferro- or paramagnetic, or random)
interactions are ”completely integrable”. The approach is worked out, by way of example,
for the Sherrington-Kirkpatrick model: we derive an exact formula for the quenched free
energy in finite volume which involves an integral over a Gaussian field with correlation
structure given by the interaction matrix (with a twist).

The Sherrington-Kirkpatrick (SK) model [12] for mean field spin glasses is constructed
as follows: for N ∈ N, consider centered Gaussians (gij)1≤i<j≤N issued on some probability
space (Ω,F ,P). These Gaussians, the disorder, are assumed to be all independent and
with variance 1/N . The Ising configuration space ΣN ≡ {±1}N is endowed with coin
tossing measure, Po(σ) ≡ 2−N for σ ∈ ΣN . We denote by Eo expectation under Po.

The SK-Hamiltonian is

HN(σ) ≡
∑

1≤i<j≤N

gijσiσj =
1

2

N∑
i,j=1

gijσiσj , (1)

with symmetrised random interaction matrix G ≡ (gij), where gij = gji, and gii = 0.
The quenched SK-free energy to inverse temperature β > 0 and external field h ∈ R is

NfN(β, h) ≡ logEo exp

(
βHN(σ) + h

N∑
i=1

σi

)
. (2)

Theorem. Let X = (Xi)
N
i=1 be a centered Gaussian random field with covariance

EXiXj =

{∑N
k=1 |gik| , i = j,

gij , i 6= j.
(3)

Then the exact formula for the quenched, finite volume SK-free energy holds:

NfN(β, h) = log E exp

(
N∑
i=1

log cosh
(
h+

√
βXi

))
− β

2

N∑
i,j=1

|gij| . (4)

A minor yet key modification of the diagonal therefore turns the Gaussian disorder matrix
G into the covariance of yet another Gaussian field.

Before giving the elementary proof of the theorem, some further comments are in order.
First we stress that the treatment also yields exact formulas for spin magnetizations,

(higher order) correlations etc. under the quenched Gibbs measure.
We furthermore note that, albeit quenched, formula (4) is reminiscent of expressions

obtained through replica computations before breaking of the symmetries [9]. What is
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perhaps even more surprising, the approach we implement here relies on a positivity
principle combined with a Gaussian integral to decouple the two-body interaction in
order to perform the trace over the Ising spins: this is particularly intriguing since the
mathematically elusive ”replica trick” [8, 12] relies on the very same steps, but executed
in different order, to achieve the very same goal.

We emphasize that neither the Ising nature of the spins, nor the Gaussian character of
the disorder play any structural role in the derivation. The method allows, mutatis mu-
tandis, to derive exact formulas for the Hopfield1 model [6], the independent set problem
[10], the Edwards-Anderson (EA) model [2] or, incidentally, also classical systems such
as the Ising model on Zd for d ≥ 1, or, for that matter, on any (random) graph etc. The
approach relies on the Babylonian trick2 to decouple the two body interaction, and thus
applies in vast generality. (As a matter of fact, the procedure is flexible enough to cover
p-body interactions [4] for any p ≥ 2, or the perceptron [11]: how to do this is sketched
in the remark at the end of the proof).

The case of the EA-model is particularly interesting, and relevant. The model is to
these days deemed intractable, also from the standpoint of theoretical physics: indeed,
even numerical simulations have been frighteningly inconclusive so far. Now, a minor
variation of formula (4) holds true for this model as well: at the risk of being opaque, one
simply ”perturbs” (some of) the external fields with the boundary conditions (keeping in
mind that, in case of the EA-model, the entries of the interaction matrix vanish unless two
sites are nearest neighbours). It thus follows that all physically relevant quantities can
be efficiently simulated via polynomially many Gaussian random variables only. There
is reason to believe that this dramatic reduction of the complexity will help to settle the
long-standing debate between the droplet picture of Fisher and Huse [3] in low dimensions
and the replica symmetry breaking scenario of the Parisi theory [9].

The decoupling is straightforward also in models where the underlying measure (Po)
itself is interacting, such as the Heisenberg model [5] for magnetism (Po → spherical
measure) or, say, the Domb-Joyce model [1] for weakly self avoiding walks (Po → law of
simple random walk), but the ensuing formulas are more involved.

Given the amount of similarity among the ”Babylonian formulas” for the models listed
above, it is somewhat puzzling how different choices of the covariance matrix in the
underlying Gaussian fields lead to drastically different types of phase transitions. This,
if anything, suggests that a rigorous asymptotic evaluation of the Gaussian integrals may
not be a simple matter, in general. One may also expect that different types of covariance
structure require radically different tools: when looked through the lenses of the Gaussian
representations, classical models (such as Ising) appear as a branch of algebraic spectral
theory (the covariance is given by adjacency matrices modified on the diagonal); mean
field models (such as SK) are strongly tied to correlated Wigner matrices, whereas realistic
spin glasses (such as EA) somehow link with random algebraic geometry. These concerns
seem however premature: after all, even basic features of the (random) matrices as in (3)
have not yet been fully addressed, let alone properties of the associated Gaussian fields.

Finally, the Babylonian trick stems from an effort to deal directly, and decidedly, with
the issue of frustration, ever so substantial yet unwieldy in disordered systems.

1The ensuing formula differs from the one obtained via plain Hubbard-Stratonovich transformation.
2as Res Jost referred to the method of completing the squares.
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Proof of the theorem. Some conventions: since the parameter N is fixed throughout, we
will mostly omit it from our notations. In particular we write

∑
i ai ≡

∑N
i=1 ai and∑

ij aij ≡
∑N

i,j=1 aij for double sums. We shorten

g+ij ≡ max {gij, 0} , g−ij ≡ max {−gij, 0} , (5)

in which case

i) both g+ and g− are positive: g+ij ≥ 0 and g−ij ≥ 0;

ii) the decomposition holds true: gij = g+ij − g−ij ;
iii) similarly, it holds: |gij| = g+ij + g−ij .

We first split the Hamiltonian∑
i,j

gijσiσj
ii)
=
∑
i,j

g+ijσiσj +
∑
i,j

(
−g−ij

)
σiσj

=
∑
i,j

g+ijσiσj +
∑
i,j

g−ij (−σiσj) .
(6)

The Babylonian trick amounts to writing

σiσj =
1

2
(σi + σj)

2 − 1, −σiσj =
1

2
(σi − σj)2 − 1, (7)

(also using the simplification σ2
i = 1, valid for Ising spins). This implies

(6) =
1

2

∑
i,j

g+ij(σi + σj)
2 +

1

2

∑
i,j

g−ij(σi − σj)2 + g , (8)

where the σ-independent term reads

g ≡ −
∑
i,j

g+ij −
∑
i,j

g−ij = −
∑
i,j

(
g+ij + g−ij

) iii)
= −

∑
i,j

|gij| . (9)

The quenched free energy is thus

NfN(β, h) = logEo exp

(
β

4

∑
i,j

g+ij(σi + σj)
2 +

β

4

∑
i,j

g−ij(σi − σj)2 + h
∑
i

σi

)
+
β

2
g .

(10)
We henceforth focus on the quenched partition function

ZN(β, h) ≡ Eo exp

(
β

4

∑
i,j

g+ij(σi + σj)
2 +

β

4

∑
i,j

g−ij(σi − σj)2 + h
∑
i

σi

)
. (11)

The double sums in the exponential consist of positive terms: we can thus apply the
Hubbard-Stratonovich transformation [7]. To do so we introduce (X̃ij), (Ỹij) standard
Gaussians, all independent, issued on some probability space (Ω′,F ′,P). We denote by E
their joint expectation, and shorten

Xij ≡ X̃ij

√
g+ij , Yij ≡ Ỹij

√
g−ij . (12)

We stress that the disorder matrix G is quenched. In particular, gij, g
+
ij and g−ij are

all constant. Furthermore, the matrices G+ ≡
(
g+ij
)
,G− ≡

(
g−ij
)

are by construction
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symmetric, but the X ≡ (Xij),Y ≡ (Yij) are not. Performing a Hubbard-Stratonovich
transformation, and interchanging the order of integration yields

ZN(β, h) ≡ EEo exp

(√
β

2

∑
i,j

Xij(σi + σj) +

√
β

2

∑
i,j

Yij(σi − σj) + h
∑
i

σi

)
. (13)

We write the double sums in (13) as∑
i,j

Xij(σi + σj) +
∑
i,j

Yij(σi − σj) =
∑
i

(Xi• + X•i + Yi• − Y•i)σi , (14)

with the shorthand notation Ai• ≡
∑

j aij and A•j ≡
∑

i aij, which we use for any N ×N
matrix A = (aij). Using (14) in (13), and integrating out the Ising spins yields

ZN(β, h) = E exp

(
N∑
i=1

log cosh

(
h+

√
β

2
(Xi• + X•i + Yi• − Y•i)

))
. (15)

This is, in essence, the claim of the theorem, the rest being only a (co)variance check.

The involved random variables are by definition centered:

E [Xi• + X•i] = 0 , E [Yi• − Y•i] = 0 . (16)

Furthermore, X and Y are independent, hence

var [(Xi• + X•i) + (Yi• − Y•i)] = var [Xi• + X•i] + var [Yi• − Y•i] , (17)

By (16), the variance equals the second moment: writing out the X-contribution we get

var [Xi• + X•i] =
∑
j,k

(EXijXik + EXijXki + EXjiXik + EXjiXki) . (18)

The middle terms vanish (recall also that gii = 0, hence Xii = 0), whereas first and last
are 6= 0 only if k = j. Using furthermore that EX2

ij = g+ij = g+ji = EX2
ji (symmetry of G+),

we get

var [Xi• + X•i] = 2
∑
j

E
[
X2
ij

] (12)
= 2

∑
j

E

[(√
g+ijX̃ij

)2]
= 2

∑
j

g+ij = 2g+i• . (19)

The computation of the second term on the r.h.s. of (17) is just as straightforward: also
using, this time, that EY2

ij = g−ij = g−ji = EY2
ji (symmetry of G−), one steadily checks that

var [Yi• − Y•i] = E
[
(Yi• − Y•i)

2] = 2
∑
j

g−ij = 2g−i• . (20)

Plugging (19) and (20) in (17) therefore yields

var [(Xi• + X•i) + (Yi• − Y•i)] = 2
(
g+i• + g−i•

) iii)
= 2

∑
k

|gik| . (21)

We next compute, for i 6= j, the covariance:

Cij ≡ E {(Xi• + X•i) + (Yi• − Y•i)} {(Xj• + X•j) + (Yj• − Y•j)}
= E [(Xi• + X•i) (Xj• + X•j)] + E [(Yi• − Y•i) (Yj• − Y•j)] ,

(22)

again since X and Y are independent (and centered). The X-contribution reads

E [(Xi• + X•i) (Xj• + X•j)] = E [Xi•Xj•] + E [Xi•X•j] + E [X•iXj•] + E [X•iX•j] . (23)
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First and last term on the r.h.s. of (23) vanish since for i 6= j the involved random variables
are independent and centered, whereas second and third terms read, respectively,

E [Xi•X•j] =
∑
k,l

E [XikXlj] =
∑
k,l

1k=j,l=iE [XikXlj] = E
[
X2
ij

]
= g+ij ,

E [X•iXj•] =
∑
k,l

E [XkiXjl] =
∑
k,l

1k=j,l=iE [XkiXjl] = g+ji = g+ij ,
(24)

again by independence, and symmetry in the last step. Using all this in (23) yields

E [(Xi• + X•i) (Xj• + X•j)] = 2g+ij . (25)

The computation of the Y-contribution in (22) is fully analogous: the upshot reads

E [(Yi• − Y•i) (Yj• − Y•j)] = −2g−ij . (26)

Combining (25) and (26) yields, for i 6= j,

Cij = 2g+ij − 2g−ij
ii)
= 2gij. (27)

Using (21) and (27) in (15), together with (10), settles the claim of the theorem.
�

Remark. The treatment works also for generic p-spin interactions. Consider e.g. the
mean field 3-spins (Ising) Hamiltonian

HN,3(σ) ≡
∑

1≤i<j<k≤N

gijkσiσjσk, (28)

with, say, random couplings: one uses the splitting ii) and the Babylonian trick

σiσjσk =
1

2
(σi + σjσk)2 − 1, −σiσjσk =

1

2
(σi − σjσk)2 − 1 . (29)

followed by Hubbard-Stratonovich transformation. This leads to a non-interacting Hamil-
tonian (”σi”), and a two body interaction (”σjσk”), but one simply repeats the procedure
on the latter, iterating until full decoupling is reached.

As a matter of fact, exact expressions for nonlinear models such as the perceptron are
also possible: one Taylor expands the activation function, and applies the above procedure
to the Taylor terms, one by one.

Appendix

Goetz Kersting3 points out that in case of two body interactions such as the SK-model,
the Gaussian representation (4) is not in the least unique. The rationale is extremely
charming, and best laid out by ”reversed engineering”: consider a centered Gaussian field
{Zi}Ni=1 with EZiZj = gij, i 6= j; the diagonal will be specified a posteriori. Undoing the
log cosh, interchanging the order of integration, and by Gaussian integration we get

E exp
∑
i

log cosh
(
h+

√
βZi

)
= EEo exp

(
h
∑
i

σi +
√
β
∑
i

σiZi

)

= Eo exp

(
h
∑
i

σi +
β

2
var
[∑

i

σiZi

])
.

(30)

3private communication.
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By definition of the Z-field, and using that σ2
i = 1, it holds

var

[∑
i

σiZi

]
= E

[∑
i,j

σiσjZiZj

]
=
∑
i 6=j

σiσjgij +
∑
i

EZ2
i . (31)

Plugging this in (30) yields

E exp

(
N∑
i=1

log cosh
(
h+

√
βZi

))
=

= exp

(
β

2

∑
i

EZ2
i

)
× Eo exp

(
h
∑
i

σi +
β

2

∑
i 6=j

gijσiσj

)
.

(32)

The rightmost term above is the quenched partition function. Rearranging, this leads to
the following representation of the quenched free energy for the SK-model:

NfN(β, h) = log E exp

(
N∑
i=1

log cosh
(
h+

√
βZi

))
− β

2

N∑
i=1

EZ2
i . (33)

There is thus has a great deal of freedom for the specification of the Z-field: the only
requirement is that the covariance matrix be positive semi-definite. Under this light, a
most natural choice is a covariance given by G− λ11, with λ1 the smallest eigenvalue of
the (Wigner) matrix G. Consequences of this point of view will be worked out elsewhere.
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