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Abstract. The free energy of TAP-solutions for the SK-model of mean field spin glasses
can be expressed as a nonlinear functional of local terms: we exploit this feature in order
to contrive abstract REM-like models which we then solve by a classical large deviations
treatment. This allows to identify the origin of the physically unsettling quadratic (in
the inverse of temperature) correction to the Parisi free energy for the SK-model, and
formalizes the true cavity dynamics which acts on TAP-space, i.e. on the space of
TAP-solutions. From a non-spin glass point of view, this work is the first in a series of
refinements which addresses the stability of hierarchical structures in models of evolving
populations.

1. Introduction

The Generalized Random Energy Models, GREM for short, are toy models for mean
field spin glasses introduced by Derrida in the 1980’s [11], which have played a key role in
our understanding of certain aspects of the Parisi theory [19]. Notwithstanding, the deeper
relation between the GREMs and more realistic spin glasses such as the prototypical
Sherrington-Kirkpatrick model [23], SK for short, hasn’t yet been identified: the goal of
this paper is to fill this gap.

Precisely, we relate the simplest of Derrida’s models, the REM [10], and the Thouless-
Anderson-Palmer free energies [26], TAP for short; this seamlessly leads to abstract, and
what is crucial: highly nonlinear, REM-like Hamiltonians involving only the alleged geo-
metrical properties of the (relevant) TAP solutions, which we then solve within Boltzmann
formalism by means of a classical, Sanov-type large deviation analysis.

For these abstract models we furthermore derive a dual, Parisi-like formula for the free
energy, establish their convergence to the Derrida-Ruelle cascades [22], and show that
the off-diagonal overlap concentrates on two possible values only – in complete agreement
with the Parisi theory for models within the 1-step replica symmetry breaking (1RSB)
approximation. The inherent nonlinearities also shed new light on the nature of the Parisi
formula for the SK-model, see Section 3.1 below.

What is perhaps more, our findings i) considerably improve and clarify the cavity ap-
proach [19] to mean field spin glasses put forward by Aizenman, Ruzmaikina and Arguin
[2, 1], as well as by Bolthausen and the first author [6, 7]; ii) provide a first1 answer to
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1partial, due to the REM-assumption made here.
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the question raised in [5, p.109] concerning the link between the Bolthausen-Sznitman ab-
stract cavity set-up [4] and the SK-model. In both cases, headway is made by enhancing
the framework of these papers with the missing ingredient TAP-free energy: this simple,
yet far-reaching insight is arguably the main contribution of this work.

The paper is organised as follows: in Section 2 we recall some of the main aspects from the
picture canvassed in [26]. This will motivate and justify our abstract REM-like models
which are introduced in Section 3, where the main results are also presented. The proofs
are given in the fourth section, with some useful (technical) facts being recalled in the
Appendix for the reader’s convenience.

2. SK, Derrida, TAP, and Plefka.

The SK-model is the archetypical mean field spin glass: for N ∈ N, consider centered
Gaussians (gij)1≤i<j≤N issued on some probability space (Ω,F ,P). These Gaussians, the
disorder, are assumed to be all independent and with variance 1/N .

The SK-Hamiltonian, defined on the Ising configuration space is

σ ∈ ΣN
def
= {±1}N 7→ HN(σ) =

∑
1≤i<j≤N

gijσiσj . (1)

The energies are thus given by a correlated Gaussian field : for σ, τ ∈ ΣN , one checks that

EHN(σ)HN(τ) =
N

2
QN(σ, τ)2, (2)

where

QN(σ, τ) ≡ 1

N

N∑
i=1

σiτi (3)

is the so-called overlap of the two (Ising) configurations.
Since the overwhelming majority of pairs (σ, τ) ∈ ΣN × ΣN are such that their scalar

product vanishes, in which case the associated energies are stochastically indepedent, one
is perhaps tempted to replace the intractable {HN(σ)}σ by a field {Xσ}σ of independent
centered Gaussians with same variance, to wit:

EXσXτ =
N

2
1σ=τ . (4)

This is the REM-approximation by Derrida [10]: it directly acts at the level of the SK-
Hamiltonian and covariance. The approximation leads to completely solvable models,
hence to a wealth of important insights into the spin glass phase, but falls short when
approximating the true SK-free energy (especially in presence of an external field, h 6= 0).

We will improve the resolution by adding an additional ”layer”: we first approximate
the SK-Hamiltonian by its ”TAP-counterpart” and only in a second step do we simplify
the latter by means of a ”REM-replacement”, much akin to Derrida’s original recipe.

To see how this comes about, let us recall that the quenched SK-free energy to inverse
temperature β > 0 and external field h ∈ R is

NfN(β, h) ≡ log
∑
σ∈ΣN

exp

(
βHN(σ) + h

N∑
i=1

σi

)
. (5)
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In order to ’solve’ the model, Thouless, Anderson and Palmer [26] play the delicate (and
debatable) card of the spin magnetisation mi ≡ 〈σi〉β,h,N , i = 1 . . . N as order parameter

of the theory, with 〈〉β,h,N denoting average with respect to the quenched Gibbs measure.

By means of a nonrigorous (and troublesome) diagrammatic expansion, Thouless et. al.
suggest that the following approximation holds true with overwhelming probability:

NfN(β, h) = N max
m∈∆

fTAP(m) + o(N) (N ↑ ∞), (6)

where

i) the TAP-free energy is given by

NfTAP (m) ≡ β
∑

1≤i<j≤N

gijmimj + h

N∑
i=1

mi

+
β2

4
N

[
1− 1

N

N∑
i=1

m2
i

]2

−
N∑
i=1

I(mi) ;

(7)

ii) for m ∈ [−1, 1]

I(m) ≡ 1 +m

2
log(1 +m) +

1−m
2

log(1−m) ;

is the classical coin tossing rate function; and
iii) ∆ ⊂ [−1, 1]N an unspecified set of restrictions on the quenched magnetisations m.

Remark 2.1. Plefka has shown [20] that the TAP-approximation (6) neatly emerges from
a high temperature expansion of the Gibbs potential. As any (finite volume) Gibbs poten-
tial, the map m 7→ fTAP(m) must necessarily be concave: in [20] it is claimed that this
should indeed be the case provided that m satisfy

Plefka’s criterium:
β2

N

N∑
i=1

(
1−m2

i

)2
< 1 .

This condition is widely accepted within the theoretical physics literature (in other words:
this restriction should definitely appear in the definition of the ∆-set) but there seems to
be divergent opinions if this suffices for the validity of the high temperature expansions
and thus of the TAP-approximation (7). For a mathematical analysis of the TAP-Plefka
approximation within Guerra’s interpolation scheme [15], the reader may check [8] and
references therein. For an in-depth study of Plefka’s convergence criteria for the SK-
model, see [16].

Assuming the validity of the TAP-approximation (7), we therefore see that extremal
”states” must necessarily be critical points of the TAP-free energy: taking the gradient,
and rearranging, this leads to the TAP-equations

∇fTAP(m) = 0⇐⇒ mi = tanh

(
h+ β

∑
j 6=i

gijmj − β2 (1− qN(m))mi

)
, i = 1 . . . N.

(8)

where qN(m)
def
= (1/N)

∑N
j=1m

2
j .
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In the theoretical physics literature it is claimed that, for large enough β, the TAP-
equations admit exponentially many solutions mα, α = 1 . . . 2ΘN , where Θ = Θ(β, h) is
the currently unknown complexity.

Let us now assume to be given a TAP-solution mα: using (8) we may express

β
∑
j 6=i

gijm
α
j = tanh−1 (mα

i )− h+ β2 {1− qN (mα)}mα
i . (9)

Plugging this into (7), and performing some straightforward algebraic manipulations, we
obtain a representation of the TAP-FE as a sum of N local terms, as anticipated in the
abstract: omitting the elementary details, the upshot reads (by a slight abuse of notation)

fTAP (α) =
1

N

∑
i

[
1

2
mα
i tanh−1 (mα

i ) +
h

2
mα
i − I(mα

i )

]
+
β2

4

{
1− qN(mα)2

}
. (10)

What is crucial for our considerations is the nonlinear2 term in the curly brackets above :
this nonlinearity, and only this, will mark the point of departure from the abstract models
studied in [6, 7]. Indeed, introducing the fields

hαi ≡
∑
j 6=i

gijm
α
j − β (1− qN(mα))mα

i , (11)

and the associated empirical measures

lN,α ≡
1

N

N∑
i=1

δhαi , (12)

we obtain, through the identity I(y) = y tanh−1(y) − log cosh tanh−1(y), the following
representation:

fTAP (α) = Φ

(∫
ϕ(x)2lN,α(dx)

)
+

∫
f1(x)lN,α(dx) , (13)

where Φ, g, f1 are real valued functions given by, respectively:

SK1) x 3 R 7→ Φ(x) ≡ β2

4
(1− x2);

SK2) x 3 R 7→ f1(x) ≡ −1
2

log
(
1− tanh2 (h+ βx)

)
− β

2
x tanh(h+ βx);

SK3) x 3 R 7→ ϕ(x) ≡ tanh(h+ βx).

In order to contrive tractable models we shall perform a REM-approximation: we replace
the local fields {hαi } by a collection of independent standard Gaussians {gα,i}, where
i = 1 . . . N and α = 1 . . . 2N (the complexity of the relevant TAP-solutions being currently
unknown we simply set, here and henceforth, Θ = 1). Denoting by

rN,α
def
=

1

N

N∑
i=1

δgα,i (14)

the empirical measure, we thus consider the REM-approximation of the TAP free energy

fREM-TAP (α) = Φ

(∫
ϕ(x)2 rN,α(dx)

)
+

∫
f1(x)rN,α(dx) . (15)

2as a matter of fact, quadratic: an analogous expression for the TAP-FE of any p-spin model is also
available, in which case the quadratic term turns into a polynomial of degree p ≥ 3, see e.g. [9].



REM APPROXIMATION OF TAP FREE ENERGIES 5

Remark 2.2. The REM-approximation which we perform differs also from the one by
Fyodorov-Bouchaud [13] insofar the latter again approximates the original Hamiltonian,
akin to Derrida’s procedure, whereas we first ”approximate” the system via TAP free
energies, and only in a second step do we perform the REM-replacement. To which extent
the passage through TAP free energies is compulsory for models with inherent micro-
structure is an interesting question we cannot answer.

Notice that the ”nonlinear randomness” in (13) stems from the fluctuations of the
self-overlap3 of a TAP-solution

qEA(α) ≡
∫
ϕ(x)2lN,α(dx)

(SK3)
=

1

N

N∑
i=1

tanh2(h+ βhα,i) (16)

the Edwards-Anderson order parameter, indeed as claimed on [19, p. 69].
The close analogy between the above and the Parisi theory further allows to identify

an off-diagonal overlap, which we define as

qN(α, α′)
def
=

1

N

N∑
i=1

ϕ(gα,i)ϕ(gα′,i). (17)

The true nature of this quantity will manifest itself in the analysis below; anticipating,
we will see that qN indeed plays the role of order parameter of the theory.

The REM-approximation (15) of the TAP-FE (13) only relies on the alleged geometrical
organisation of the relevant4 TAP-solutions: remark in fact that for the overlap it holds

qN(α, α′) ≈ E
[
tanh(h+ βg1,1)2

]
1{α=α′} + E [tanh(h+ βg1,1)]2 1{α 6=α′} , (18)

for large enough N , by the law of large numbers; this is indeed the ”black or white di-
chotomy” of the REM (4) or, which is the same, the ”perpendicularity” of TAP-solutions
within a 1RSB Ansatz [19].

The above begs the following, natural questions:

Q1. what is the law of the off-diagonal overlap qN(α, α′) under Gibbs sampling (15) ?
Q2. How does the off-diagonal overlap transform under the extensive cavity dynamics

[19]? This amount to studying, for ε > 0, the impact of an ε-perturbation of the
Hamiltonian (15), i.e. to study the limiting Gibbs measure under transformations
of the type

fREM-TAP (α) ↪→ f
(ε)
REM-TAP (α) ≡ fREM-TAP (α) + ε

∫
log cosh(x)r̄N,α(dx), (19)

where

r̄N,α(dx) ≡ 1

N

N∑
i=1

δḡα,i , (20)

and with {ḡα,i}α,i being some fresh disorder, i.e. a random field of centered, inde-
pendent Gaussians which are also independent of the reservoir {gα,i}α,i. The limit
we are interested in is, of course, the double limit N ↑ ∞, followed by ε ↓ 0.

3not to be confused with the classical overlap QN from (3).
4Again emphasizing that, at the time of writing, the meaning of ”relevant” still isn’t settled.
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The questions Q1 & Q2 are addressed below, in general setting.

3. The REM in TAP: definition, and main results.

We start with some notation: (S,S) denotes a Polish space and C(S), Cb(S) the spaces
of all real valued continuous, resp. continous bounded functions on S.
For d ∈ N, we denote byM+

1

(
Sd
)

the space of Borel probability measures on Sd, endowed

with the topology of weak convergence of measures. Notice thatM+
1

(
Sd
)

is Polish itself
and we can consider one of the standard metrics (e.g. Prokhorov) that makes it a complete,
separable metric space. Given a measure ν ∈ M+

1

(
Sd
)

and r > 0 we indicate with Bν,r,

resp. Bν,r, the open, resp. closed ball in the metric space M+
1

(
Sd
)

with center ν and
ray r. Our abstract Hamiltonian, which parallels (19), is defined through a continous
functional Φ :M+

1 (S2)→ R of the form

Φ[ρ] = Φ1 [ρ1] + Eρ2(f2) (21)

where ρ1, ρ2 ∈M+
1 (S) are the marginals of ρ ∈M+

1 (S2) on the first, resp. second coordi-
nate, Φ1 :M+

1 (S)→ R is a continous functional and f2 ∈ Cb(S). To lighten notation, we
shorten Eρ(u) ≡

∫
u(x)ρ(dx) for the expectation of a function u : Sd → R w.r.t. a given

ρ ∈ M+
1

(
Sd
)

and varρ(u) ≡ Eρ(u
2) − Eρ(u)2 for the variance; we also write ρ ◦ u−1 for

the push-forward of ρ along a ρ-measurable u. Finally we indicate with π1, π2 : S2 → S
the natural projections on the first, resp. second coordinate.

More specifically:

Definition 3.1. Φ :M+
1 (S2)→ R denotes a functional of the form (21) with

Φ1[ρ]
def
= Φ

(
Eρ(ϕ

2)
)

+ Eρ(f1) ∀ρ ∈M+
1 (S)

where

H1) Φ : R → R is a twice differentiable concave function with Φ′′(x) < 0 for every
x ∈ R;

H2) ϕ, f1, f2 ∈ Cb(S) with supϕ = 1, inf ϕ = −1.

The random Hamiltonian of our abstract model in a configuration α of the configuration
space {1, . . . , 2N} for a finite volume N ∈ N is then defined as

HN(α)
def
= NΦ [LN,α] (22)

where for every α ∈ {1, · · · , 2N}

LN,α
def
=

1

N

N∑
i=1

δ(Xα,i,Yα,i) (23)

are the empirical measures associated to independent sequences of S2-valued, i.i.d. random
vectors {(Xα,i, Yα,i)}Ni=1 defined on a probability space (Ω,F ,P) with common distribution
µ⊗γ, for some product measure µ⊗γ ∈M+

1 (S2).
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Some words on the assumptions given in the above definition: concavity is imposed on
Φ to warrant thermodynamical stability, somewhat in line with Plefka’s convergence cri-
terium recalled in Remark 2.1; the boundedness of g is technically convenient, but also
tailor-suited for our applications such as the SK-model. The variables Xα,· correspond to
the random energies associated to the configuration α, while the Yα,· encode the disorder
necessary to perturbate the Hamiltonian with an extensive cavity dynamics.

To shorten notation, we define

f(x, y)
def
= f1(x) + f2(y) (24)

so that the nonlinear functional Φ :M+
1 (S2)→ R in the definition 3.1 is

Φ[ρ]
def
= Φ

(
Eρ1(ϕ2)

)
+ Eρ(f). (25)

Notice that the continuity of the real valued function Φ and the boundedness of the three
functions g, f1, f2, imply that the functional Φ is continous on M+

1 (S2) by duality and
continous projection.

We consider the partition function, free energy and Gibbs measure associated to the
Hamiltonian (22): for finite volume N ∈ N, these are defined as usual as

ZN
def
=

2N∑
α=1

expHN(α), FN
def
=

1

N
logZN , (26)

and for α ∈ {1, . . . , 2N},
GN(α)

def
= Z−1

N expHN(α). (27)

Finally, given two configurations α, α′, we define their off-diagonal overlap as

qN(α, α′)
def
=

1

N

N∑
i=1

ϕ (Xα,i)ϕ (Xα′,i) . (28)

Our first result concerns the limiting free energy, and requires some notation: set

K def
= {ν ∈M+

1

(
S2
)

: H(ν | µ⊗γ) ≤ log 2} , (29)

with H(ν | µ⊗γ)
def
= Eν log (dν/d(µ⊗γ)) being the usual relative entropy (see Section A

for some relevant properties).

Theorem 3.2. (Boltzmann-Gibbs principle). The infinite volume limit of the free energy
(26) exists P-almost surely, is non-random, and given by

lim
N→∞

FN = sup
ν∈K

Φ[ν]−H(ν | µ⊗γ) + log 2 . (30)

A complete solution of our abstract models thus requires a discussion of the Boltzmann-
Gibbs variational principle (30). This will be achieved by relating it to a simpler, Parisi-
like variational principle in finite dimensions. To see how this comes about, we recall from
[6] that for all f ∈ L (S2, µ⊗γ) with

L
(
S2, µ⊗γ

) def
=
{
u ∈ C

(
S2
)

: Eµ⊗γ
(
eλu
)
<∞ ∀λ ∈ R

}
, (31)
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almost surely it holds

lim
N→∞

1

N
log

2N∑
α=1

expNELN,α(f) = sup
ν∈K
{Eµ⊗γ(f)−H(ν | µ⊗γ)}

= inf
0≤m≤1

{
1

m
log Eµ⊗γ(exp mf) +

log 2

m

}
.

(32)

The first equality is the Boltzmann-Gibbs principle given in Theorem 3.2 for a Hamil-
tonian of the form (22) without nonlinear term. The second equality, in full agreement
with the Parisi theory [19], establishes a duality between the Gibbs principle and a finite-
dimensional minimization problem. We shall call the target function in the minimization
problem a Parisi function; its (unique, cfr. [6]) minimizer m on [0, 1] gives the limiting
Gibbs measure as the one whose Radon-Nikodym derivative with respect to µ⊗γ is given
by the Boltzmann factor expmf ≡ expm(f1 ◦ π1 + f2 ◦ π2).
Our second main result provides the analogous duality principle for the nonlinear Hamil-
tonian (22). Specifically, defining for every (q,m) ∈ [0, 1]2

Zq,m def
= Eµ⊗γ

(
expm

[
Φ′(q)ϕ2 ◦ π1 + f

])
=

∫
expm

[
f1(x) + Φ′(q)ϕ2(x)

]
µ(dx) ·

∫
expmf2(y) γ(dy)

(33)

and

P(q,m)
def
= Φ(q)− qΦ′(q) +

1

m
(logZq,m + log 2) , (34)

the following holds.

Theorem 3.3. (Parisi principle). It holds:

lim
N→∞

FN = inf
(q,m)∈[0,1]2

P(q,m) + log 2 ,

P-almost surely.

When comparing the Parisi function (34) with its counterpart (32) for the linear mod-
els one observes, in particular, the appearance of the term Φ(q)− qΦ′(q). We will see in
the course of the proof that such corrections, which are constituent parts of the Parisi free
energy for the SK-model, play the role of Lagrange multipliers accounting for the in-built
nonlinearities.

We now present our main results concerning the Gibbs measure. First of all, we note that
the family of generalized Gibbs measures

{νq,m}(q,m)∈[0,1]2 ⊂M
+
1

(
S2
)

defined through their Radon-Nikodym derivatives with respect to µ⊗γ:

dνq,m

d(µ⊗γ)
(x, y)

def
=

expm [Φ′(q)ϕ2(x) + f(x, y)]

Zq,m
, (35)

satisfies
logZq,m = Eνq,m

(
m
[
Φ′(q)ϕ2 ◦ π1 + f

])
−H(νq,m | µ⊗γ)

= m
[
Φ′(q)Eνq,m1

(
ϕ2
)

+ Eνq,m(f)
]
−H(νq,m | µ⊗γ)

(36)
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being νq,m1 ∈ M+
1 (S) the first marginal of νq,m. Moreover, one can easily compute the

partial derivatives of P to see that

∂mP(q,m) =
1

m2
[H(νq,m | µ⊗γ)− log 2] ,

∂qP(q,m) = Φ′′(q)
[
Eνq,m1

(
ϕ2
)
− q
]
.

(37)

Through equations (36), (37) we will relate the Boltzmann-Gibbs principle (30) with the
Parisi function (34), showing that the solution of the latter is given by ν q̄,m̄ where (q̄, m̄)
minimizes P : [0, 1]2 → R.

It is furthermore well-known that the Poisson-Dirichlet law for the pure states appears
naturally as the weak limit of the Gibbs measure associated to a classical REM in low
temperature. Our third main result, Theorem 3.4 below, aligns with this alleged univer-
sality.

In order to formulate the statement, we point out that for our abstract models, low
temperature corresponds to the situation where the parameter m̄ which achieves the min-
imum in Parisi principle is such that m̄ < 1. As will become clear below, if the minimum
point (q̄, m̄) ∈ [0, 1]2 of a Parisi function (34) is such that m̄ < 1, then the measure

ν̄ ≡ ν q̄,m̄ ∈M+
1 (S)

is the optimal measure for the Boltzmann-Gibbs principle and satisfies{
H(ν̄ | µ⊗γ) = m̄ [Φ′(q̄)q̄ + Eν̄(f)]− logZ q̄,m̄ = log 2,

Eν̄1(g2) = q̄,
(38)

where ν̄1 ≡ ν q̄,m̄1 is the first marginal of ν̄; in particular, in low temperature the side
constraint on the relative entropy is saturated.

Theorem 3.4. (Onset of Derrida-Ruelle cascades). Assume that at least one of the
measures ν̄ ◦ (ϕ◦π1− q̄)−1 or ν̄ ◦ (f −Eν̄(f))−1 has a density w.r.t. the Lebesgue measure
on R. Then, for a system in low temperature, the point process {GN(α)}α≤2N associated to
the Gibbs measure (27) converges weakly as N →∞ to a Poisson-Dirichlet point process
with parameter m.

Let us furthermore denote by

〈ON(α, α′)〉N
def
=
∑
α,α′

ON(α, α′)GN(α)GN(α′)

the average with respect to the replicated Gibbs measure of a quantity ON(α, α′) depending
on two configurations α, α′; the following then holds for the limiting law of the off-diagonal
overlap (28).

Proposition 3.5. (Overlap concentration). Let

q̄ =

∫
ϕ(x)2ν̄1(dx), q̄0

def
=

[∫
ϕ(x)ν̄1(dx)

]2

. (39)

Then, under the assumptions of Theorem 3.4, it holds

lim
N→∞

E
〈
δα=α′(qN(α, α′)− q̄)2

〉
N

= 0, (40)

lim
N→∞

E
〈
δα 6=α′ (qN(α, α′)− q̄0)

2
〉
N

= 0. (41)
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We thus see that our abstract models correctly recover all of the main features of
the Parisi theory under a 1RSB approximation, in a generic setting. For the readers
convenience, we shall conclude by briefly dwelling on the upshot of our analysis for the
concrete case of the SK-model.

3.1. SK vs. REM-TAP. We recall that the 1RSB Ansatz [19] for the limiting free
energy of the SK model (1) reads

f1RSB-SK(β, h)
def
= inf

0≤q0,≤q1≤1,m1∈[0,1]

{
β2

4

[
(q2

1 + 1) +m1(q2
0 − q2

1)− 2q1

]
+ log 2+

+
1

m1

∫
log

{∫
expm1 log cosh

(
h+ β

√
q0u+ β

√
q1 − q0v

)
ϕ(dv)

}
ϕ(du)

}
,

(42)
where ϕ is the standard Gaussian measure on R. As a matter of fact, this is a degenerate
2RSB-formula: indeed, the law of the pure states which hides behind (42) is that of
a superposition of two Derrida-Ruelle processes [22] with parameters 0 ≤ m0 ≤ m1 ≤
1, with the first one eventually absorbed through the limiting procedure m0 ↓ 0: this
operation gives rise to the aforementioned degeneracy, to the ’common trunk’ given by
the second Gaussian du-integral, and stands behind the third order parameter q0. Due to
this complication, the following considerations shall be taken cum grano. (For the sake
of discussion, the reader shall simply set q0 ≡ 0 in the above formula). Notwithstanding,
we do get a number of important insights: for the Hamiltonian HN(α) ≡ NfREM-TAP (α),
and recalling SK1-3) above, the REM-TAP approximation leads in fact to a free energy

fREM-TAP(β, h) = inf
0≤q≤1,m∈[0,1]

{
β2

4
(q2 + 1) + log 2+

+
1

m
log

∫
expm log cosh(h+ βx) · e

m

[
−β

2
x tanh(h+βx)−β

2

2
q tanh2(h+βx)

]
ϕ(dx)

}
(43)

(The term expm
[
−β

2
x tanh(h+ βx)− β2

2
q tanh2(h+ βx)

]
in (43) plays a role in the cav-

ity dynamics only, and is completely irrelevant when it comes to the free energy: for our
current purposes, such factor is an artefact which can also be immediately removed: again

simply set f1 ≡ 0). The appearance of the quadratic term β2

4
(q2 + 1) in the first line on

the r.h.s. above (remark that it matches the first term in (42)) is central to this work:
although a constituent part of (42), such terms cannot be explained by the linear models
studied in [6, 7]. As already mentioned, these corrections turn out to be Lagrange multi-
pliers accounting for the non-linearities induced by the true REM-models hiding ”within”
the TAP-free energies.

Let us also spend a few words on the cavity dynamics for the SK-model, i.e. for the

Hamiltonian given by the perturbed REM-TAP HN ;ε(α)
def
= Nf

(ε)
REM-TAP (α), and with

f2(y) ≡ f2(ε; y) ≡ ε log cosh(y). Let us denote by (q̄ε, m̄ε) ∈ [0, 1]2 the minimum
of the corresponding Parisi function, and by ν̄ε = ν q̄ε,m̄ε the associated generalized
Gibbs measure. We furthermore denote by FN,ε the law of the overlap qN(α, α′) =
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(1/N)
∑N

i=1 tanh(h + βgα,i) tanh(h + βgα′,i) under the perturbed, finite volume Gibbs
measure, and by FN that of the un-perturbed:

x ∈ [0, 1] 7→ FN,ε(x) ≡ E
〈

1qN (α,α′)≤x
〉
N ;ε

, FN(x) ≡ FN,0(x). (44)

Proposition 3.5 would imply that in low temperature (m̄ε < 1) the law of the overlap of
two relevant TAP-solutions for the SK-model is given by

Fε(x)
def
= lim

N→∞
FN,ε(x) =


0 if x < q̄0;ε

m̄ε if q̄0;ε ≤ x < q̄ε
1 otherwise

; (45)

where

q̄ε =

∫
tanh2(h+ βx)ν̄ε(dx, dy), q̄0;ε =

[∫
tanh(h+ βx)ν̄ε(dx, dy)

]2

.

A Parisi fixed point equation [19, III.63] encoding the stability of the hierarchical structure
under the extensive cavity dynamics would appear through the continuity requirement

F (x)
(!)
= lim

ε↓0
Fε(x), ∀x ∈ [0, 1]. (46)

In case of a REM-approximation (1RSB), it is easily seen that the self-consistency (46) is
automatically satisfied and thus of hardly any use in the identification of the hierarchical
structure which is invariant under cavity dynamics. To gain more insights, one needs a
more sophisticated GREM-approximation which will be addressed in forthcoming works.

4. Proofs.

4.1. The Boltzmann-Gibbs principle: proof of Theorem 3.2. In this subsection
we prove Theorem 3.2, i.e. the validity of the following Boltzmann-Gibbs principle

lim
N→∞

FN = lim
N→∞

1

N
logZN = sup

ν∈K
Ω[ν] + log 2 P− a.s., (47)

where to lighten notation we shortened

Ω[ρ]
def
= Φ[ρ]−H(ρ | µ⊗γ)

= Φ
(
Eρ1

(ϕ2)
)

+ Eρ(f)−H(ρ | µ⊗γ)
(48)

being Φ :M+
1 (S2)→ R the functional defined in 3.1.

Remark 4.1. It is a well known fact that ν ∈M+
1 (S2)→ H(ν | µ⊗γ) is lower semicon-

tinous, strictly convex and with compact sub-levels. Therefore, for compact C ⊂ M+
1 (S2)

and an upper semicontinous Ω, the generalized Bolzano-Weierstrass Theorem on metric
spaces ensures the existence of a solution to

sup
ν∈C

Ω[ν]. (49)

Moreover, the assumption H1) on Φ suffices to get strict concavity of the functional Ω :
M+

1 (S2)→ R. This implies that, for a convex C ⊆ M+
1 (S2), the existence of a solution

to a problem of the form (49) implies its uniqueness. In other words: if C is compact, there
exists a solution to (49); if C is also convex, such solution is furthemore unique: since
the set K, i.e. the sub-level of the relative entropy appearing in the Boltzmann-Gibbs
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principle (47), is convex and compact, the variational principle (47) admits a unique
solution. (Recall also that, in a complete metric space like M+

1 (S2) a set is sequentially
compact if and only if it is compact, every compact set is closed and every closed subset
of a compact set is compact).

The proof goes via a second moment method and is fully analogous to the one given in
[6]. It relies both on the independence of the {LN,α}2N

α=1 as well as on the continuity of
ρ ∈M+

1 (S2)→ Φ[ρ]. Here a sketchy rendition of the main steps.

We first rearrange the partition function: consider the counting variable

AN (E) = #{α : LN,α ∈ E},
defined for every E ⊆ M+

1 (S2). By lumping together all configurations whose empirical
measure is approximately ν, and ”integrating” over all possible ν-s we get,

ZN =
2N∑
α=1

expNΦ[LN,α] ≈
∑

ν∈M+
1 (S2)

exp (NΦ[ν]) ]{α : LN,α ≈ ν}

=
∑

ν∈M+
1 (S2)

exp (NΦ[ν])AN(ν) .

(50)

The first moment of AN (ν) is easily computed thanks to linearity:

EAN (ν) = 2NP (LN,1 ≈ ν) ≈ expN (log 2−H(ν | µ⊗γ)) , (51)

the last step by Sanov theorem. We deduce from (51) that EAN (ν) is exponentially small
as soon as

ν /∈ K ≡ {ν ∈M+
1 (S2) : H(ν | µ⊗γ) > log 2} . (52)

An application of Borel-Cantelli therefore implies that AN(ν) = 0 almost surely for large
enough N if ν /∈ K. In other words, we may restrict the sum in the partition function to
K, to wit

ZN ≈
∑
ν∈K

exp (NΦ[ν])AN(ν) . (53)

The second moment of AN(ν) can be just as easily computed thanks to the underlying
independence of the {LN,α}α: one checks that for ν ∈ K, and some δ = δ(K) > 0 it holds

Var (AN(ν)) ≤ e−NδE (AN(ν))2 . (54)

This strong concentration is absolutely crucial: combined with Chebychev’s inequality it
immediately implies the self-averaging of AN restricted on the set K.

All in all, we have thus justified that

ZN
(53)
≈
∑
ν∈K

exp (NΦ[ν])AN(ν)

(54)
≈
∑
ν∈K

exp (NΦ[ν])EAN(ν)

(51)
≈
∑
ν∈K

exp (NΦ[ν]) expN (log 2−H(ν | µ⊗γ)) ,

(55)
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and Theorem 3.2 would thus immediately follow from an application of Laplace principle,
i.e. saddle point analysis.

The steps (50)-(55) constitute the backbone of the proof behind Theorem 3.2. Unfor-
tunately, to turn this simple heuristic into a rigorous proof requires some heavy infras-
tructure and a rather technical analysis which will span the rest of the section.

We begin with some additional notation: by � we shall denote ”equality on exponential
scale”,

aN � bN ⇐⇒ lim
N

1

N
log aN = lim

N

1

N
log bN .

This notation already allows to formulate (51) in rigorous fashion: for any E ⊂M+
1 (S2),

EAN (E) = 2NP (LN,1 ∈ E) � expN

(
log 2− inf

ν∈E
H(ν | µ⊗γ)

)
. (56)

It thus immediately follows from (56) together with Borel-Cantelli that for N large enough
AN (E) = 0 almost surely, as soon as E is such that

inf
ν∈E

H(ν | µ⊗γ) > log 2, (57)

indeed as claimed above.

These first moment estimates also stand behind the following technical Lemma, which
in paritcular provides (what turns out to be) a tight upper bound to the free energy. Here

and henceforth we denote by Br
def
= Bν̄,r = {ν ∈ M+

1 (S2) : d(ν, ν̄) < r} the open ball
centered in ν̄, and with radius r > 0.

Lemma 4.2. Let

ν̄
def
= argmaxKΩ , F

def
= max

K
Ω[ν] + log 2 = Ω[ν̄] + log 2 .

Then, P-almost surely:

lim sup
N→∞

1

N
log

2N∑
α=1

eNΦ[LN,α] ≤ F , (58)

and for all r > 0,

lim sup
N→∞

1

N
log

∑
α:LN,α 6∈Br

eNΦ[LN,α] < F.

Proof. Let r ≥ 0. Shorten Bc
0 ≡ M+

1 (S2), denote by Bc
r the complement of Br in

M+
1 (S2):

Bc
r

def
= {ρ ∈M+

1

(
S2
)

: d(ρ, ν̄) ≥ r}) =M+
1

(
S2
)
\Br,

and set

Fr
def
=

{
sup
K∩Bcr

Ω if K ∩Bc
r 6= ∅,

−∞ otherwise.
(59)

Notice that if r : K ∩ Bc
r = ∅ it trivially holds Fr < F0 ≡ F . If instead r : K ∩ Bc

r 6= ∅
then, by compactness (see Remark 4.1), we can find νr ∈ K ∩Bc

r, νr 6= ν̄ s.t.

Fr = max
K∩Bcr

Ω = Ω[νr]
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and, as the maximal measure ν̄ of Ω on K is unique, the strict inequality

Fr = Ω[νr] < Ω[ν̄] = F

holds also in this case. Hence, in order to settle the Lemma, we just need to prove the
following

lim sup
N→∞

1

N
log

∑
α:LN,α∈Bcr

eNΦ[LN,α] ≤ Fr ∀r ≥ 0. (60)

In order to see this, consider a decreasing sequence of positive real numbers {an}n∈N
with an ∈ (0, 1) for all n ∈ N and an → 0 as n → ∞. Then fix n ∈ N and consider the

open set Kcan
def
= M+

1 (S2) \ Kan , together with its closure Kcan , where for every a ≥ 0

Ka
def
= {ν ∈M+

1

(
S2
)

: H (ν | µ⊗γ) ≤ log 2 + a}.
Sanov’s Theorem implies that

P
(
LN,1 ∈ Kcan

)
= exp [− inf

ρ∈Kcan
H(ρ | µ⊗γ)N + o(N)]

≤ 2−Ne−anN+o(N)
(N →∞), (61)

hence

P
(
∃α ∈ {1, · · · , 2N} : LN,α ∈ Kcan

)
≤ 2NP

(
LN,1 ∈ Kcan

)
≤ e−anN+o(N). (62)

Through the Borel-Cantelli lemma, (62) implies that

lim sup
N→∞

1

N
log

∑
α:LN,α∈Bcr

eNΦ[LN,α] = lim sup
N→∞

1

N
log

∑
α:LN,α∈Kan∩Bcr

eNΦ(LN,α) P− a.s.

(63)
If r, n are such that Kan ∩Bc

r = ∅, the latter implies

lim sup
N→∞

1

N
log

∑
α:LN,α∈Bcr

eNΦ[LN,α] = −∞ P− a.s. (64)

Notice that by construction it holds K = K0 ⊆ Kan , which implies that if Kan ∩ Bc
r is

empty then Fr = −∞, i.e. the claim (60) is exactly (64).
We can therefore assume r, n : Kan ∩ Bc

r 6= ∅ and, for an aribitrary δ > 0 cover the
compact set Kan ∩Bc

r through open balls

Kan ∩Bc
r ⊂

⋃
ν∈Kan∩Bcr

Bν(rν)

such that for each ν ∈ Kan ∩Bc
r the associated ray rν > 0 is small enough s.t.

Φ(ρ)−Φ(ν) < δ ∀ρ ∈ Bν(rν), (65)

and

H(ν | µ⊗γ)− inf
ρ∈Bν(rν)

H(ρ | µ⊗γ) <
δ

2
. (66)

This is clearly possible by upper semicontinuity of Φ and the fact that

inf
ρ∈Bν(r)

H(ρ | µ⊗γ)→ H(ν | µ⊗γ) (r → 0).
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By compactness, we can extract a finite sub-cover: ∃M < ∞, {νi}Mi=1 ⊂ Kan ∩ Bc
r s.t.

Kan ∩Bc
r ⊂

⋃M
i=1 Bνi(ri), where we shortened

ri
def
= rνi , Bi

def
= Bνi(ri).

Therefore, almost surely, it holds

lim sup
N→∞

1

N
log

∑
α:LN,α∈Kan∩Bcr

eNΦ[LN,α] ≤ lim sup
N→∞

1

N
log

M∑
i=1

∑
α:LN,α∈Bi

expNΦ(LN,α)

≤ δ + lim sup
N→∞

1

N
log

M∑
i=1

expNΦ(νi)AN
(
Bi

) (67)

(recall that AN
(
Bi

)
is the variable that counts the α−s for which LN,α ∈ Bi).

Markov’s inequality implies that for each i = 1, · · · ,M
P
(
AN

(
Bi

)
≥ eN [log 2−H(νi|µ⊗γ)+δ]

)
≤ 2−NEAN

(
Bi

)
expN [H(νi | µ⊗γ)− δ] (68)

with

E
(
AN

(
Bi

))
= 2NP

(
LN,1 ∈ Bi

)
= 2N exp [− inf

ρ∈Bi
H (ρ | µ⊗γ)N + o(N)] (N →∞),

(69)
the last step by Sanov’s theorem. Plugging (69) into (68), and using (66), we find that
for each i ∈ {1, · · · ,M}

P
(
AN

(
Bi

)
< eN [log 2−H(νi|µ⊗γ)+δ]

)
≥ 1− exp

[
−δ

2
N + o(N)

]
(N →∞).

This, together with Borel-Cantelli, implies

lim sup
N→∞

1

N
log

∑
α:LN,α∈Kan∩∈Bcr

eNΦ[LN,α]

≤ lim sup
N→∞

1

N
log

M∑
i=1

expN(Φ(νi)−H(νi | µ⊗γ)) + log 2 + 2δ

≤ sup
ν∈Bcε∩Kan

Φ(ν)−H(ν | µ⊗γ) + log 2 + 2δ.

Being δ arbitrary, the latter, together with (63) give

lim sup
N→∞

1

N
log

∑
α:LN,α∈Bcr

eNΦ[LN,α] ≤ sup
ν∈Kan∩Bcr

Ω[ν] + log 2.

Notice that, again by compactness, we can select a measure ν̄n ∈ Kan ∩Bc
r s.t.

max
Kan∩Bcr

Ω = Ω[ν̄n],

which implies that, for every n ∈ N,

lim sup
N→∞

1

N
log

∑
α:LN,α∈Bcr

eNΦ[LN,α] ≤ Ω[ν̄n] + log 2.
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By construction it holds Bc
r ∩ Kan ⊆ Bc

r ∩ K1 ∀n ∈ N, specifically the whole sequence
{ν̄n}n∈N lies in the compact set Bc

r ∩ K1 and we can extract a convergent subsequence:
{ν̄nk}k∈N s.t. ν̄nk → ξ weakly as k →∞ for some ξ ∈ K1 ∩Bc

r. We get

lim sup
N→∞

1

N
log

∑
α:LN,α∈Bcr

eNΦ[LN,α] ≤ lim sup
k→∞

Ω[ν̄nk ] + log 2

≤ Ω[ξ] + log 2,

(70)

the last step by upper semicontinuity of Ω. It is also immediately checked that

ξ ∈ K ∩Bc
r ≡ K0 ∩Bc

r, (71)

which implies the claim (60) straightforwardly through (70).

The validity of (71) is a consequence of the fact that for every δ > 0 there exists kδ > 0
s.t. ν̄nk ∈ Kδ ∩ Bc

r for all k ≥ kδ and that by compactness of the latter it must hold
ξ ∈ Kδ ∩Bc

r. Specifically:

ξ ∈
⋂
δ>0

Kδ ∩Bc
r =

⋂
δ>0

{ν : H(ν | µ⊗γ) ≤ log 2 + δ} ∩Bc
r

= {ν : H(ν | µ⊗γ) ≤ log 2} ∩Bc
r = K ∩Bc

r,

and the Lemma follows. �

The proof of the lower bound requires a refinement of our moments’ analysis.
Specifically:

Lemma 4.3. (Variance estimate) For every ν ∈ K and any open neighborhood U of ν,
there exists Bν,r ⊂ U and δ > 0 such that for large enough N

VarAN (Bν,r) ≤ e−Nδ(EAN (Bν,r))
2. (72)

Proof. For each Bν,r, and by independence, the second moment of AN (Bν,r) satisfies

E
[
A 2
N (Bν,r)

]
=
∑
α

P (LN,α ∈ Bν,r) +
∑
α 6=α′

P (LN,α ∈ Bν,r)P (LN,α′ ∈ Bν,r)

≤ 2NP
(
LN,1 ∈ Bν,r

)
+ [EAN (Bν,r)]

2 ,

(73)

and thus

VarAN (Bν,r) ≤ 2NP
(
LN,1 ∈ Bν,r

)
. (74)

Notice that the statement of the Lemma is trivial if ν = µ⊗γ, therefore we assume
ν 6= µ⊗γ; this implies that there exists Bν,r ⊂ U and η > 0 such that µ⊗γ /∈ Bν,r and

inf
ρ∈Bν,r

H(ρ | µ⊗γ) = inf
ρ∈Bν,r

H(ρ | µ⊗γ) = H(ν | µ⊗γ)− η.
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Together with Sanov’s theorem, the latter implies that for N large

2NP
(
LN,1 ∈ Bν,r

)
≤ expN

[
log 2−H(ν | µ⊗γ) +

7

6
η

]
≤ e−

η
2
N exp 2N

[
log 2−H(ν | µ⊗γ) +

5

6
η

]
≤ e−

η
2
N
[
2NP (LN,1 ∈ Bν,r)

]2
= e−

η
2
N [EAN (Bν,r)]

2

(75)

where in the second line we used that, as ν ∈ K, log 2 − H(ν | µ⊗γ) ≥ 0. The Lemma
now follows from (74) with δ ≡ η

2
.

�

The continuity of Φ and the concentration prescribed by the variance estimate imply
now the lower bound in just a couple of steps: for ν ∈ K, δ > 0 let U be an open
neighborhood of ν such that

Φ[ν]−Φ[ρ] ≤ δ ∀ρ ∈ U,
and let Bν,r ⊂ U be the ball prescribed by Lemma 4.3. Then

lim inf
N→∞

FN ≥ lim inf
N→∞

1

N
log

∑
α:LN,α∈Bν,r

expNΦ[LN,α]

≥ Φ[ν] + lim inf
N→∞

1

N
logAN (Bν,r)− δ.

Moreover, Lemma (4.3) together with Chebyshev’s inequality and Borel-Cantelli, implies
that

lim
N→∞

1

N
logAN (Bν,r) = lim

N→∞

1

N
logEAN (Bν,r) P-a.s.

By Sanov’s theorem, we thus get

lim inf
N→∞

1

N
logAN (Bν,r) ≥ − inf

ρ∈Bν,r

H(ρ | µ⊗γ) + log 2 P-a.s.

All in all,
lim inf
N→∞

FN ≥ Φ[ν]− inf
ρ∈Bν,r

H(ρ | µ⊗γ) + log 2− δ

≥ Φ[ν]−H(ν | µ⊗γ) + log 2− δ.
Since δ is arbitrary, by taking the supremum over ν ∈ K, we get the lower bound

lim inf
N→∞

FN ≥ sup
ν∈K

Φ[ν]−H(ν | µ⊗γ) + log 2,

and Theorem 3.2 follows.

4.2. The Parisi principle: proof of Theorem 3.3. Our proof of the Parisi prin-
ciple crucially relies on some classic properties of the relative entropy functional ρ ∈
M+

1 (S2)→ H(ρ | µ⊗γ) ∈ [0,∞] which are recalled in the Appendix A. We start with a
couple of technical and straightforward results.

Lemma 4.4. Let (q,m) be a minimum point of the Parisi function P, defined in (34),
on [0, 1]2. Then

m ∈ (0, 1) ⇒ H(ν q̄,m̄ | µ⊗γ) = log 2,

m = 1 ⇒ H(ν q̄,m̄ | µ⊗γ) ≤ log 2,
(76)



REM APPROXIMATION OF TAP FREE ENERGIES 18

Eν q̄,m̄1

(
g2
)

= q (77)

being ν q̄,m̄1 ∈M+
1 (S) the marginal of ν q̄,m̄ ∈M+

1 (S2) on the first coordinate.
Moreover, it holds

Φ[ν q̄,m̄]−H(ν q̄,m̄ | µ⊗γ) = P(q,m) + log 2. (78)

Proof. As a lower semicontinuous function on a compact set, P must attain a minimum
on [0, 1]2, which we denote by (q,m) ∈ [0, 1]2. Since P(q,m)→ +∞ for m→ 0+, m must
lie in (0, 1]: this implies that ∂mP(q,m) ≤ 0 with equality if m ∈ (0, 1). Through this and
the expression for ∂mP in (37) we get that the implications (76) hold true.
Now, assume ad absurdum

Eνq,m1

(
ϕ2
)
6= q. (79)

Since Φ′′ < 0 the assumption (79) implies q ∈ {0, 1}, as otherwise one would get from
the equation for ∂qP in (37) that ∂qP(q,m) 6= 0 which is impossible if q ∈ (0, 1).
As 0 is a left border value in order for it to be a component of a minumum point it
should hold ∂qP(q,m) ≥ 0. But this together with (79), (37) and Φ′′ < 0 would imply
Eνq,m1

(ϕ2) < q = 0, which contradicts the assumption −1 ≤ ϕ ≤ 1. Using that supϕ2 ≤ 1,
the case q = 1 brings to an analogous contradiction. Hence (77) also holds true.

Moreover, as (36) is valid for all couples (q,m), we find that P can be rewritten as

P(q,m) = Φ(q)− qΦ′(q) + Eνq,m
(
f + Φ′(q)ϕ2 ◦ π1

)
+

+
1

m
(log 2−H(νq,m | µ⊗γ))− log 2.

(80)

Using (77) we get

P(q,m) = Φ(q)− qΦ′(q) + Eν q̄,m̄ (f) + Φ′(q)q +
1

m
(log 2−H(ν q̄,m̄ | µ⊗γ))− log 2

= Φ
(
Eν q̄,m̄

(
ϕ2 ◦ π1

))
+ Eν q̄,m̄ (f) +

1

m
(log 2−H(ν q̄,m̄ | µ⊗γ))− log 2.

(81)

From the latter and (76) the equation (78) follows straighforwardly. This concludes the
Proof of the Lemma. �

Proposition 4.5. There exists a minimum point (q,m) of P on [0, 1]2 such that the
unique optimal measure for the Boltzmann-Gibbs principle (30) is ν q̄,m̄; i.e.

sup
ν∈K

Φ(ν)−H(ν | µ⊗γ) = Φ(ν q̄,m̄)−H(ν q̄,m̄ | µ⊗γ)

where ν q̄,m̄ is the generalized Gibbs measure with Radon-Nikodym derivative w.r.t. µ⊗γ
given by (35) for (q,m) = (q,m).

Proof. Consider ν̄ ∈ K solution of the Boltzmann-Gibbs principle (30). Then, let (q,m)
be a minimum point of P on [0, 1]2. Lemma (4.4), specifically (76), ensures that ν q̄,m̄ ∈ K;
this amounts to say that ν q̄,m̄ is a viable candidate to solve the Boltzmann-Gibbs principle.

We now use Proposition A.3 from the Appendix A, recalling the variational expression
for relative entropy functionals, to show that

Φ(ν)−H(ν | µ⊗γ) ≤ Φ(ν q̄,m̄)−H(ν q̄,m̄ | µ⊗γ) ∀ν ∈ K, (82)
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which proves the Proposition. Specifically, as ϕ, f1, f2 ∈ Cb(S), we can apply A.3 to
m(Φ′(q)ϕ2 ◦ π1 + f) ∈ Cb(S2) to see that

H(ν | µ⊗γ) ≥ H(ν q̄,m̄ | µ⊗γ) +m

∫ (
f + Φ′(q)ϕ2 ◦ π1

)
d(ν − ν q̄,m̄) (83)

for all ν ∈M+
1 (S2). Specifically

Eν(f)−H(ν | µ⊗γ) ≤ Eν(f)−H(ν q̄,m̄ | µ⊗γ)−m
∫ (

f + Φ′(q)ϕ2 ◦ π1

)
d(ν − ν q̄,m̄)

= Eν q̄,m̄(f)−H(ν q̄,m̄ | µ⊗γ)−
∫

Φ′(q)ϕ2 ◦ π1d(ν − ν q̄,m̄) +

+ (1−m)

∫ (
f + Φ′(q)ϕ2 ◦ π1

)
d(ν − ν q̄,m̄)

= −Φ′(q) (Eν (ϕ ◦ π1)− q̄ ) + Eν q̄,m̄(f)−H(ν q̄,m̄ | µ⊗γ) +

+ (1−m)

∫ (
f + Φ′(q)ϕ2 ◦ π1

)
d(ν − ν q̄,m̄)

(84)

where in the last line we used that, as shown in Lemma 4.4, for a minimum point (q̄, m̄)
of P it holds

q = Eν q̄,m̄
(
ϕ2 ◦ π1

)
. (85)

Since Φ is concave and differentiable, it satisfies Φ(x)−Φ′(y)(x−y) ≤ Φ(y) for all x, y ∈ R.
Through (84), and again (85), this implies

Φ(ν)−H(ν | µ⊗γ) = Φ (Eν (ϕ ◦ π1)) + Eν (f)−H(ν | µ⊗γ).

≤ Φ(ν q̄,m̄)−H(ν q̄,m̄ | µ⊗γ) + (1−m)

∫ (
f + Φ′(q)ϕ2 ◦ π1

)
d(ν − ν q̄,m̄).

(86)

From the latter we see that if m = 1 the claim (82) follows immediately. If instead
m ∈ (0, 1) then H(ν q̄,m̄ | µ⊗γ) = log 2 and Proposition A.3 implies that

m

∫ (
f + Φ′(q)ϕ2 ◦ π1

)
d(ν − ν q̄,m̄) ≤ H(ν | µ⊗γ)− log 2 ≤ 0

for all ν ∈ K. Since both m and 1−m are non-negative this implies

(1−m)

∫ (
f + Φ′(q)ϕ2 ◦ π1

)
d(ν − ν q̄,m̄) ≤ 0

which used on (86) gives (82), which is therefore now proved also for m ∈ (0, 1).
All in all, we have shown that if (q,m) is a minimum point of P on [0, 1]2 then the
unique extremal measure ν̄ of the Boltzmann-Gibbs principle (30) must be one of the
ν q̄,m̄, namely the thesis of the Proposition is settled. �



REM APPROXIMATION OF TAP FREE ENERGIES 20

4.3. The limiting Gibbs measure: proof of Theorem 3.4. Here and henceforth,
we will denote by ν̄ ∈ M+

1 (S2) the measure solving the Boltzmann-Gibbs variational
principle for a system in low temperature; i.e.

dν̄(x, y)
def
=

exp m̄ [Φ′(q̄)ϕ2(x) + f(x, y)]

Z q̄,m̄
dµ(x)dγ(y) ,

where (q̄, m̄)
def
= argmin[0,1]2P and m̄ < 1. Some notation: let {(Zi,Wi)}i≤N be i.i.d. S2-

valued random vectors with common distribution ν̄ and defined on a probability space

(Ω′,F ′,E). Setting Z
def
= (Z1,W1, · · · , ZN ,WN) ∈ S2N define

XN(Z)
def
=

1√
N

N∑
i=1

(
g2(Zi)− q̄

)
, YN(Z)

def
=

1√
N

N∑
i=1

(f(Zi,Wi)− Eν̄(f))

and consider the real valued random vectors(
XN

YN

)
≡
(
XN(Z)
YN(Z)

)
, (87)

together with their covariance matrix, say Σ, which we assume to be invertible.

Set

Cq̄,m̄
def
= −m̄Φ′′(q̄) + (1, −Φ′(q̄)) · Σ−1 · (1, −Φ′(q̄))

>
, (88)

where (1, −Φ′(q̄))> is the transpose of the vector (1, −Φ′(q̄)) ∈ R2 and ”·” the matrix-
vector product.
Notice that Φ′′(q̄) < 0 implies C ≡ Cq̄,m̄ > 0.

Proposition 4.6. Under the assumptions of Theorem 3.4, the point process

ΞN
def
=

2N∑
α=1

δHN (α)−N [Φ(q̄)−Eν̄(f)]−ωN , (89)

where

ωN
def
= − 1

m̄
log
√

2πN |Σ|C; (90)

converges weakly to a Poisson point process with intensity measure e−m̄zdz.

Theorem 3.4 follows from

i) Proposition 4.6 together with
ii) the exponential transform

HN(α)−N [Φ(q̄)− Eν̄(f)]− ωN 7→ exp (HN(α)−N [Φ(q̄)− Eν̄(f)]− ωN) ,

which maps the Poisson point process with intensity measure e−m̄zdz to a Poisson
point process on the positive line with intensity measure t−m̄−1dt;

iii) the fact that infinite volume limit and the Gibbs-normalization commute.

Items ii-iii) are fairly standard in the literature: their proof is omitted, but we refer the
reader to, say, [6] for details.

For the sake of simplicity, we shall prove Proposition 4.6 assuming that Theorem B.1
(see Appendix B and [3, Theorem 19.5]) holds for the normalized vectors (87); this is
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equivalent to the assumption that at least one measure among ν̄ ◦ (g ◦ π1 − q̄)−1 and
ν̄ ◦ (f − Eν̄(f))−1 has a density w.r.t. the Lebesgue measure on R.

Lemma 4.7. In low temperature, for any (µ⊗γ)⊗N−measurable function F : S2N → R

2NE (F (X1,1, Y1,1, . . . , X1,N , Y1,N)) = E
(
e−m̄

√
N(Φ′(q̄)XN+YN ) F (Z)

)
. (91)

Proof. By definition, for any y = (y1, · · · , yN) ∈ S2N , yi ∈ S2, it holds:

d(µ⊗γ)⊗N

dν̄⊗N
(y) =

N∏
i=1

d(µ⊗γ)

dν̄
(yi) = exp

(
N logZ q̄,m̄ − m̄

N∑
i=1

Φ′(q̄)ϕ2 ◦ π1(yi) + f(yi)

)
,

(92)
hence

2NE (F (X1,1, Y1,1, . . . , X1,N , Y1,N)) = eN(logZ q̄,m̄+log 2)

∫
e
−m̄

N∑
i=1

Φ′(q̄)ϕ2◦π1(yi)+f(yi)
F (y)dν̄⊗N(y).

(93)
By the entropy condition (38),

logZ q̄,m̄ + log 2 = m̄ [Φ′(q̄)q̄ + Eν̄(f)] . (94)

Plugging this in (93), and remembering the definition of the vectors (87), the Lemma
follows straightforwardly. �

Proof of Proposition 4.6. We will show that for any compact K ⊂ R

lim
N→∞

E (ΞN(K)) =

∫
K

e−m̄zdz . (95)

Due to the complete independence over the α-s, this suffices to prove the Lemma by
Kallenberg’s theorem [17, Theorem 4.15]. To this aim, recall that, by definition,

HN(1) = NΦ

(
1

N

N∑
i=1

ϕ2(X1,i)

)
+

N∑
i=1

f(X1,i, Y1,i), (96)

so that

E [ΞN(K)] = E

 2N∑
α=1

δHN (α)−N(Φ(q̄)+Eν̄(f))−ωN (K)


= 2NP [HN(1)−N(Φ(q̄) + Eν̄(f))− ωN ∈ K]

= 2NE
[
1HN (1)−N(Φ(q̄)+Eν̄(f))−ωN∈K

]
.

(97)

By Lemma 4.7,

E [ΞN(K)] = E

[
e−m̄

√
N(Φ′(q̄)XN+YN )1

N
[
Φ
(
XN√
N

+q̄
)
−Φ(q̄)

]
+
√
NYN−ωN∈K

]
. (98)

As Φ is twice differentiable, for any fixed N ∈ N we can consider a map
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x ∈ IN
def
=
[
−
√
N,
√
N
]
→ ξN(x) ∈ I def

= [q̄ − 1, q̄ + 1], (99)

that to any x ∈ IN associates a point ξN(x) ∈ I such that

Φ

(
x√
N

+ q̄

)
− Φ(q̄)− Φ′(q̄)

x√
N

=
1

2
Φ′′(ξN(x))

x2

N

= RN(x)
x2

N
,

(100)

where to lighten notation we defined

RN(x)
def
=

1

2
Φ′′(ξN(x)). (101)

As q̄, ϕ2(x) ∈ [0, 1] ∀x ∈ S, it holds

XN ∈ IN for any realization of XN ; (102)

specifically we can write

N

[
Φ

(
XN√
N

+ q̄

)
− Φ(q̄)

]
≡
√
NΦ′(q̄)XN +RN(XN)X2

N . (103)

Notice also (recalling that, by assumption, Φ′′(a) < 0 ∀a ∈ R ):

RN(x) < 0 ∀x ∈ IN , (104)

lim
N→∞

RN(x) =
1

2
Φ′′(q̄) < 0 uniformly for x ∈ o(

√
N), (105)

if R
def
=

1

2
inf
I
|Φ′′| > 0 then |RN(x)| ≥ R ∀x ∈ IN . (106)

Going back to (98) we rewrite it as

E [ΞN(K)] =

∫
IN×R

e−m̄
√
N(Φ′(q̄)x+y)ΨN(x, y)dQN(x, y) (107)

where QN ∈M+
1 (R2) is the distribution of (XN , YN) and

ΨN(x, y)
def
=

{
1 if

√
N(Φ′(q̄)x+ y) +RN(x)x2 − ωN ∈ K,

0 otherwise.
(108)

It is easily seen that

1√
N

∫
IN×R

e−m̄
√
N(Φ′(q̄)x+y)ΨN(x, y) dxdy (109)

vanishes as N → ∞. Indeed, integrating by substitution according to the change of
variables

(x̃, ỹ) =
(
x,
√
N(Φ′(q̄)x+ y) +RN(x)x2 − ωN

)
(110)
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the function ΨN(x, y) becomes 1K(ỹ) so that through (104), (105) we easily obtain

(109) ≤ e−m̄ωN

N

∫
K

e−m̄y
′
dy′
∫
R
e−m̄Rx

′2
dx′ = O

(
1√
N

)
(N ↑ ∞), (111)

where we also used the fact that z → e−m̄z is non-increasing and that the definition of ωN
(90) implies e−m̄ωN/N = O

(
N−1/2

)
. But this, through (107) and Theorem B.1, yields

lim
N→∞

E (ΞN(K)) = lim
N→∞

∫
IN×R

e−m̄
√
N(Φ′(q̄)x+y)Ψ(x, y)ϕΣ(x, y)dxdy (112)

where ϕΣ is the Gaussian bivariate density with mean (0, 0) and covariance matrix Σ.
We now focus on the right hand side of (112) and write it as∫

IN×R
e−m̄

√
N(Φ′(q̄)x+y)ΨN(x, y)ϕΣ(x, y)dxdy = J 1

N + J 2
N , (113)

where

J 1
N

def
=

∫ ∫ logN

− logN

e−m̄
√
N(Φ′(q̄)x+y)ΨN(x, y)ϕΣ(x, y) dx dy, (114)

and

J 2
N

def
=

∫ ∫
[− logN, logN ]c ∩ IN

e−m̄
√
N(Φ′(q̄)x+y)ΨN(x, y)ϕΣ(x, y) dx dy. (115)

We begin by showing that

lim
N→∞

J 2
N = 0 . (116)

Indeed, by K-compactness it holds that K ⊂ [t,+∞) for some t ∈ R, so that for every

(x, y) : ΨN(x, y) 6= 0 the exponential term in (115) is bounded above by e−m̄(−RN (x)x2+ωN+t).
Specifically, again by virtue of (104), (106), we obtain

J 2
N ≤ e−m̄(ωN+t)

∫
[− logN, logN ]c

em̄RN (x)x2

ϕ1
Σ(x)dx

≤ e−m̄(R log2 N+ωN+t) ∈ o(1) as N →∞,
(117)

where x → ϕ1
Σ(x) is the Gaussian univariate density of the first marginal of a bivariate

Gaussian with density (x, y)→ ϕΣ(x, y). This settles the claim (116).

As for J 1
N , we have

J 1
N =

1

2π
√
|Σ|

∫ logN

− logN

∫
e−m

√
N(Φ′(q̄)x+y)− 1

2
v̄·Σ−1·v̄>ΨN(v̄) dy dx, (118)

with v̄> denoting transpose. Note that with (x̃, ỹ) the variables as in (110), it holds

v̄ ≡
(
x̃,
ỹ −RN(x̃)x̃2 + ωN√

N
− Φ′(q̄)x̃

)
= x̃ · (1, −Φ′(q̄)) +

ỹ −RN(x̃)x̃2 + ωN√
N

· (0, 1)
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and that for any scalars a, b ∈ R and vectors v̄1, v̄2 ∈ R2 it trivially holds

−1

2
(av̄1 + bv̄2) · Σ−1 ·

(
av̄>1 + bv̄>2

)
=− 1

2
a2v̄1 · Σ−1 · v̄>1 − bav̄1 · Σ−1 · v̄>2 +

− 1

2
b2v̄2 · Σ−1 · v̄>2 .

(119)

Specifically, as

ỹ ∈ K, |x̃| ≤ logN ⇒ ỹ −RN(x̃)x̃2 + ωN√
N

∈ O
(

log2N√
N

)
(N →∞) (120)

uniformly, and in light of (119), we get that the quadratic exponent of the Gaussian
density in the new variables (x̃, ỹ) equals

− 1

2
x̃2 (1, −Φ′(q̄)) · Σ−1 · (1, −Φ′(q̄))

>
+O

(
log3N√

N

)
(N →∞) . (121)

Therefore

J 1
N =

e−m̄ωN

2π
√
|Σ|N

∫
K

e−m̄ỹ
∫ logN

− logN

e−x̃
2{−m̄RN (x̃)+ 1

2
(1,−Φ′(q̄))·Σ−1·(1,−Φ′(q̄))>}+o(1) dx̃ dỹ. (122)

As (106) holds, we have

lim
N→∞

sup
x∈R: |x|≤logN

RN(x) =
1

2
Φ′′(q̄), (123)

and by definition

e−m̄ωN

2π
√
|Σ|N

=

√
C

2π
. (124)

All in all, we get

lim
N→∞

J 1
N =

√
C

2π

∫
K

e−m̄ỹ
∫
e−

C
2
x̃2

dx̃ dỹ =

∫
K

e−m̄ỹdỹ (125)

which ends the proof.
�

4.4. The limiting law of the overlap: proof of Proposition 3.5. In this subsection
we prove Proposition 3.5, i.e. we show that if the system is in low temperature and ν̄ is
the solution of the Boltzmann-Gibbs principle (30), then the limits (40), (41) hold.
First, we prove (40). We start with a technical Lemma, which is a direct consequence of
Lemma 4.2 and Theorem 3.2.

Lemma 4.8. Let r > 0, and ON = ON(α, α′) s.t. for some M > 0: |ON(α, α′)| ≤
M ∀α, α′ ∈ {1, · · · , 2N}, N ∈ N. It holds

lim
N→∞

〈
1Bcr [LN,α]ON(α, α′)

〉
N

= 0 P− a.s.

where Bc
r = {ρ ∈M+

1 (S2) : d(ρ, ν̄) ≥ r} =M+
1 (S2) \Bν̄,r.
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Proof. Fix r > 0, then〈
1Bcr [LN,α] |ON(α, α′)|

〉
N
≤M

〈
1Bcr [LN,α]

〉
N

= M
∑

α:LN,α 6∈Br

GN(α)
∑
α′≤2N

GN(α′)

= M
∑

α:LN,α 6∈Br

GN(α).

Therefore, showing that P−a.s.

lim
N→∞

∑
α:LN,α 6∈Br

GN(α) = lim
N→∞

∑
α:LN,α 6∈Br

eNΦ[LN,α]

ZN
= 0, (126)

would prove the Lemma. We therefore claim (126).
Lemma 4.2 and Theorem 3.2 imply that P−a.s. it holds

Fr
def
= lim sup

N→∞

1

N
log

∑
α:LN,α 6∈Br

eNΦ[LN,α] < lim
N→∞

1

N
logZN = F.

Specifically, for η
def
= F − Fr > 0, it holds

ZN > eN(F− η4 ),
∑

α:LN,α 6∈Br

eNΦ[LN,α] < eN(Fr+ η
4 ),

P−a.s and provided that N is large. As the latter implies

∑
α:LN,α 6∈Br

GN(α) =

∑
α:LN,α 6∈Br

eNΦ[LN,α]

ZN
≤ e−

η
2
N ,

the claim (126) is settled and the Lemma follows. �

Notice that the non-negative operator T :M+
1 (S2)→ R defined as

T [ν]
def
=

(∫
ϕ2(x)ν1(dx)− q̄

)2

is continous, bounded and such that (recall q̄ =
∫
ϕ2(x)ν̄1)

T [LN,α] = (qN(α, α)− q̄)2 , T [ν̄] = 0.

Specifically, given an arbitrary δ > 0 we can find r > 0 such that if LN,α ∈ Br ≡ Bν̄,r,
then T [LN,α] < δ. This implies

E
〈

1Br [LN,α] (qN(α, α′)− q̄)2
δα=α′

〉
N

= E 〈1Br [LN,α]T [LN,α] δα=α′ 〉N

= E
∑

α:LN,α∈Br

T [LN,α]GN(α)2 ≤ δ
(127)

where in the last line we used that in low temperature Theorem 3.4 guarantees that
the process {GN(α)}α≤2N converges to a Poisson-Dirichlet point process with parameter
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m̄ ∈ (0, 1), and this implies E
∑

α≤2N GN(α)2 ∼ 1 − m̄ ∈ (0, 1). Specifically, applying
Lemma 4.8 we get

lim
N→∞

E
〈

(qN(α, α′)− q̄)2
δα=α′

〉
N

= E
〈

1Br [LN,α] (qN(α, α′)− q̄)2
δα=α′

〉
N
≤ δ,

which, being δ arbitrarily small, proves the first claim (40) of Proposition 3.5.

In order to conclude the proof of the Proposition, we only need to show (41).

To this aim, define

L̃N,α
def
=

1

N − 2

N∑
i=3

δ(Xα,i,Yα,i),

and let L̃1
N,α, L̃

2
N,α be its marginals. Then, similarly to the proof of 4.6, for any fixed

N ∈ N consider a map α→ ζαN that to any configuration α associates a point ζαN ∈ [0, 1]
(specifically in the interval between EL1

N,α
(ϕ2) and EL̃1

N,α
(ϕ2)) such that

Φ
(
EL1

N,α
(ϕ2)

)
= Φ

(
EL̃1

N,α
(ϕ2)

)
+ Φ′ (ζαN)

[
EL1

N,α
(ϕ2)− EL̃1

N,α
(ϕ2)

]
. (128)

By construction, one has

HN(α) = NΦ [LN,α] = (N − 2)Φ
[
L̃N,α

]
+WN(α) +RN(α) (129)

where

WN(α)
def
= Φ′(ζαN)

[
ϕ2(Xα,1) + ϕ2(Xα,2)

]
+ f(Xα,1, Yα,1) + f(Xα,2, Yα,2) ;

RN(α)
def
= 2Φ

(
EL1

N,α
(ϕ2)

)
− 2Φ′ (ζαN)EL1

N,α
(ϕ2) .

This implies that for every map (α, α′)→ ON(α, α′)

E〈ON(α, α′)〉N = E
〈〈ON(α, α′)eWN (α)+WN (α′)+RN (α)+RN (α′)〉〉N

〈〈eWN (α)+WN (α′)+RN (α)+RN (α′)〉〉N
(130)

where we defined 〈〈·〉〉N
def
=
∑

α,α′ · G̃N(α)G̃N(α′) and

G̃N(α)
def
=

exp (N − 2)Φ[L̃N,α]

Z̃N
, Z̃N

def
=

2N∑
α=1

e(N−2)Φ[L̃N,α].

As Φ is twice differentiable, for every δ > 0 there exists δ′ > 0 such that, being L1
N,α

the first marginal of LN,α, if∣∣∣EL1
N,α

(ϕ2)− q̄
∣∣∣ ≤ δ′, |ζαN − q̄| < δ′ (131)

then {
|RN(α)− 2Φ(q̄) + 2Φ′(q)q| < δ,

|WN(α)− Φ′(q) [ϕ2(Xα,1) + ϕ2(Xα,2)]− f(Xα,1, Yα,1)− f(Xα,2, Yα,2)| < δ.
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Moreover, by duality and continous projection, we can choose r small enough s.t.

L̃N,α ∈ Bν̄,r ⇒ EL̃1
N,α

(ϕ2) ∈
[
Eν̄1(ϕ2)− δ, Eν̄1(ϕ2) + δ

]
≡
[
q − δ′

2
, q +

δ′

2

]
. (132)

Notice also that

EL1
N,α

(ϕ2) =
N − 2

N

[
ϕ2(Xα,1) + ϕ2(Xα,2)

N − 2
+ EL̃1

N,α
(ϕ2)

]
(133)

which implies that as N →∞, EL1
N,α

(ϕ2) = ζαN = EL̃1
N,α

(ϕ2) +O(N−1) uniformly.

It is readily checked that Lemma 4.2 and Theorem 3.2 still hold if we substitute the
original Hamiltonian NΦ[LN,α] with (N − 2)Φ[L̃N,α]; this implies that Lemma 4.8 works
also for the average 〈〈·〉〉N . Specifically, for every r > 0, the couples α, α′ contributing to
the sums corresponding to the averages in the right hand side of (130) are the ones for

which L̃N,α, L̃N,α′ ∈ Bν̄,r.
All in all, being δ arbitrary, we immediately get

lim
N→∞

E〈Fα,α′〉N = lim
N→∞

E
〈〈Fα,α′ VαVα′ 〉〉N
〈〈VαVα′ 〉〉N

(134)

where we defined

Vα
def
= exp

2∑
k=1

Φ′(q̄)ϕ2 (Xα,k) + f(Xα,k, Yα,k).

For ON(α, α′) ≡ δα 6=α′ (qN(α, α′)− q̄0)2, the r.h.s. of (134) equals the large-N limit of

E
〈〈 qN(α, α′)2δα 6=α′ VαVα′ 〉〉N

〈〈VαVα′ 〉〉N
+ q̄2

0E
〈〈 δα 6=α′ VαVα′ 〉〉N
〈〈VαVα′ 〉〉N

− 2q̄0E
〈〈 qN(α, α′)δα 6=α′ VαVα′ 〉〉N

〈〈VαVα′ 〉〉N
.

(135)
Since ϕ is bounded, and by symmetry, the first term in (135) converges in the N -limit to

1

N2

∑
i 6=j

E
〈〈ϕ(Xα,i)ϕ(Xα′,i)ϕ(Xα,j)ϕ(Xα′,j)δα 6=α′ VαVα′ 〉〉N

〈〈VαVα′ 〉〉N
+O

(
1

N

)
=

=
N(N − 1)

N2
E
〈〈ϕ(Xα,1)ϕ(Xα′,1)ϕ(Xα,2)ϕ(Xα′,2)δα 6=α′ VαVα′ 〉〉N

〈〈VαVα′ 〉〉N
+O

(
1

N

)
.

(136)

Notice now that Theorem 3.4 clearly also applies to the collection of weights G̃N(α), α =
1 . . . 2N , which therefore converges weakly to a Poisson-Dirichlet point process with pa-
rameter m̄.
Some particularly useful properties of such process are given in Theorem B.2 of the Ap-
pendix. A simple domination argument shows that one can pass to the N → ∞ limit
replacing the {G̃N(α)}α by the points of its weak limit so that5 we can use the formula

5also using that the random vectors (Vα, g(Xα,1)g(Xα,2)Vα) are independent of the process {G̃N (α)}α.
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(143) from Theorem B.2 to get

lim
N→∞

E
〈〈 qN(α, α′)2δα 6=α′ VαVα′ 〉〉N

〈〈VαVα′ 〉〉N

= lim
N→∞

E
〈〈ϕ(Xα,1)ϕ(Xα′,1)ϕ(Xα,2)ϕ(Xα′,2)δα 6=α′ VαVα′ 〉〉N

〈〈VαVα′ 〉〉N

= lim
N→∞

E

∑
α 6=α′

ϕ(Xα,1)ϕ(Xα,2)Vα ϕ(Xα′,1)ϕ(Xα′,2)Vα′ G̃N(α)G̃N(α′)[∑
α

VαG̃N(α)

]2

= lim
N→∞

m̄

[
Eϕ(X1,1)ϕ(X1,2)V1V

m̄−1
1

EV m̄
1

]2

= m̄

(∫
ϕdν̄

)4

= m̄q̄2
0.

(137)

Similarly we get

lim
N→∞

E
〈〈 δα6=α′ VαVα′ 〉〉N
〈〈VαVα′ 〉〉N

= m̄, lim
N→∞

E
〈〈 qN(α, α′)δα 6=α′ VαVα′ 〉〉N

〈〈VαVα′ 〉〉N
= m̄q̄0,

and (41) follows. This ends the proof of Proposition 3.5.

Appendix A. The relative entropy.

Definition A.1. Given a couple ν, µ of Borel probability measures on a Polish space S,
their relative entropy is defined as

H(ν | µ) =

{
Eν
(

log
(
dν
dµ

))
if ν << µ, Eν

(∣∣∣log
(
dν
dµ

)∣∣∣) <∞,
∞ else.

(138)

It is a well-known fact that the Definition A.1 is equivalent to the following (see [12],
[18] for details)

H(ν | µ) = sup
u∈Cb(S)

{∫
udν − log

∫
eudµ

}
(139)

and it is easily seen that ν → H(ν | µ) from M+
1 (S) to R is non-negative, convex and

lower semicontinous. Specifically, the sublevel K defined in (29) is compact in M+
1 (S).

Definition A.2. For all u ∈ Cb(R) define the measure

Gu ∈M+
1 (S) :

dGu

dµ
(s) =

eu(s)

Zu
.

Proposition A.3. For all u ∈ Cb(S), ν ∈M+
1 (S) it holds

H(ν | µ) ≥ H(Gu | µ) +

∫
u d(ν −Gu).

Proof. From the variational definition of H (139) we have

H(ν | µ) ≥
∫
udν − logZu ∀ν ∈M+

1 (S),∀u ∈ Cb(S).
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Moreover

H(Gu | µ) =

∫
log

(
dGu

dµ

)
dGu =

∫
udGu − logZu,

and the thesis follows straightforwardly. �

Appendix B. Edgeworth expansions, and Poisson-Dirichlet identities.

Denoting by v̄ = (x, y) → ϕΣ(v̄) the bivariate Gaussian density with mean zero and
covariance matrix Σ, the following normal approximation result holds:

Theorem B.1. [ [3], Theorem 19.5 ] Let {Vi}i≥1 be a sequence of i.i.d. random vec-

tors with values in R2, having mean zero, a positive-definite covariance matrix Σ and
a nonzero, absolutely continous component. Then if E||V1||3 < ∞, writing QN for the

distribution on of N−
1
2 (V1 + · · ·+ VN), one has∫ (

1 + ||x||3
)
d |QN −ΥN | (x, y) = o

(
1√
N

)
(N →∞) (140)

where

dΥN

dλ2

(v̄) =
h(v̄)√
N

+ ϕΣ(v̄) (141)

for a bounded smooth function h : R2 → R, λ2 being the Lebesgue measure on R2.

Theorem B.2. [ [25], Theorem 6.4.5 ] Assume that {vα}α≤2N is a Poisson-Dirichlet point
process with intensity measure e−mtdt for some m < 1, independent of a sequence {(Uα, Vα)}α≤2N

of i.i.d. vectors, copies of some (U, V ): EU2 < ∞,EV 2 < ∞, V ≥ 1. Then we have the
formulas

E

∑
α

vαUα∑
α

vαVα
=

EUV m−1

EV m
, (142)

E

∑
α 6=α′

vαvβUαUβ(∑
α

vαVα

)2 = m

(
EUV m−1

EV m

)2

, (143)

E

∑
α

v2
αU

2
α

(vαVα)2 = (1−m)
EU2V m−2

EV m
. (144)
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