Colloquium of the Institute of Discrete Mathematics, TU Graz March 11, 2020

Infinite bridges for tree-valued Markov chains

Anton Wakolbinger

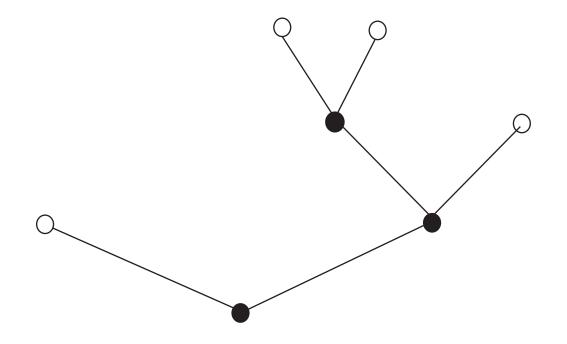
Institut für Mathematik, Goethe-Universität Frankfurt

Based on joint work with S. N. Evans (Berkeley) and R. Grübel (Hannover)

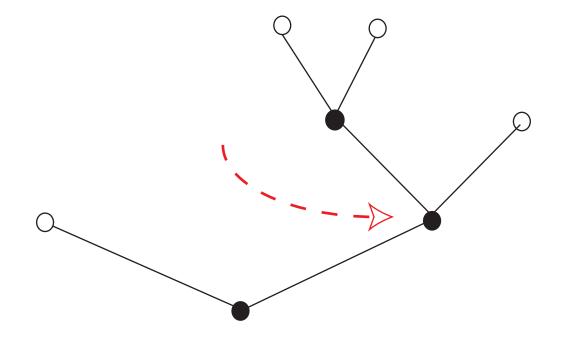
Rémy's tree growth chain

Jean-Luc Rémy (1985),

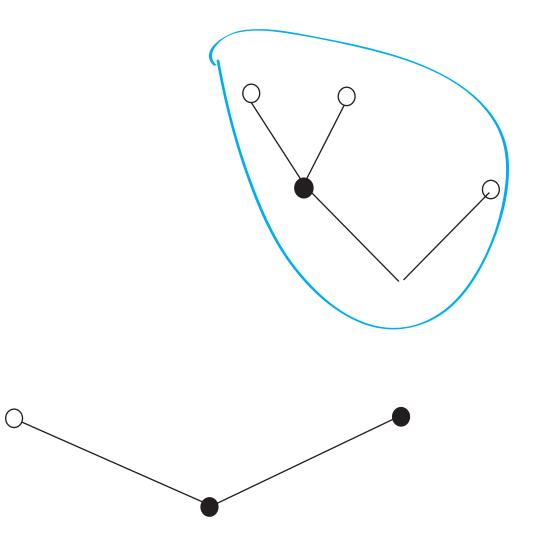
Un procédé iteratif de denobrement d'arbres binaires et son application à leur generation aléatoire One step of Rémy's tree-valued Markov chain:



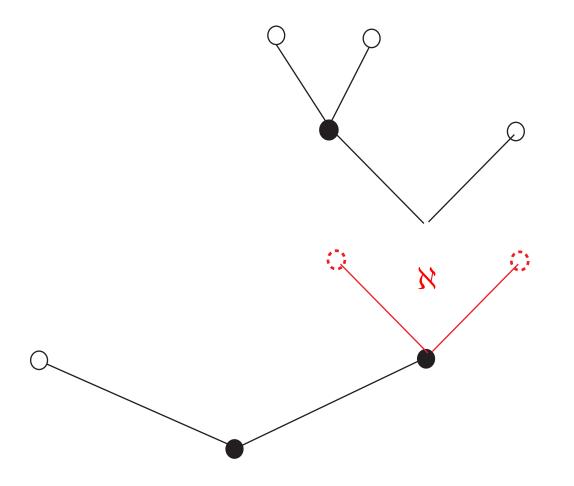
Choose a vertex at random



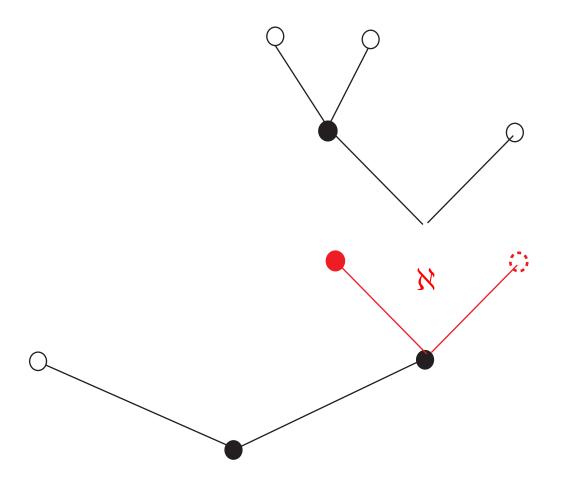
Put the offspring tree of the chosen vertex aside



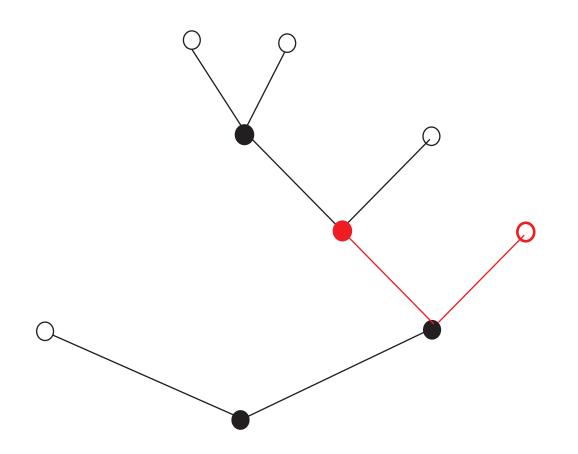
Attach the 2-leaf tree ℵ, rooted in the chosen vertex



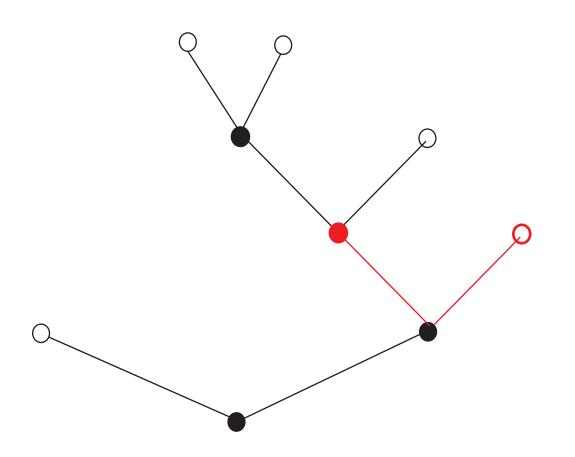
Choose one of the two leaves of ℵ at random

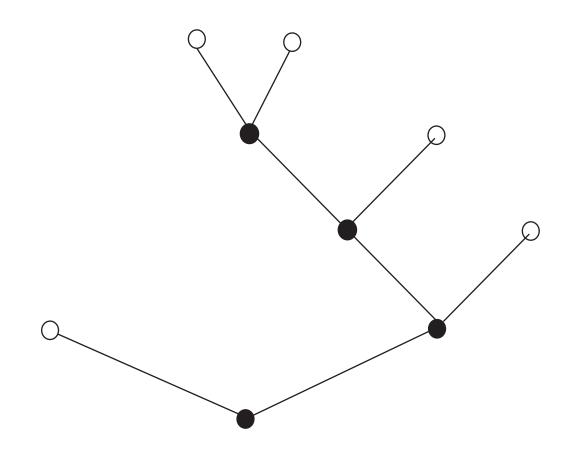


Attach the offspring tree at the the chosen leaf of **X**



Thus, one additional leaf has been created





Definition:

The Rémy chain

is a binary-tree valued Markov chain $(T_1, T_2, ...)$ starting in \checkmark

and with the following transition mechanism:

Definition:

The Rémy chain

is a binary-tree valued Markov chain $(T_1, T_2, ...)$ starting in \checkmark

and with the following transition mechanism:

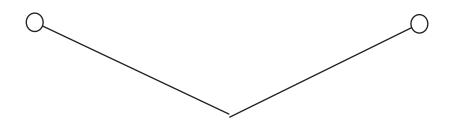
Given $T_n = t$, choose a vertex v of t at random,

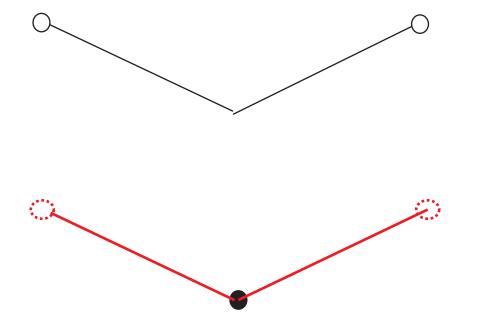
put the offspring tree of v aside,

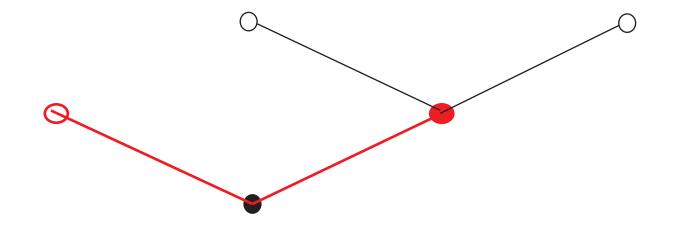
insert 2 children of v,

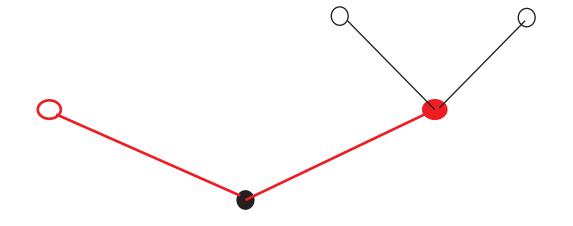
choose one of them at random,

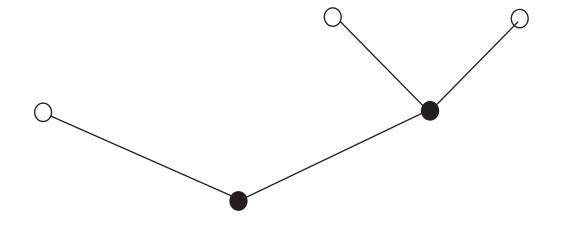
and re-attach to it the previous offspring tree of v.

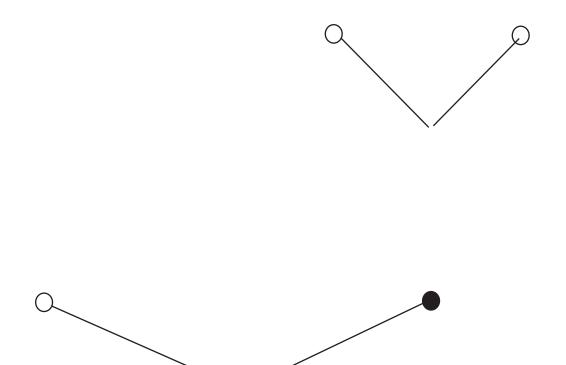


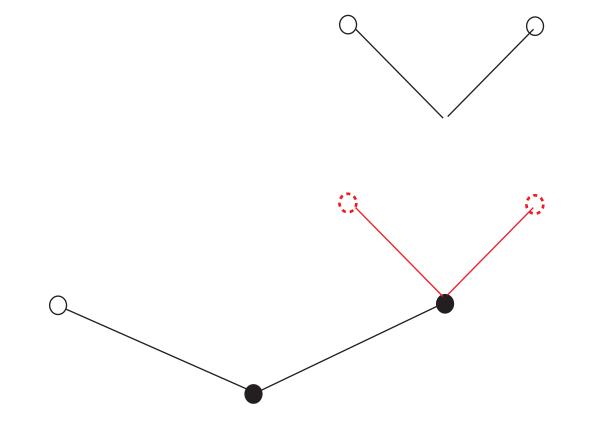


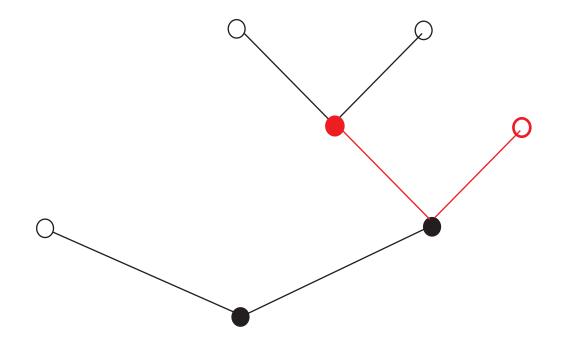


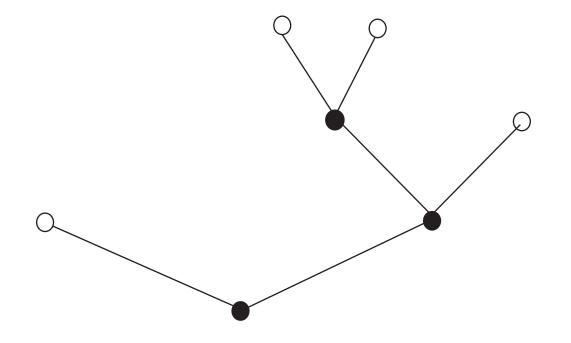


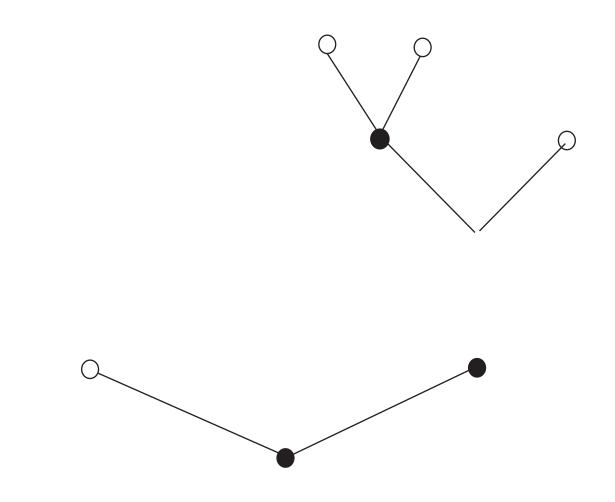


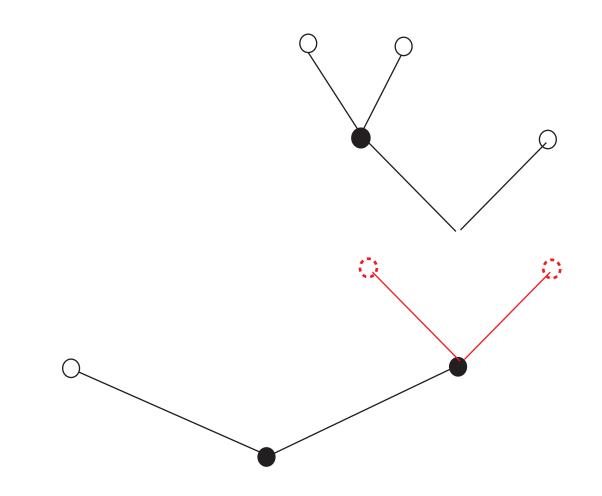


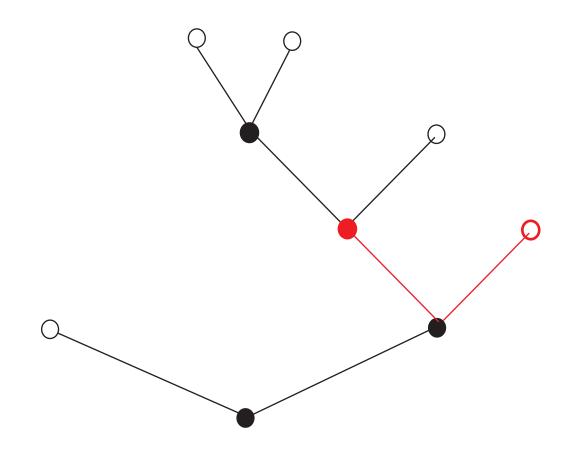


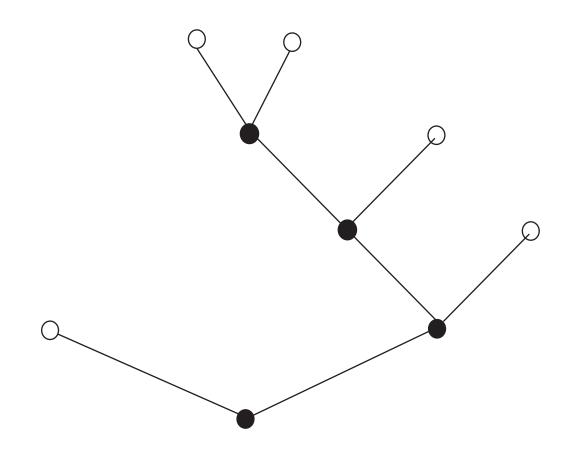


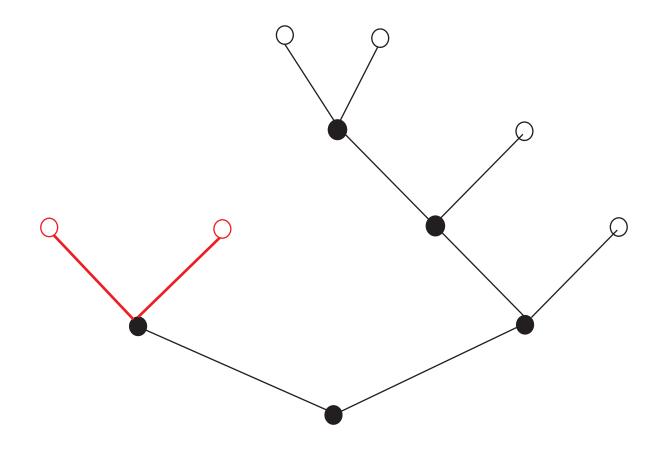


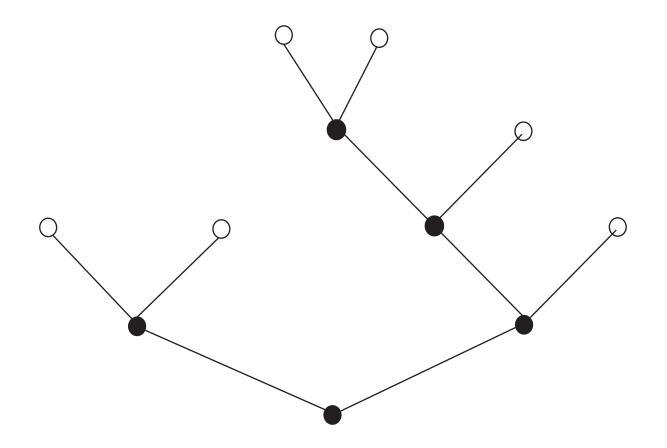












Facts (proved by induction)

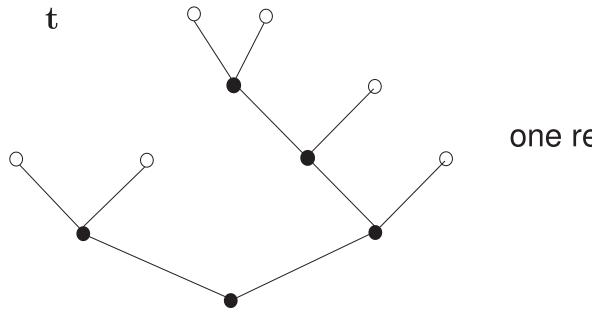
 ${\cal T}_n$ is uniformly distributed on the set of binary trees

with n + 1 leaves.

Facts (proved by induction):

 T_n is uniformly distributed on the set of binary trees

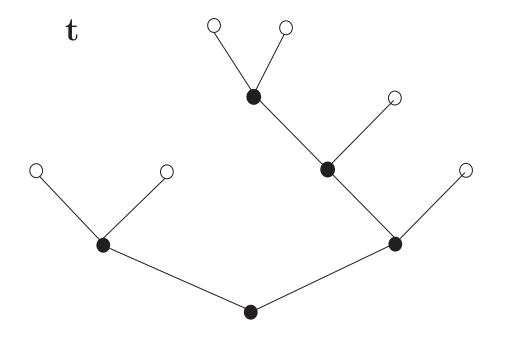
with n + 1 leaves. This set has cardinality $C_n = \frac{1}{n+1} \binom{2n}{n}$.



one realisation of T_5

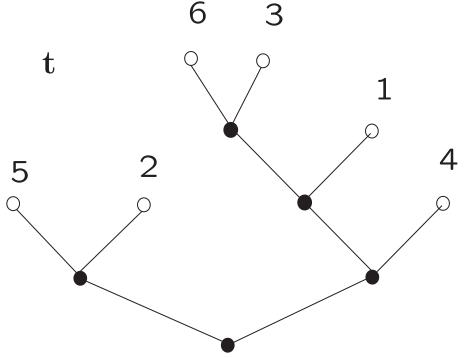
Facts (proved by induction):

For each *n*, given $T_n = t$, the "age order" of the leaves of t is completely random.



Facts (proved by induction):

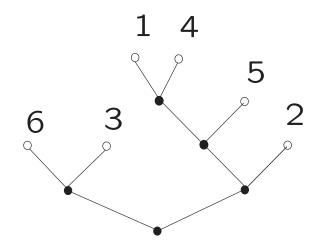
For each *n*, given $T_n = t$, the "age order" of the leaves of t is completely random.

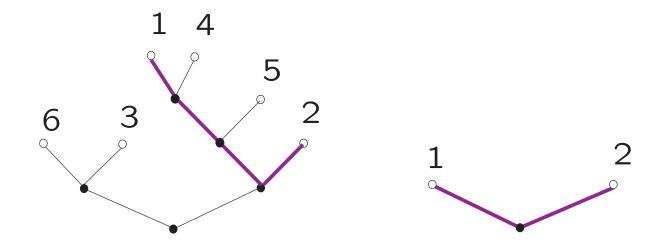


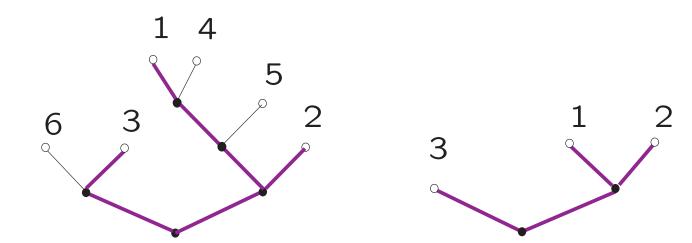
The age order

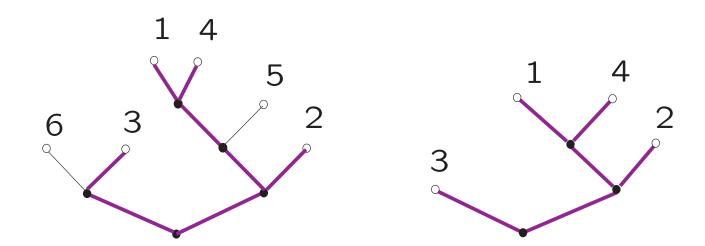
- of the leaves
 - determines the path

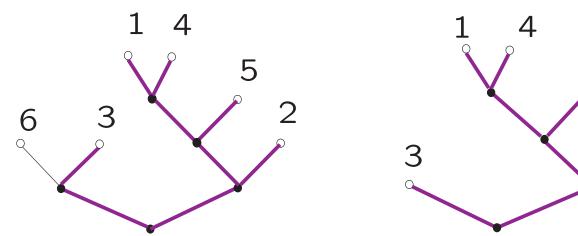
from \aleph to \mathbf{t}

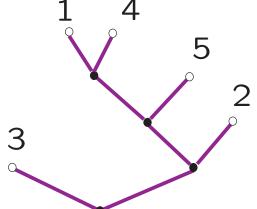


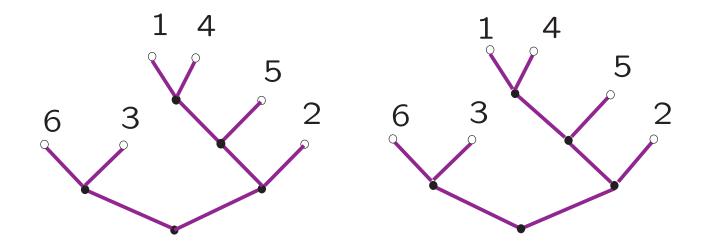






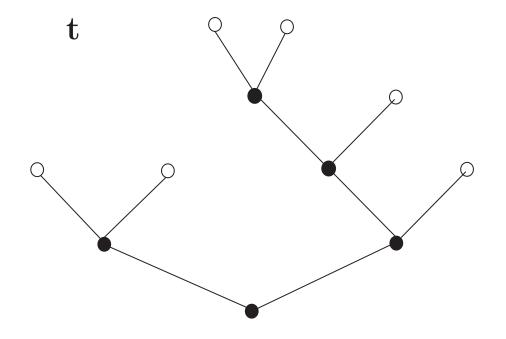






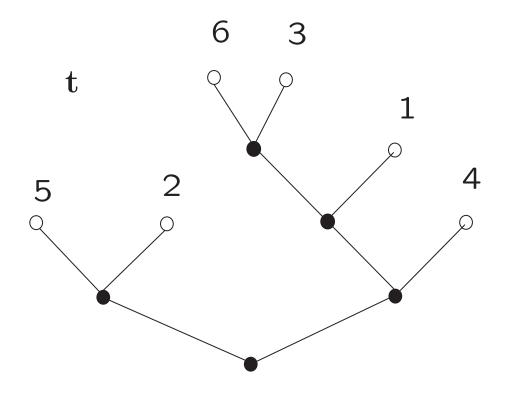
Thus, for given t,

we obtain the random bridge from \aleph to t



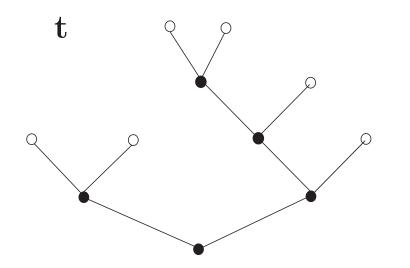
Thus, for given t,

we obtain the *random bridge* from \aleph to t through a random labeling of the leaves of t

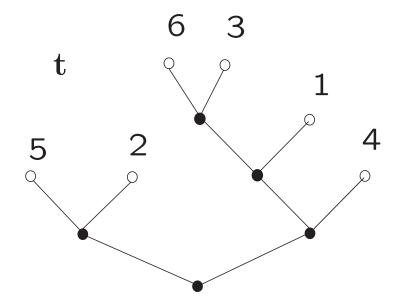


which then determines the path from \aleph to t as we just saw.

For a binary tree t with n + 1 leaves, the *Rémy bridge* (T_1^t, \dots, T_n^t) from \aleph to t arises as follows



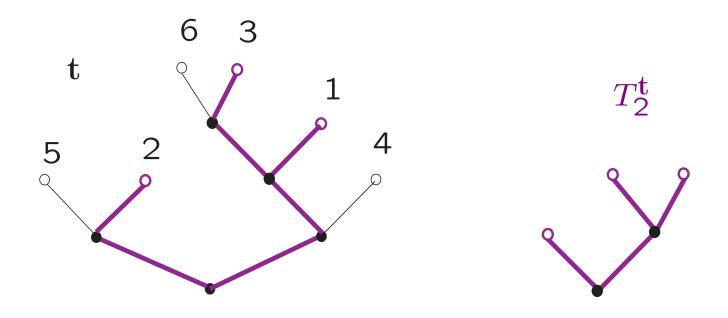
For a binary tree t with n + 1 leaves, the *Rémy bridge* $(T_1^t, \dots T_n^t)$ from \aleph to t arises as follows - label the leaves of t randomly by $1, 2, \dots, n + 1$



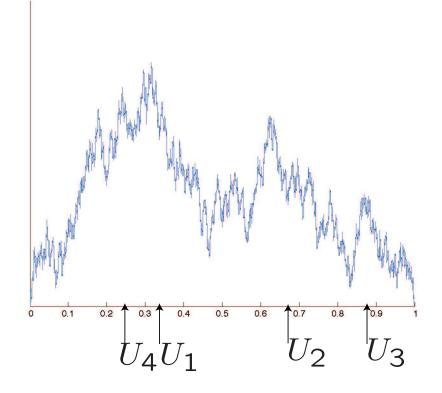
For a binary tree t with n + 1 leaves,

the *Rémy bridge* (T_1^t, \ldots, T_n^t) from \aleph to t arises as follows

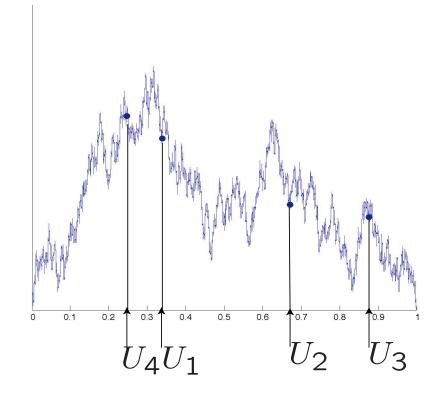
- label the leaves of t randomly by $1,2,\ldots,n+1$
- for k = 1, ..., n, let T_k^t be the (reduced binary) subtree of t spanned by the leaves labeled by 1, ..., k + 1



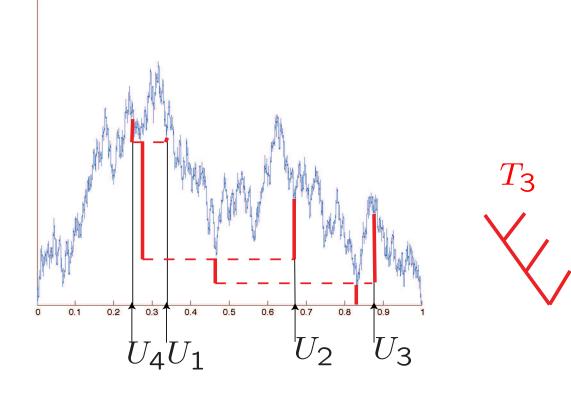
Let $B : [0, 1] \mapsto \mathbb{R}_+$ be a standard Brownian excursion, let U_1, U_2, \ldots be i.i.d. uniform in [0, 1]



For each *n* let T_n be the binary tree drawn into *B* below the points $(U_1, B(U_1)), \ldots, (U_{n+1}, B(U_{n+1}))$.

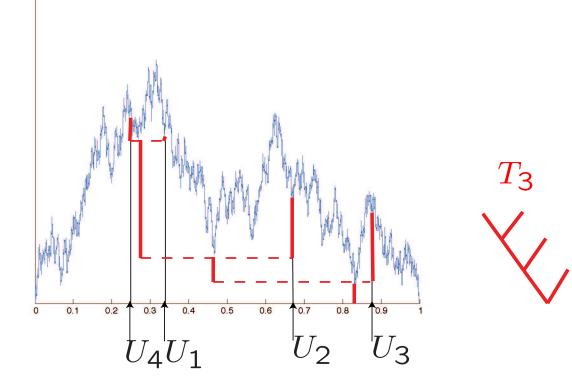


For each *n* let T_n be the binary tree drawn into *B* below the points $(U_1, B(U_1)), \ldots, (U_{n+1}, B(U_{n+1}))$.



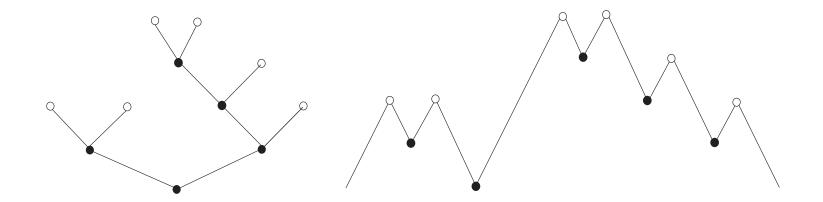
Then, randomized over B and U_1, U_2, \ldots ,

the distribution of $(T_1, T_2, ...)$ is that of the Rémy chain.

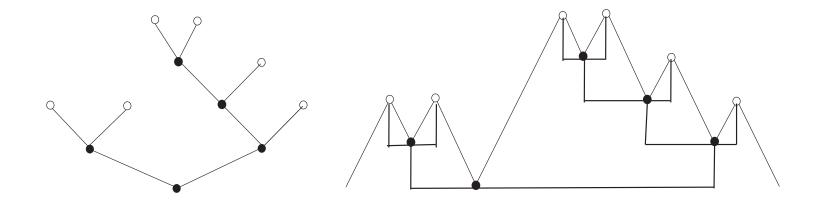


Let us discuss this first in the discrete world:

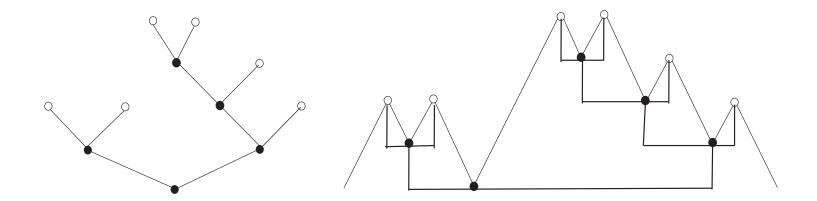
Harris coding of a binary tree with n + 1 leaves by a function $f : \{0, 1, \dots, 4n\} \rightarrow \mathbb{N}_0$



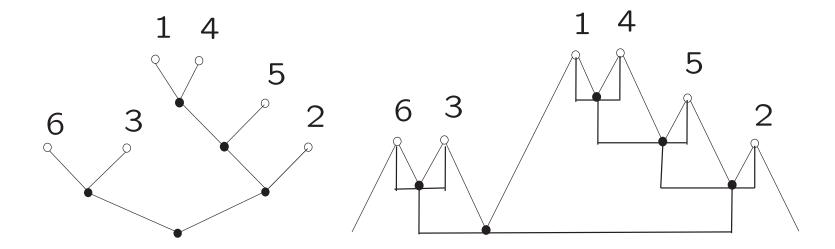
Harris coding of a binary tree with n + 1 leaves by a function $f : \{0, 1, \dots, 4n\} \rightarrow \mathbb{N}_0$



A random labeling of the leaves of t corresponds to a random labeling of the maxima of f



A random labeling of the leaves of t coresponds to a random labeling of the maxima of f



Philippe Marchal (2003) Constructing a sequence of random walks strongly converging to Brownian motion

The rescaling $u \mapsto \frac{1}{2\sqrt{2n}}F_n(u \cdot 4n)$, $u \in [0, 1]$, of the random functon F_n that codes the random tree T_n converges almost surely to a standard Brownian excursion B. The Brownian excursion *B* encodes a continuum tree \mathscr{T}^B that is rooted, is endowed with a left-right order and carries a measure that is supported by the leaves of \mathscr{T}^B .

(The unordered version of \mathscr{T}^B represents the so-called Aldous' *Continuum Random Tree*.)

Thus, Le Gall's representation of the Rémy chain corresponds to the sequence $(T_1, T_2, ...)$ of binary trees that arise through a successive i.i.d. sampling of leaves $\xi_1, \xi_2, ...$ from \mathscr{T}^B . Let $\Pi^{\mathbf{b}}$ be the distribution of the Rémy chain $(T_1, T_2, ...)$ drawn from a standard Brownian excursion B, given $B = \mathbf{b}$.

 $\Pi^{\mathbf{b}}$ is different from Π := the distribution of the Rémy chain. However,

 $\Pi^{\rm b}$ has the same Markovian backward dynamics as Π : Under $\Pi^{\rm b}$, given $T_n = \mathbf{t}$,

 (T_1, \ldots, T_n) is a Rémy bridge from \aleph to t.

In this sense, $\Pi^{\mathbf{b}}$ is an *infinite Rémy bridge distribution*.

Definition. An *infinite Rémy bridge* is a Markov chain $(T_n^{\infty})_{n \in \mathbb{N}}$ such that $T_1^{\infty} = \aleph$ and

$$\mathbb{P}(T_n^{\infty} = \mathbf{s} \mid T_{n+1}^{\infty} = \mathbf{t}) = \mathbb{P}(T_n = \mathbf{s} \mid T_{n+1} = \mathbf{t})$$

for all $n \ge 1$ and finite binary trees s, t, i.e. $(T_n^{\infty})_{n \in \mathbb{N}}$ has the same backward transition probabilities as the Rémy chain (T_n) . Fact: The infinite Rémy bridge distributions are in 1-1 correspondence with the nonnegative functions hdefined on the space of finite binary trees that are harmonic for the Rémy transition matrix and satisfy $h(\aleph) = 1$.

Here the keyword is the *h*-transform

$$\mathbb{P}(T_n^{\infty} = \mathbf{t}) = \frac{1}{h(\aleph)} \mathbb{P}(T_n = \mathbf{t})h(\mathbf{t}).$$

Facts:

- The set of infinite Rémy bridge distributions is convex.
- The distribution of an infinite Rémy bridge $(T_n^{\infty})_{n \in \mathbb{N}}$ is extremal in the set of of infinite Rémy bridge distributions if and only if $\mathscr{F}^{\infty} := \bigcap_m \sigma(T_m^{\infty}, T_{m+1}^{\infty}, \ldots)$ is trivial.
- Every infinite Rémy bridge distribution has a unique integral representation as a mixture of extremal ones.

This fits into the general theory of Gibbs specifications (H. Föllmer (1975), *Phase transition and Martin boundary*)

Example. Let Π be the distribution of the Rémy chain $(T_1, T_2, ...)$. Think of a two-stage experiment:

First take a standard Brownian excursion *B*, then

given $\{B = b\}$, sample successively from the leaves of \mathcal{T}^{b} .

With Π^{b} being the distribution of the arising sequence $(T_{1}^{b}, T_{2}^{b}, ...)$ we have the desintegration

$$\Pi(\cdot) = \int \Pi^{\mathbf{b}}(\cdot) \ \mathbf{P}(B \in \mathsf{db}).$$

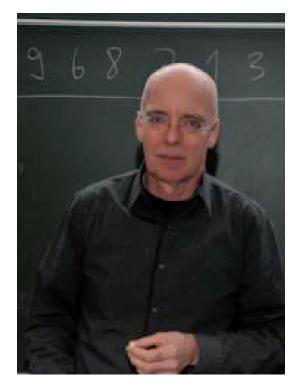
By the Hewitt-Savage 0-1 law, for $P(B \in (.))$ - almost all b, Π^{b} is \mathscr{F}^{∞} -trivial (and hence extremal). A sequence of finite binary trees t_k is said to converge in the Doob-Martin topology of the Rémy chain if the sequence of Rémy bridge distributions Π^{t_k} converges in the sense of finite-dimensional distributions.

The *Doob-Martin boundary* is then the set of all Doob-Martin limit points outside the space of *finite* binary trees. **Fact:** Every point in the D-M boundary of the Rémy chain corresponds to some infinite Rémy bridge distribution.

Questions:

1. Does every point in the D-M boundary of the Rémy chain correspond to an *extremal* infinite Rémy bridge distribution? (In more analytic terms: Is the full D-M boundary equal to the so-called *minimal* boundary ?)

2. What does the D-M boundary of the Rémy chain look like?(The latter question was asked to us by J.F. Le Gall)



Steve Evans

Rudolf Grübel

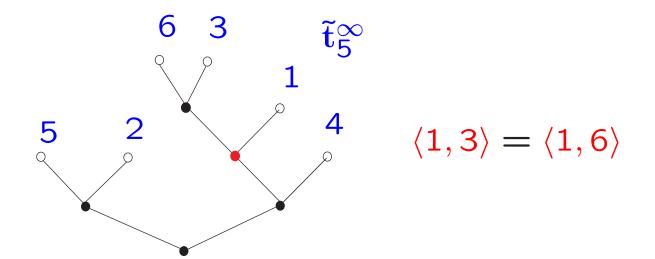
Leaf-labeled infinite Rémy bridge distributions:

Proposition [EGW17]. There is a 1-1 correspondence between the infinite Rémy bridge distributions and the leaf-labeled infinite Rémy bridge distributions, i.e. the distributions of sequences $(\widetilde{T}_n^{\infty})$ of leaf-labelled binary trees \widetilde{T}_n^{∞} whose leaf set is randomly and bijectively labeled by [n + 1], and where $\widetilde{T}_{n-1}^{\infty}$ is obtained from $\widetilde{T}_{n}^{\infty}$ 4 2 5 by removing the leaf n + 1 and its sibling and closing the (potential) gap

- as we have seen before.

The combinatorial tree encoded by a path of a leaf-labeled infinite Rémy bridge:

Let $(\tilde{\mathbf{t}}_n^{\infty})$ be a path of a leaf-labeled infinite Rémy bridge. From $(\tilde{\mathbf{t}}_n^{\infty})$ one can read off of the most recent common ancestor $\langle i, j \rangle$ of the leaves labeled by *i* and *j*.



The combinatorial tree encoded by a path of a leaf-labeled infinite Rémy bridge:

Let $(\tilde{\mathbf{t}}_n^{\infty})$ be a path of a leaf-labeled infinite Rémy bridge. From (\tilde{t}_n^{∞}) one can read off of the most recent common ancestor $\langle i, j \rangle$ of the leaves labeled by *i* and *j*. Formally, the $\langle i, j \rangle$ are equivalence classes w.r. to an equivalence relation \equiv on $\mathbb{N} \times \mathbb{N}$: two pairs of leaves $(i, j), (k, \ell)$ are equivalent if they have the same MRCA in $\tilde{\mathbf{t}}_n^{\infty}$ for $n > \max(i, j, k, \ell)$. The equivalence classes $\langle i, j \rangle$ represent all the vertices of the tree, the $\langle i, i \rangle =: i$ are singletons and represent the leaves.

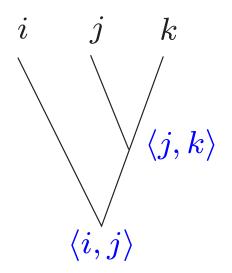
Ordering the tree encoded by (\tilde{t}_n^{∞}) :

$({f \widetilde t}_n^\infty)$ induces

a partial order "by descent" on the vertices $\langle i, j \rangle$, $\langle i, k \rangle$, ... and a left-right order on the leaves i, j, \ldots E.g. in the figure:

$$\langle i,j\rangle = \langle i,k\rangle < \langle j,k\rangle$$

$$w(i,j) = w(i,k) = w(j,k) = n$$
$$w(j,i) = w(i,k) = w(k,j) = n$$

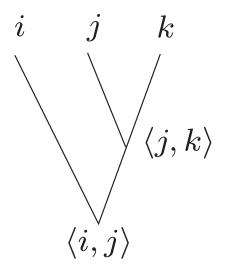


Ordering the tree encoded by (\tilde{t}_n^{∞}) :

 $({ ilde t}_n^\infty)$ induces

a partial order "by descent" on the vertices $\langle i, j \rangle$, $\langle i, k \rangle$, ... and a left-right order on the leaves i, j, ...In any case:

 $\langle i, j \rangle = \langle i, k \rangle < \langle j, k \rangle$ $\implies w(i, j) = w(i, k)$



Ordering the tree encoded by (\tilde{t}_n^{∞}) :

 $({f { ilde t}}_n^\infty)$ induces

a partial order "by descent" on the vertices $\langle i, j \rangle$, $\langle i, k \rangle$, ... and a left-right order on the leaves i, j, ...

The equivalence classes $\langle i, j \rangle$ and the two orders < and $w(\cdot, \cdot)$ in the system $\mathscr{D}^{(\tilde{\mathbf{t}}_n^{\infty})} := (\equiv, <, w)$ obey natural axioms which define what we call a didendritic system with label set \mathbb{N} ([EW20, Def. 6.1 and Prop. 6.7]) Leaf-labeled infinite Rémy bridge distributions correspond to exchangeable didendritic systems:

For a leaf-labeled infinite Rémy bridge $(\widetilde{T}_n^{\infty})$, the random didrentic system $\mathscr{D}^{(\widetilde{T}_n^{\infty})}$ is exchangeable in the sense that its distribution is invariant under finite permutations of the label set \mathbb{N} .

Conversely, to every exchangeable didendritic system there corresponds a (leaf-labeled) infinite Rémy bridge, and this corresponcence is 1-1 [EGW17, Lemma 5.12]. Extremal infinite Rémy bridge distributions correspond to ergodic exchangeable didendritic systems [EGW17, Prop. 5.19]

Definition: An exchangeable didentritic system \mathscr{D} is ergodic : \iff its distribution is trivial

on the σ -field of finite-permutation-invariant events.

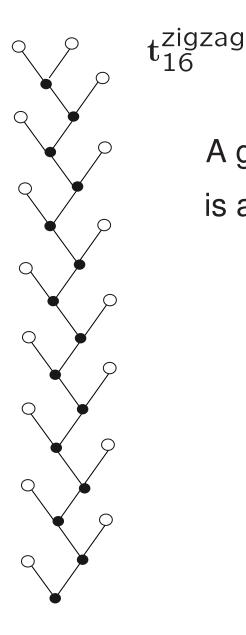
By a criterion of Aldous on the ergodicity of exchangeable arrays, \mathscr{D} is ergodic iff for all finite disjoint $H_1, \ldots, H_s \subset \mathbb{N}$ the restrictions $\mathscr{D}_{H_1}, \ldots, \mathscr{D}_{H_s}$ are independent. The elements of the D-M-boundary constitute extremal infinite bridges [EGW17, Cor. 5.21] : D-M convergence of (t_k) corresponds to f.d.d. convergence of $(\mathscr{D}^{\tilde{t}_k})$ to an exchangeable didentritic system \mathscr{D} . We apply Aldous' criterion to \mathscr{D} .

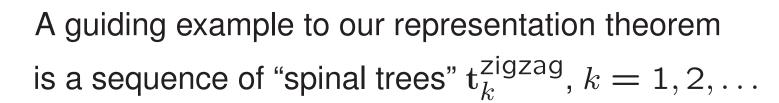
Let ℓ be so large that $H_1 \cup \cdots \cup H_s \subset [l+1]$. The restrictions $\mathscr{D}_{H_1}^{\tilde{\mathfrak{t}}_k}, \ldots, \mathscr{D}_{H_s}^{\tilde{\mathfrak{t}}_k}$ can be generated from the first $\ell + 1$ draws in a drawing without replacement from the leaves of \mathfrak{t}_k . For $k \to \infty$, this can be coupled with high probability to a drawing *with* replacement. For the latter, the resulting restrictions to H_1, \ldots, H_s are clearly independent. \Box We just saw:

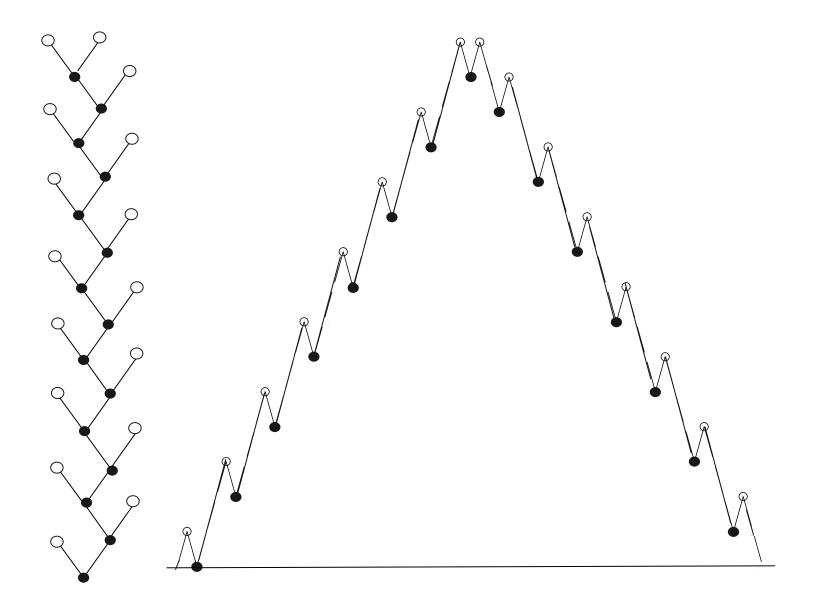
 Every point in the D-M boundary corresponds to an infinite Rémy bridge distribution and thus to an exchangeable didentritic system.

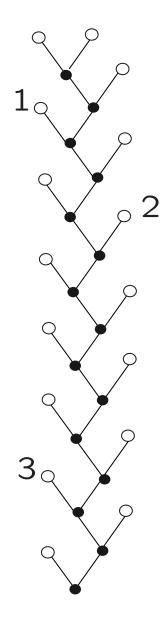
2. Every point in the D-M boundary is extremal (resp. ergodic). (In more analytic terms: The full D-M boundary is equal to the minimal boundary)

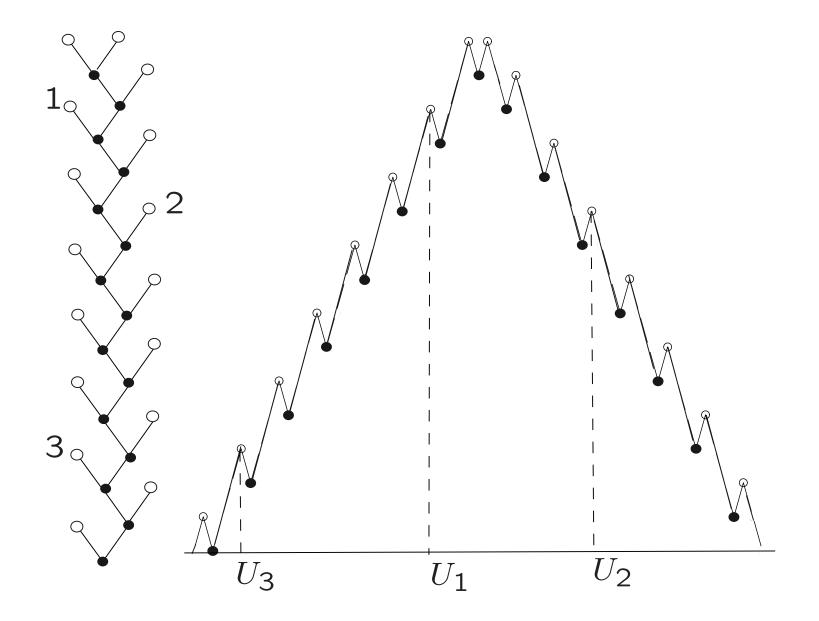
Le Gall's question: What does the D-M-boundary of the Rémy chain look like? thus asks for a representation of the ergodic exchangeable didentritic systems.

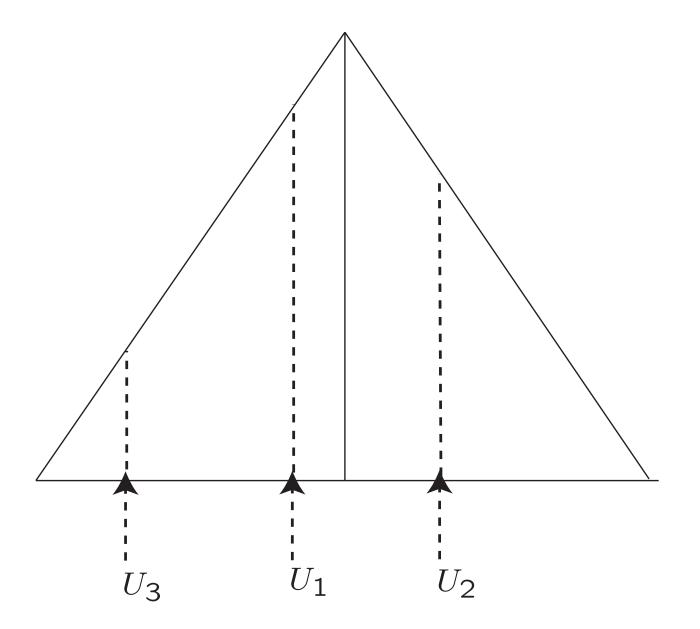


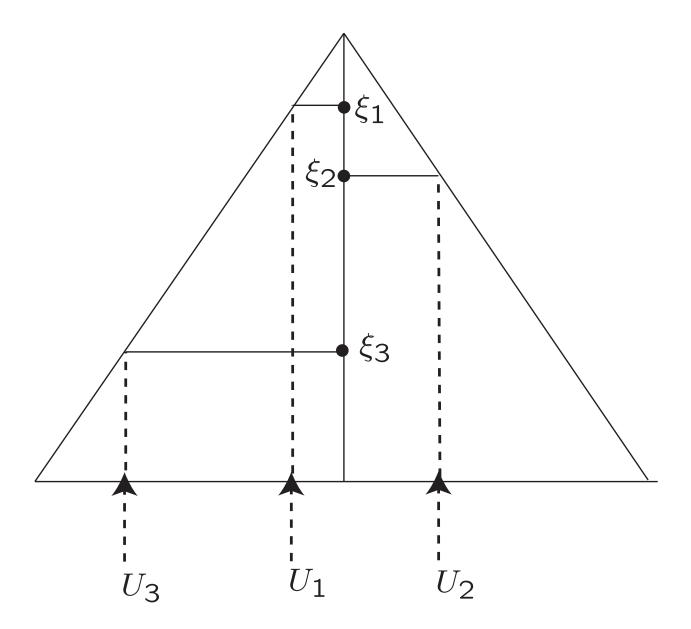


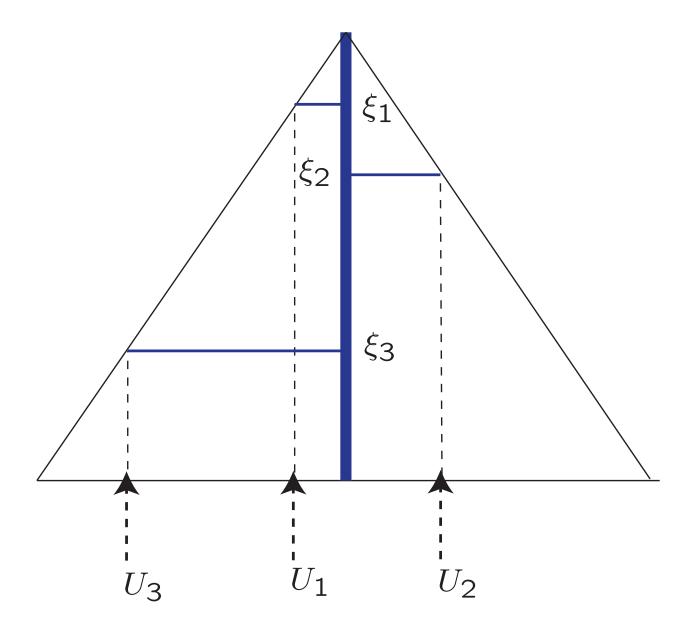


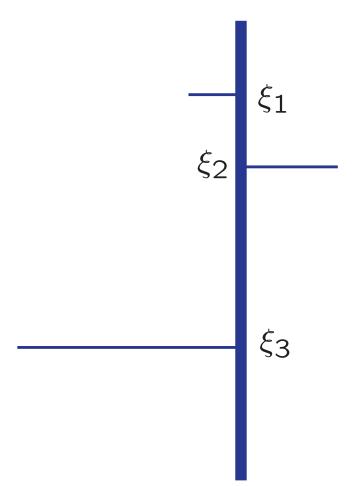












a vertical *core*, with Lebesgue measure as sampling measure, and a continuum of isolated leaves dangling off randomly to left or right

Measuring the set of leaves of an ergodic exchangeable didendritic system *D*

Fix $i, j \in \mathbb{N}$ (and think of *i* and *j* as two leaves). How big is the fraction of leaves "between" *i* and *j*, i.e. above $\langle i, j \rangle$?

$$\begin{split} I_p &:= \mathbf{1}_{\{\langle i,j \rangle \leq \langle p,p \rangle\}}, \quad p \in \mathbb{N} \\ \text{is an exchangeable sequence of r.v.'s.} \\ d(i,j) &:= \lim_{n \to \infty} \frac{1}{n} \sum_{p=1}^{n} I_p \quad \text{exists a.s.} \\ \text{(by de Finetti), is a.s. constant (by ergodicity)} \quad \underbrace{\langle i,j \rangle} \end{split}$$

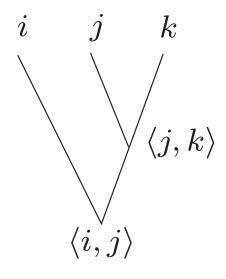
Embedding an ergodic exchangeable DDS \mathscr{D} into an ultrametric tree T:

$$d(i,j) := \lim_{n \to \infty} \frac{1}{n} \sum_{p=1}^{n} \mathbf{1}_{\{\langle i,j \rangle \le \langle p,p \rangle\}},$$
$$i,j \in \mathbb{N}$$

is an exchangeable ultrametric on \mathbb{N} :

$$d(i,j) = \max\{d(i,k), d(j,k)\}$$

Interpret $\frac{1}{2}d(i, j)$ as the depth of the MRCA of the images of *i* and *j*, with an embedding $\mathscr{J} : \mathscr{D} \to \mathbf{T}$ into an ultrametric tree \mathbf{T} .



Embedding of an ergodic exchangeable DDS \mathscr{D} into a metric measure space (S, d, μ)

Let ${\bf S}$ be the closure of the subtree of ${\bf T}$

that is spanned by $\{\mathscr{J}(\langle i, j \rangle) : i \neq j \in \mathbb{N}\}.$

 (\mathbf{S}, d) is an \mathbb{R} -tree and

 $\mu(\{x \in \mathbf{S} : \mathscr{J}(\langle i, j \rangle) \le x\}) := d(i, j)$

defines a diffuse probability measure μ on S.

Theorem [EGW17] *All* extremal infinite Rémy bridges arise through a successive sampling of leaves ξ_1, ξ_2, \ldots from some complete separable rooted \mathbb{R} -tree S, equipped with a diffuse measure μ (the "sampling measure") and a (randomized) left-right ordering given by a measurable function $W : (S \times [0, 1])^2 \rightarrow \{ \frown, \frown \}$, and random variables U_1, U_2, \ldots that are independent and uniform on [0, 1]. Here,

$$W((\xi_i, U_i), (\xi_j, U_j)) = \curvearrowright$$

prescribes that the *i*-th sampled leaf is to the left of the common ancestor of leaves i and j.

Here, S, μ and W satisfy the consistency conditions:

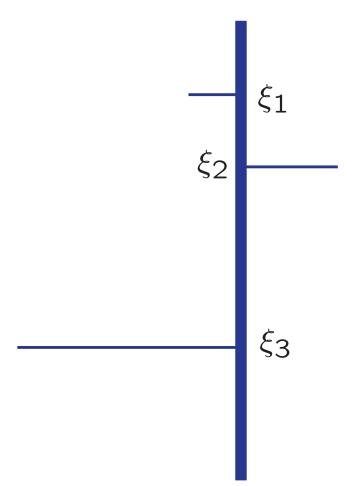
(A)The tree S is "almost binary":

Almost surely for distinct $i, j, k \in \mathbb{N}$, precisely one of

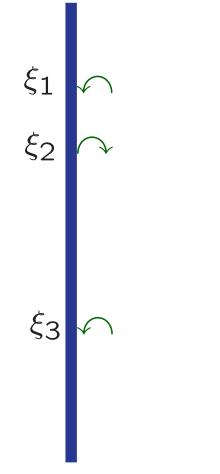
(i)
$$\xi_i \land \xi_j = \xi_i \land \xi_k \prec \xi_j \land \xi_k,$$

(ii) $\xi_j \land \xi_k = \xi_j \land \xi_i \prec \xi_k \land \xi_i,$
(iii) $\xi_k \land \xi_i = \xi_k \land \xi_j \prec \xi_i \land \xi_j$ holds.x

(B) The left-right ordering is consistent along the tree: $\begin{cases}
W(\xi_i, U_i, \xi_j, U_j) = & \iff W(\xi_j, U_j, \xi_i, U_i) = & \\
\xi_i \land \xi_j = \xi_i \land \xi_k \prec \xi_j \land \xi_k \\ \implies W(\xi_i, U_i, \xi_j, U_j) = W(\xi_i, U_i, \xi_k, U_k)
\end{cases}$



a vertical *core*, with Lebesgue measure as sampling measure, and a continuum of isolated leaves dangling off randomly to left or right



$$S = [0, \frac{1}{2}]$$

 $\mu \text{:=} \operatorname{Lebesgue}$ measure on S

 $W(\xi_i, U_i, \xi_j, U_j) = \curvearrowright$ if ξ_i falls below ξ_j and $U_i < \frac{1}{2}$

A different Markov chain – and the same boundary

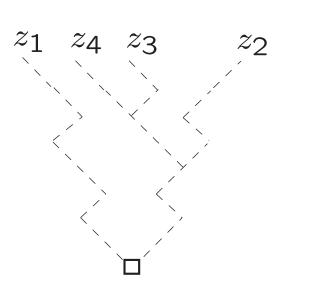
Let ν be a diffuse measure on $\{0, 1\}^{\mathbb{N}}$.

The PATRICIA(ν)-chain is a full binary tree - valued Markov chain built from an i.i.d. sequence Z_1, Z_2, \ldots of infinite binary words with common distribution ν

as follows:

For distinct infinite binary words z_1, z_2, \ldots , the **radix sort tree** $s = R(z_1, \ldots, z_n)$ is the minimal binary tree whose *n* leaves correspond to initial segments of z_1, \ldots, z_n .

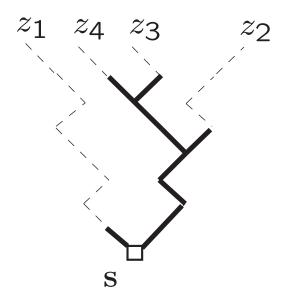
Example (with n = 4):



- $z_1 = 00100100...$
- $z_2 = 11011011...$
 - $z_3 = 11010010...$
 - $z_4 = 11010000...$

For distinct infinite binary words z_1, \ldots, z_n , the **radix sort tree** $s = R(z_1, \ldots, z_n)$ is the minimal binary tree whose *n* leaves correspond to initial segments of z_1, \ldots, z_n .

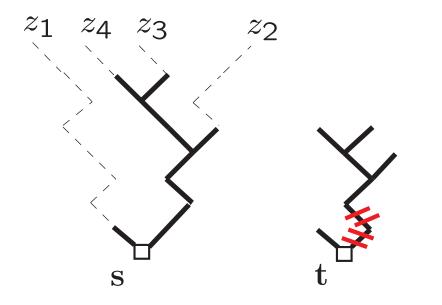
Example (with n = 4):



- $z_1 = 00100100...$
- $z_2 = 11011011...$
- $z_3 = 11010010...$
- $z_4 = 11010000...$

The PATRICIA contraction Φ maps the radix sort tree s into the full binary tree t = $\Phi(s)$ by deleting the out-degree 1 vertices and closing up the gaps.

Example (with n = 4):



t := $\Phi(\mathbf{R}(z_1, ..., z_n))$ is the **PATRICIA tree** obtained from the distinct infinite binary words $z_1, ..., z_n$. The PATRICIA contraction Φ maps the radix sort tree s into the full binary tree t = $\Phi(s)$ by deleting the out-degree 1 vertices and closing up the gaps.

Example (with n = 4):



t := $\Phi(\mathbf{R}(z_1, ..., z_n))$ is the **PATRICIA tree** obtained from the distinct infinite binary words $z_1, ..., z_n$.

Radix Sort Chains and PATRICIA chains

Let ν be a diffuse measure on $\{0, 1\}^{\mathbb{N}}$ and Z_1, Z_2, \ldots be i.i.d. with distribution ν .

Fact ([EW20, Prop. 3.7]) The radix sort chain ${}^{\nu}R_n := R_n(Z_1, \ldots, Z_n), n = 1, 2, \ldots$, and the PATRICIA chain ${}^{\nu}P_n := P_n(Z_1, \ldots, Z_n), n = 1, 2, \ldots$ are both Markov chains.

This can be seen from their time reversal. E.g., a backward step of the PATRICIA chain is just an inverse Rémy move.

Fact (Corollary to [EW20, Lemma 3.13]): $\mathbb{P}(^{\nu}P_n = \mathbf{t}) > 0$ for any full binary tree \mathbf{t} with n leaves.

Thus the previous observation (on the backward transitions) has a nice consequence:

The D-M boundary of the PATRICIA(ν)-chain equals the D-M boundary of the Rémy chain !

Infinite PATRICIA(ν)-bridges are the same as infinite Rémy bridges.

Fact: $\mathbf{R}(z_1, \dots, z_n) = \mathbf{R}(z_{\sigma(1)}, \dots, z_{\sigma(n)})$ for any permutation of [n], hence by Hewitt-Savage the distribution of $({}^{\nu}P_n)_{n\in\mathbb{N}}$ is trivial on the tail field \mathscr{F}^{∞} .

Consequently, any PATRICIA(ν)-chain ($^{\nu}P_n$) $_{n\in\mathbb{N}}$ is an extremal PATRICIA (or Rémy) bridge.

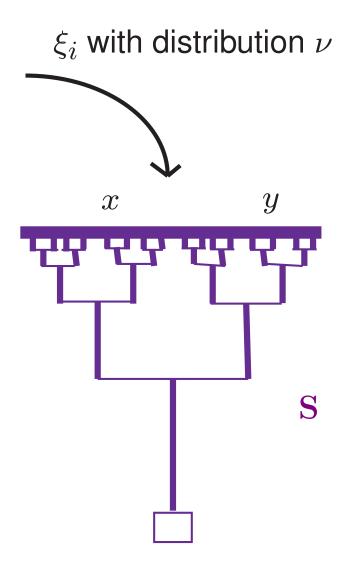
Because of the just stated fact that

 $\mathbb{P}(^{\nu}P_n = \mathbf{t}) > 0$ for any full binary tree \mathbf{t} with n leaves, the above described "zigzag bridge" (though being an extremal Rémy (and thus also PATRICIA)-bridge) cannot be a PATRICIA(ν)-chain. Being an extremal Rémy bridge, any PATRICIA(ν)-chain must have a sampling representation in terms of some (S, d, μ). This is as follows:

- S:= completion of the tree with vertices $\in \bigcup_{n \in \mathbb{N}_0} \{0, 1\}^n$,
- ultrametric distance d given by

$$d(v_1 \dots v_n, v_1 \dots v_n v_{n+1}) := 2^{-n-2}$$

• sampling measure $\mu := \nu$ on the tree boundary $\{0, 1\}^{\infty}$.



S... the complete ultrametric binary tree with $d(\Box, \text{leaves}) = \frac{1}{2}$

 ν is a diffuse probability measure on the leaves of S.

 $W(\xi_i, U_i, \xi_j, U_j) = \frown$

if ξ_i falls to the left of ξ_j

The Doob-Martin boundary of the radix-sort chain

Reference measure $\gamma :=$ fair coin tossing measure on $\{0, 1\}^{\infty}$. For any diffuse measure ν on $\{0, 1\}^{\infty}$, the radix-sort(ν)-chain ... is a radix-sort(γ)-bridge (because it has the radix-sort(γ) backward dynamics)

... and is even an *extremal* radix-sort(γ)-bridge (because its tail field is trivial due to the Hewitt-Savage 0-1 law). Theorem (EW17)

- a) Every extremal radix-sort(γ)-bridge
- is a radix-sort(ν)-chain for some diffuse ν .
- (Consequently, the radix-sort(ν)-chains
- are *precisely* the extremal radix-sort(γ)-bridges.)
- b) Every limit of a sequence of radix-sort(γ)-bridges from \Box to t_m , $m \to \infty$, is an extremal radix-sort(γ)-bridge. (In other words: The minimal boundary equals the full D-M boundary.)

Theorem (EW17)

- a) Every extremal radix-sort(γ)-bridge
- is a radix-sort(ν)-chain for some diffuse ν .

Idea of proof: Let (R_n^{∞}) be an extremal RST bridge, and (\tilde{R}_n^{∞}) its labeled version. The latter induces a random sequence $(\langle i \rangle)_{i \in \mathbb{N}}$ of leaves of the complete binary tree. By exchangeability of this sequence and by extremality of (R_n) , the $\langle i \rangle$, i = 1, 2, ..., are i.i.d.

For their distribution ν we have $(R_n^{\infty}) \stackrel{d}{=} ({}^{\nu}R_n)$. \Box

Theorem (EW17)

b) Every limit of a sequence of radix-sort(γ)-bridges

from \Box to $\mathbf{t}_m, m \to \infty$, is an extremal radix-sort(γ)-bridge. Idea of proof: Let (R_n^∞) be the limit of a sequence of radix-sort(γ) bridges from \Box to $\mathbf{t}_m, m \to \infty$,

and (\tilde{R}_n^{∞}) its labeled version. It suffices to show that the associated exchangeable sequence $(\langle i \rangle)_{i \in \mathbb{N}}$ of leaves of the complete binary tree is ergodic. For this, we again use the ergodicity criterion of Aldous, this time with the array

 $A_{ij} := \langle i \rangle \land \langle j \rangle \quad \dots \text{ the "most recent common ancestor"}$ of the leaves $\langle i \rangle$ and $\langle j \rangle$. \Box To summarize:

The D-M boundary of the radix-sort tree chain with fair coin tossing strings as input is in 1-1 correspondence to the radix-sort tree chains with i.i.d. (ν)-input, with ν a diffuse measure on $\{0, 1\}^{\infty}$. [EGW17] S. N. Evans, R. Grübel and A.W., Doob-Martin boundary of Rémy's tree growth chain. Ann. Probab. 45 (2017), 225-277, arXiv:1411.2526 [math.PR]

[EW17] S.N. Evans and A.W., Radix sort trees in the large. Electron. Commun. Probab. 22 (2017)

[EW20], S.N. Evans and A.W., PATRICIA bridges. In: Genealogies of Interacting Particle Systems, eds. M. Birkner, R. Sun and J. Swart, pp. 233-267, World Scientific 2020, arXiv:1806.06256 [math.PR]