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Rémy’s tree growth chain

Jean-Luc Rémy (1985),

Un procédé iteratif de denobrement d’arbres binaires

et son application à leur generation aléatoire



One step of Rémy’s tree-valued Markov chain:



Choose a vertex at random



Put the offspring tree of the chosen vertex aside



Attach the 2-leaf tree ℵ, rooted in the chosen vertex

ℵ



Choose one of the two leaves of ℵ at random

ℵ



Attach the offspring tree at the the chosen leaf of ℵ



Thus, one additional leaf has been created





Definition:

The Rémy chain

is a binary-tree valued Markov chain (T1, T2, . . .)

starting in

and with the following transition mechanism:



Definition:

The Rémy chain

is a binary-tree valued Markov chain (T1, T2, . . .)

starting in

and with the following transition mechanism:

Given Tn = t, choose a vertex v of t at random,

put the offspring tree of v aside,

insert 2 children of v,

choose one of them at random,

and re-attach to it the previous offspring tree of v.



































Facts (proved by induction)

Tn is uniformly distributed on the set of binary trees

a with n+1 leaves.



Facts (proved by induction):

Tn is uniformly distributed on the set of binary trees

a with n+1 leaves. This set has cardinality Cn = 1
n+1

(
2n
n

)
.

t

one realisation of T5



Facts (proved by induction):

For each n, given Tn = t, the “age order” of the leaves of t

a is completely random.

t



Facts (proved by induction):

For each n, given Tn = t, the “age order” of the leaves of t

a is completely random.
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The age order

of the leaves

determines the path

from ℵ to t
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Thus, for given t,

we obtain the random bridge from ℵ to t

t



Thus, for given t,

we obtain the random bridge from ℵ to t

through a random labeling of the leaves of t

t
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which then determines

the path from ℵ to t

as we just saw.



For a binary tree t with n+1 leaves,

the Rémy bridge (T t
1, . . . T

t
n) from ℵ to t arises as follows

- label the leaves of t randomly by 1,2, . . . , n+1

- for k = 1, . . . , n, let T t
k be the subtree of t

a spanned by the leaves labeled by 1, . . . , k +1

t



For a binary tree t with n+1 leaves,

the Rémy bridge (T t
1, . . . T

t
n) from ℵ to t arises as follows

- label the leaves of t randomly by 1,2, . . . , n+1

- for k = 1, . . . , n, let T t
k be the subtree of t

a spanned by the leaves labeled by 1, . . . , k +1
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For a binary tree t with n+1 leaves,

the Rémy bridge (T t
1, . . . T

t
n) from ℵ to t arises as follows

- label the leaves of t randomly by 1,2, . . . , n+1

- for k = 1, . . . , n, let T t
k be the (reduced binary) subtree of t

a spanned by the leaves labeled by 1, . . . , k +1

t
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Le Gall (1999) noticed the following fact:

Let B : [0,1] 7→ R+ be a standard Brownian excursion,

let U1, U2, . . . be i.i.d. uniform in [0,1]

U4U1 U2 U3



Le Gall (1999) noticed the following fact:

For each n let Tn be the binary tree drawn into B

below the points (U1, B(U1)), . . . , (Un+1, B(Un+1)).

U4U1 U2 U3



Le Gall (1999) noticed the following fact:

For each n let Tn be the binary tree drawn into B

below the points (U1, B(U1)), . . . , (Un+1, B(Un+1)).

U4U1 U2 U3

T3



Le Gall (1999) noticed the following fact:

Then, randomized over B and U1, U2, . . .,

the distribution of (T1, T2, . . .) is that of the Rémy chain.

U4U1 U2 U3

T3



Let us discuss this first in the discrete world:



Harris coding of a binary tree with n+1 leaves

by a function f : {0,1, . . . ,4n} → N0



Harris coding of a binary tree with n+1 leaves

by a function f : {0,1, . . . ,4n} → N0



A random labeling of the leaves of t

corresponds to a random labeling of the maxima of f



A random labeling of the leaves of t

coresponds to a random labeling of the maxima of f
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Philippe Marchal (2003) Constructing a sequence of

random walks strongly converging to Brownian motion

The rescaling u 7→ 1
2
√
2n

Fn(u · 4n), u ∈ [0,1],

of the random functon Fn that codes the random tree Tn

converges almost surely to a standard Brownian excursion B.



The Brownian excursion B encodes a continuum tree T B

that is rooted, is endowed with a left-right order

and carries a measure that is supported by the leaves of T B.

(The unordered version of T B represents the so-called

Aldous’ Continuum Random Tree.)

Thus, Le Gall’s representation of the Rémy chain corresponds

to the sequence (T1, T2, ...) of binary trees

that arise through a successive i.i.d. sampling of leaves ξ1, ξ2, . . .

from T B.



Let Πb be the distribution of the Rémy chain (T1, T2, ...)

drawn from a standard Brownian excursion B, given B = b.

Πb is different from Π := the distribution of the Rémy chain.

However,

Πb has the same Markovian backward dynamics as Π:

Under Πb, given Tn = t,

(T1, . . . , Tn) is a Rémy bridge from ℵ to t.

In this sense, Πb is an infinite Rémy bridge distribution.



Definition. An infinite Rémy bridge is a Markov chain (T∞
n )n∈N

such that T∞
1 = ℵ and

P(T∞
n = s | T∞

n+1 = t) = P(Tn = s | Tn+1 = t)

AAAAAAAAAAA for all n ≥ 1 and finite binary trees s, t,

i.e. (T∞
n )n∈N has the same backward transition probabilities

as the Rémy chain (Tn).



Fact: The infinite Rémy bridge distributions

are in 1-1 correspondence with the nonnegative functions h

BBBBBBBB defined on the space of finite binary trees

that are harmonic for the Rémy transition matrix

and satisfy h(ℵ) = 1.

Here the keyword is the h-transform

AAAAAAP(T∞
n = t) =

1

h(ℵ)
P(Tn = t)h(t).



Facts:

• The set of infinite Rémy bridge distributions is convex.

• The distribution of an infinite Rémy bridge (T∞
n )n∈N is

extremal in the set of of infinite Rémy bridge distributions

if and only if F∞ :=
⋂

m
σ(T∞

m , T∞
m+1, . . .) is trivial.

• Every infinite Rémy bridge distribution has a

unique integral representation as a mixture of extremal ones.

This fits into the general theory of Gibbs specifications

(H. Föllmer (1975), Phase transition and Martin boundary)



Example. Let Π be the distribution of the Rémy chain (T1, T2, ...).

Think of a two-stage experiment:

First take a standard Brownian excursion B, then

given {B = b}, sample sucessively from the leaves of T b.

With Πb being the distribution of the arising sequence (Tb
1 , T

b
2 , ...)

we have the desintegration

AAAAAAAAA Π(·) =
∫
Πb(·) P(B ∈ db).

By the Hewitt-Savage 0-1 law, for P(B ∈ (.))- almost all b,

Πb is F∞-trivial (and hence extremal).



A sequence of finite binary trees tk is said

to converge in the Doob-Martin topology of the Rémy chain

if the sequence of Rémy bridge distributions Πtk

converges in the sense of finite-dimensional distributions.

The Doob-Martin boundary is then the set

of all Doob-Martin limit points

outside the space of finite binary trees.



Fact: Every point in the D-M boundary of the Rémy chain

corresponds to some infinite Rémy bridge distribution.

Questions:

1. Does every point in the D-M boundary of the Rémy chain

correspond to an extremal infinite Rémy bridge distribution?

(In more analytic terms: Is the full D-M boundary equal to the

so-called minimal boundary ?)

2. What does the D-M boundary of the Rémy chain look like?

(The latter question was asked to us by J.F. Le Gall)



AAASteve Evans Rudolf Grübel



Leaf-labeled infinite Rémy bridge distributions:

Proposition [EGW17]. There is a 1-1 correspondence between

the infinite Rémy bridge distributions and

the leaf-labeled infinite Rémy bridge distributions, i.e. the dis-

tributions of sequences (T̃∞
n ) of leaf-labelled binary trees T̃∞

n

whose leaf set is randomly and

bijectively labeled by [n+1],

and where T̃∞
n−1 is obtained from T̃∞

n

by removing the leaf n+1 and its sibling

and closing the (potential) gap

- as we have seen before.

T̃∞
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The combinatorial tree encoded by a path

of a leaf-labeled infinite Rémy bridge:

Let (̃t∞n ) be a path of a leaf-labeled infinite Rémy bridge. From

(̃t∞n ) one can read off of the most recent common

ancestor 〈i, j〉 of the leaves labeled by i and j.

t̃∞5
6
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3

1

5 〈1,3〉 = 〈1,6〉



The combinatorial tree encoded by a path

of a leaf-labeled infinite Rémy bridge:

Let (̃t∞n ) be a path of a leaf-labeled infinite Rémy bridge. From

(̃t∞n ) one can read off of the most recent common

ancestor 〈i, j〉 of the leaves labeled by i and j.

Formally, the 〈i, j〉 are equivalence classes

w.r. to an equivalence relation ≡ on N× N:

two pairs of leaves (i, j), (k, ℓ) are equivalent if

they have the same MRCA in t̃∞n for n > max(i, j, k, ℓ).

The equivalence classes 〈i, j〉 represent all the vertices of the

tree, the 〈i, i〉 =: i are singletons and represent the leaves.



Ordering the tree encoded by (̃t∞n ):

(̃t∞n ) induces

a partial order “by descent” on the vertices 〈i, j〉, 〈i, k〉, . . .
and a left-right order on the leaves i, j, . . .

E.g. in the figure:

〈i, j〉 = 〈i, k〉< 〈j, k〉

w(i, j) = w(i, k) = w(j, k)=y

w(j, i) = w(i, k) = w(k, j) =x

i k

〈i, j〉

〈j, k〉

j



Ordering the tree encoded by (̃t∞n ):

(̃t∞n ) induces

a partial order “by descent” on the vertices 〈i, j〉, 〈i, k〉, . . .
and a left-right order on the leaves i, j, . . .

In any case:

〈i, j〉 = 〈i, k〉 < 〈j, k〉

AAA=⇒ w(i, j) = w(i, k)

i k

〈i, j〉

〈j, k〉

j



Ordering the tree encoded by (̃t∞n ):

(̃t∞n ) induces

a partial order “by descent” on the vertices 〈i, j〉, 〈i, k〉, . . .
and a left-right order on the leaves i, j, . . .

The equivalence classes 〈i, j〉 and the two orders < and w(·, ·)
in the system D (̃t∞n ) := (≡, <, w) obey natural axioms

which define what we call a didendritic system with label set N

([EW20, Def. 6.1 and Prop. 6.7])



Leaf-labeled infinite Rémy bridge distributions

correspond to exchangeable didendritic systems:

For a leaf-labeled infinite Rémy bridge (T̃∞
n ),

the random didrentic system D(T̃∞
n ) is exchangeable

in the sense that its distribution is invariant

under finite permutations of the label set N.

Conversely, to every exchangeable didendritic system

there corresponds a (leaf-labeled) infinite Rémy bridge,

and this corresponcence is 1-1 [EGW17, Lemma 5.12].



Extremal infinite Rémy bridge distributions correspond

to ergodic exchangeable didendritic systems

[EGW17, Prop. 5.19]

Definition: An exchangeable didentritic system D is ergodic :

⇐⇒ its distribution is trivial

AAAAAon the σ-field of finite-permutation-invariant events.

By a criterion of Aldous on the ergodicity of exchangeable

arrays, D is ergodic iff for all finite disjoint H1, . . . , Hs ⊂ N

the restrictions DH1
, . . . ,DHs

are independent.



The elements of the D-M-boundary constitute

extremal infinite bridges [EGW17, Cor. 5.21] :

D-M convergence of (tk) corresponds to f.d.d. convergence

of
(
D t̃k

)
to an exchangeable didentritic system D .

We apply Aldous’ criterion to D .

Let ℓ be so large that H1∪ · · · ∪Hs ⊂ [l+1]. The restrictions

D
t̃k
H1

, . . . ,D
t̃k
Hs

can be generated from the first ℓ+1 draws

in a drawing without replacement from the leaves of tk.

For k → ∞, this can be coupled with high probability

to a drawing with replacement. For the latter, the resulting

restrictions to H1, . . . , Hs are clearly independent. �



We just saw:

1. Every point in the D-M boundary corresponds

to an infinite Rémy bridge distribution and thus

to an exchangeable didentritic system.

2. Every point in the D-M boundary is extremal (resp. ergodic).

(In more analytic terms: The full D-M boundary is equal to the

minimal boundary )

Le Gall’s question: What does the D-M-boundary of the Rémy

chain look like? thus asks for a representation of the

ergodic exchangeable didentritic systems.



t
zigzag
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A guiding example to our representation theorem

is a sequence of “spinal trees” tzigzagk , k = 1,2, . . .
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U3 U1 U2

ξ1

ξ2

ξ3



U3 U1 U2

ξ1

ξ2

ξ3



ξ1

ξ2

ξ3

a vertical core,

with Lebesgue measure as

sampling measure,

and a continuum of

isolated leaves dangling off

randomly to left or right



Measuring the set of leaves

of an ergodic exchangeable didendritic system D

Fix i, j ∈ N (and think of i and j as two leaves). How big

is the fraction of leaves “between” i and j, i.e. above 〈i, j〉?

Ip := 1{〈i,j〉≤〈p,p〉}, p ∈ N

is an exchangeable sequence of r.v.’s.

d(i, j) := lim
n→∞

1

n

n∑

p=1
Ip exists a.s.

(by de Finetti), is a.s. constant (by ergodicity)

i j

〈i, j〉

p



Embedding an ergodic exchangeable DDS D

into an ultrametric tree T:

d(i, j) := lim
n→∞

1

n

n∑

p=1
1{〈i,j〉≤〈p,p〉},

AAA i, j ∈ N

is an exchangeable ultrametric on N:

d(i, j) = max{d(i, k), d(j, k)}

Interpret 1
2d(i, j) as the depth of the MRCA

of the images of i and j, with an embedding

J : D → T into an ultrametric tree T.

i k

〈i, j〉

〈j, k〉

j



Embedding of an ergodic exchangeable DDS D

into a metric measure space (S, d, µ)

Let S be the closure of the subtree of T

AAAAAAAAAA that is spanned by {J (〈i, j〉) : i 6= j ∈ N}.

(S, d) is an R-tree and

AAAAAAAµ({x ∈ S : J (〈i, j〉) ≤ x}) := d(i, j)

defines a diffuse probability measure µ on S.



Theorem [EGW17] All extremal infinite Rémy bridges arise

through a successive sampling of leaves ξ1, ξ2, . . . from some

complete separable rooted R-tree S, equipped with a diffuse

measure µ (the “sampling measure”) and a (randomized)

left-right ordering given by a measurable function

W : (S×[0,1])2 → {y,x}, and random variables U1, U2, . . .

that are independent and uniform on [0,1]. Here,

AAAAAAAAAAA W ((ξi, Ui), (ξj, Uj)) =y

prescribes that the i-th sampled leaf is to the left of the com-

mon ancestor of leaves i and j.



Here, S, µ and W satisfy the consistency conditions:

(A)The tree S is “almost binary”:

Almost surely for distinct i, j, k ∈ N, precisely one of

(i)ii ξi f ξj = ξi f ξk ≺ ξj f ξk,

(ii)i ξj f ξk = ξj f ξi ≺ ξk f ξi,

(iii) ξk f ξi = ξk f ξj ≺ ξi f ξj holds.x

(B) The left-right ordering is consistent along the tree:

(∗)





W (ξi, Ui, ξj, Uj) =y ⇐⇒ W (ξj, Uj, ξi, Ui) =x

A

ξi f ξj = ξi f ξk ≺ ξj f ξk

AAAAAAAAAA =⇒ W (ξi, Ui, ξj, Uj) = W (ξi, Ui, ξk, Uk)



ξ1

ξ2

ξ3

a vertical core,

with Lebesgue measure as

sampling measure,

and a continuum of

isolated leaves dangling off

randomly to left or right



ξ1

ξ2

ξ3 x

x

y
S = [0, 12]

µ:= Lebesgue measure on S

W (ξi, Ui, ξj, Uj) =y

AAif ξi falls below ξj and Ui <
1
2



A different Markov chain – and the same boundary

Let ν be a diffuse measure on {0,1}N.

The PATRICIA(ν)-chain is a

full binary tree - valued Markov chain built from an

i.i.d. sequence Z1, Z2, . . . of infinite binary words

with common distribution ν

as follows:



For distinct infinite binary words z1, z2, . . ., the radix sort tree

s = R(z1, . . . , zn) is the minimal binary tree whose n leaves

correspond to initial segments of z1, . . . , zn.

Example (with n = 4):

z1 z4 z3 z2

s

AAAAA

z1 = 00100100 . . .

z2 = 11011011 . . .

z3 = 11010010 . . .

z4 = 11010000 . . .



For distinct infinite binary words z1, . . . , zn, the radix sort tree

s = R(z1, . . . , zn) is the minimal binary tree whose n leaves

correspond to initial segments of z1, . . . , zn.

Example (with n = 4):

z1 z4 z3 z2

s

AAAAA

z1 = 00100100 . . .

z2 = 11011011 . . .

z3 = 11010010 . . .

z4 = 11010000 . . .



The PATRICIA contraction Φ maps the radix sort tree s into the

full binary tree t = Φ(s) by deleting the out-degree 1 vertices

and closing up the gaps.

Example (with n = 4):

z1 z4 z3 z2

s t

t := Φ(R(z1, . . . , zn)) is the

PATRICIA tree obtained from

the distinct infinite binary words

z1, . . . , zn.



The PATRICIA contraction Φ maps the radix sort tree s into the

full binary tree t = Φ(s) by deleting the out-degree 1 vertices

and closing up the gaps.

Example (with n = 4):

z1 z4 z3 z2

s t

t := Φ(R(z1, . . . , zn)) is the

PATRICIA tree obtained from

the distinct infinite binary words

z1, . . . , zn.



Radix Sort Chains and PATRICIA chains

Let ν be a diffuse measure on {0,1}N

and Z1, Z2, . . . be i.i.d. with distribution ν.

Fact ([EW20, Prop. 3.7])

The radix sort chain νRn := Rn(Z1, . . . , Zn), n = 1,2, . . .,

and the PATRICIA chain νPn := Pn(Z1, . . . , Zn), n = 1,2, . . .

are both Markov chains.

This can be seen from their time reversal. E.g., a backward

step of the PATRICIA chain is just an inverse Rémy move.



Fact (Corollary to [EW20, Lemma 3.13]):

P(νPn = t) > 0 for any full binary tree t with n leaves.

Thus the previous observation (on the backward transitions)

has a nice consequence:

The D-M boundary of the PATRICIA(ν)-chain equals

the D-M boundary of the Rémy chain !

Infinite PATRICIA(ν)-bridges are the same

as infinite Rémy bridges.



Fact: R(z1, . . . , zn) = R(zσ(1), . . . , zσ(n))

for any permutation of [n], hence by Hewitt-Savage

the distribution of (νPn)n∈N is trivial on the tail field F∞.

Consequently, any PATRICIA(ν)-chain (νPn)n∈N
is an extremal PATRICIA (or Rémy) bridge.

Because of the just stated fact that

AAP(νPn = t) > 0 for any full binary tree t with n leaves,

the above described “zigzag bridge” (though being an

extremal Rémy (and thus also PATRICIA)-bridge)

cannot be a PATRICIA(ν)-chain.



Being an extremal Rémy bridge, any PATRICIA(ν)-chain must

have a sampling representation in terms of some (S, d, µ).

This is as follows:

• S:= completion of the tree with vertices ∈
⋃

n∈N0

{0,1}n,

• ultrametric distance d given by

AAAAAAAAd(v1 . . . vn, v1 . . . vnvn+1) := 2−n−2

• sampling measure µ := ν on the tree boundary {0,1}∞.



ξi with distribution ν

x y

S

S . . . the complete

ultrametric binary tree

with d(�, leaves) = 1
2

ν is a diffuse probability measure

on the leaves of S.

W (ξi, Ui, ξj, Uj) =x

if ξi falls to the left of ξj



The Doob-Martin boundary of the radix-sort chain

Reference measure γ := fair coin tossing measure on {0,1}∞.

For any diffuse measure ν on {0,1}∞, the radix-sort(ν)-chain

. . . is a radix-sort(γ)-bridge

(because it has the radix-sort(γ) backward dynamics)

. . . and is even an extremal radix-sort(γ)-bridge

(because its tail field is trivial due to the Hewitt-Savage

0-1 law).



Theorem (EW17)

a) Every extremal radix-sort(γ)-bridge

is a radix-sort(ν)-chain for some diffuse ν.

(Consequently, the radix-sort(ν)-chains

are precisely the extremal radix-sort(γ)-bridges.)

b) Every limit of a sequence of radix-sort(γ)-bridges

from � to tm, m → ∞, is an extremal radix-sort(γ)-bridge.

(In other words: The minimal boundary equals

the full D-M boundary.)



Theorem (EW17)

a) Every extremal radix-sort(γ)-bridge

is a radix-sort(ν)-chain for some diffuse ν.

Idea of proof: Let (R∞
n ) be an extremal RST bridge,

and (R̃∞
n ) its labeled version. The latter induces a random

sequence (〈i〉)i∈N of leaves of the complete binary tree.

By exchangeabilty of this sequence and by extremality of (Rn),

the 〈i〉, i = 1,2, . . ., are i.i.d.

For their distribution ν we have (R∞
n )

d
= (νRn). �



Theorem (EW17)

b) Every limit of a sequence of radix-sort(γ)-bridges

from � to tm, m → ∞, is an extremal radix-sort(γ)-bridge.

Idea of proof: Let (R∞
n ) be the limit of a sequence of

radix-sort(γ) bridges from � to tm, m → ∞,

and (R̃∞
n ) its labeled version. It suffices to show that the asso-

ciated exchangeable sequence (〈i〉)i∈N of leaves of the com-

plete binary tree is ergodic. For this, we again use the ergodi-

city criterion of Aldous, this time with the array

Aij := 〈i〉 ∧ 〈j〉 . . . the “most recent common ancestor”

bbbbbbbbbbbbbbbbbbb of the leaves 〈i〉 and 〈j〉. �



To summarize:

The D-M boundary of the radix-sort tree chain

with fair coin tossing strings as input

is in 1-1 correspondence to the radix-sort tree chains

with i.i.d. (ν)-input, with ν a diffuse measure on {0,1}∞.
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