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Rémy’s tree growth chain

Jean-Luc Rémy (1985),
Un procéedeé iteratif de denobrement d’arbres binaires

et son application a leur generation aléatoire



One step of Rémy’s tree-valued Markov chain:



Choose a vertex at random




Put the offspring tree of the chosen vertex aside

y
T~



Attach the 2-leaf tree N, rooted in the chosen vertex

g



Choose one of the two leaves of N at random

g



Attach the offspring tree at the the chosen leaf of X

p



Thus, one additional leaf has been created

p






Definition:

The Rémy chain

is a binary-tree valued Markov chain (17,75, ...)
starting in AV

and with the following transition mechanism:



Definition:

The Rémy chain

is a binary-tree valued Markov chain (17,75, ...)
starting in AV

and with the following transition mechanism:
Given T, = t, choose a vertex v of t at random,
put the offspring tree of v aside,

insert 2 children of v,

choose one of them at random,

and re-attach to it the previous offspring tree of v.
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Facts (proved by induction)
T, 1s uniformly distributed on the set of binary trees

with n 4+ 1 leaves.



Facts (proved by induction):

Ty, is uniformly distributed on the set of binary trees

1

with n 4 1 leaves. This set has cardinality C,, = n—H(Q”)

n

one realisation of T



Facts (proved by induction):
For each n, given T, = t, the “age order” of the leaves of t

IS completely random.



Facts (proved by induction):

For each n, given T, = t, the “age order” of the leaves of t

IS completely random.

The age order
of the leaves
determines the path

fromNtot






















Thus, for given t,

we obtain the random bridge from X to t



Thus, for given t,
we obtain the random bridge from X to t

through a random labeling of the leaves of t

which then determines
the path from X to t

as we just saw.




For a binary tree t with n 4 1 leaves,
the Rémy bridge (T%,...T}) from X to t arises as follows



For a binary tree t with n 4 1 leaves,
the Rémy bridge (T%,...T}) from X to t arises as follows
- label the leaves of t randomly by 1,2,... ., n+ 1




For a binary tree t with n 4 1 leaves,

the Rémy bridge (T%,...T}) from X to t arises as follows

- label the leaves of t randomly by 1,2,... ., n+ 1

-fork =1,...,n, let T} be the (reduced binary) subtree of t
spanned by the leaves labeled by 1,... kK + 1
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Le Gall (1999) noticed the following fact:
Let B : [0, 1] — R be a standard Brownian excursion,
let U1, Us, ... beii.d. uniformin [0, 1]




Le Gall (1999) noticed the following fact:
For each n let T}, be the binary tree drawn into B
below the points (U1, B(U1)), ..., (Up4+1, B(Up41))-




Le Gall (1999) noticed the following fact:
For each n let T}, be the binary tree drawn into B
below the points (U1, B(U1)), ..., (Up4+1, B(Up41))-




Le Gall (1999) noticed the following fact:
Then, randomized over B and U1, Uo, . . .,
the distribution of (177,75, ...) is that of the Rémy chain.




Let us discuss this first in the discrete world:



Harris coding of a binary tree with n 4 1 leaves
by a function f : {0,1,...,4n} — Ny
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Harris coding of a binary tree with n 4 1 leaves
by a function f : {0,1,...,4n} — Ny

X /P




A random labeling of the leaves of t

corresponds to a random labeling of the maxima of f

X /P




A random labeling of the leaves of t

coresponds to a random labeling of the maxima of f
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Philippe Marchal (2003) Constructing a sequence of

random walks strongly converging to Brownian motion

The rescaling u 2\/—Fn(u 4n), u € [0, 1],
of the random functon F,, that codes the random tree T,

converges almost surely to a standard Brownian excursion B.



The Brownian excursion B encodes a continuum tree .75
that is rooted, iIs endowed with a left-right order
and carries a measure that is supported by the leaves of .75

(The unordered version of .7 P represents the so-called
Aldous’ Continuum Random Tree.)

Thus, Le Gall’s representation of the Rémy chain corresponds
to the sequence (17,715, ...) of binary trees

that arise through a successive i.i.d. sampling of leaves &1, &0, . ..

from 5.



Let MP be the distribution of the Rémy chain (7Y, 15, ...)

drawn from a standard Brownian excursion B, given B = b.

b is different from M := the distribution of the Rémy chain.
However,

MP has the same Markovian backward dynamics as :
Under NP, given 7}, = t,

(Tq,...,Tn) is a Rémy bridge from X to t.

In this sense, MP is an infinite Rémy bridge distribution.



Definition. An infinite Remy bridge is a Markov chain (75°) ,,eN
such that 77° = XN and

BT = | T35, = t) = P(Tn = | Ty = t)

for all n > 1 and finite binary trees s, t,
l.e. (T°)en has the same backward transition probabilities

as the Rémy chain (Tr,).



Fact: The infinite Rémy bridge distributions

are in 1-1 correspondence with the nonnegative functions h
defined on the space of finite binary trees

that are harmonic for the Rémy transition matrix

and satisfy A(R) = 1.

Here the keyword is the h-transform

P(T° = t) = h(lN)IP’(Tn — O)h(t).



Facts:
e The set of infinite Rémy bridge distributions is convex.

e The distribution of an infinite Rémy bridge (7,5°),,eN IS
extremal in the set of of infinite Rémy bridge distributions
if and only it 7°° := (o (T);), T};41, - - -) is trivial.

m

e Every infinite Rémy bridge distribution has a

unique integral representation as a mixture of extremal ones.

This fits into the general theory of Gibbs specifications
(H. Follmer (1975), Phase transition and Martin boundary)



Example. Let 'l be the distribution of the Rémy chain (177,715, ...).

Think of a two-stage experiment:
First take a standard Brownian excursion B, then
given { B = b}, sample sucessively from the leaves of .7P.

With [P being the distribution of the arising sequence (TP, TP, ...)
we have the desintegration
ne) = /Hb(-) P(B € db).

By the Hewitt-Savage 0-1 law, for P(B € (.))- almost all b,
NP is .Z>-trivial (and hence extremal).



A sequence of finite binary trees t;. is said
to converge in the Doob-Martin topology of the Rémy chain
if the sequence of Rémy bridge distributions Mt

converges in the sense of finite-dimensional distributions.

The Doob-Martin boundary is then the set
of all Doob-Martin limit points

outside the space of finite binary trees.



Fact: Every point in the D-M boundary of the Rémy chain

corresponds to some infinite Rémy bridge distribution.

Questions:

1. Does every point in the D-M boundary of the Rémy chain
correspond to an extremal infinite Rémy bridge distribution?
(In more analytic terms: Is the full D-M boundary equal to the

so-called minimal boundary ?)

2. What does the D-M boundary of the Rémy chain look like?

(The latter question was asked to us by J.F. Le Gall)



Steve Evans Rudolf Grubel



Leaf-labeled infinite Remy bridge distributions:

Proposition [EGW17]. There is a 1-1 correspondence between
the infinite Rémy bridge distributions and

the leaf-labeled infinite Rémy bridge distributions, i.e. the dis-
tributions of sequences (T,°°) of leaf-labelled binary trees T,°°

whose leaf set is randomly and
6 —~
bijectively labeled by [n + 1], > 1T§O
and where T°° ; is obtained from 7.>° 5D 4
by removing the leaf n 4 1 and its sibling

and closing the (potential) gap

- as we have seen before.



The combinatorial tree encoded by a path
of a leaf-labeled infinite Rémy bridge:

Let (t2°) be a path of a leaf-labeled infinite Rémy bridge. From
(t2°) one can read off of the most recent common
ancestor (i, j) of the leaves labeled by 7 and j.

6 3 'E%o
1
5 2 4 1,3)=1(1,6)



The combinatorial tree encoded by a path
of a leaf-labeled infinite Rémy bridge:

Let (t2°) be a path of a leaf-labeled infinite Rémy bridge. From
(t2°) one can read off of the most recent common

ancestor (i, j) of the leaves labeled by 7 and j.

Formally, the (¢, j) are equivalence classes

w.r. to an equivalence relation = on N x N:

two pairs of leaves (4, 5), (k,£) are equivalent if

they have the same MRCA in t° for n > max(i, j, k, £).

The equivalence classes (i, j) represent all the vertices of the
tree, the (¢,7) =: 7 are singletons and represent the leaves.



Ordering the tree encoded by (t5°):

(t2°) induces
a partial order “by descent” on the vertices (¢, 5), (3, k), . ..
and a left-right order on the leaves i, 7, . . .

E.g. in the figure:

(4,9) = (i, k) < (4, k)

w(i,§) = w(i, k) = w(, k) =~ (4, k)
w(j,1) = w(i, k) = w(k,j) =



Ordering the tree encoded by (t5°):

(t2°) induces
a partial order “by descent” on the vertices (¢, 5), (3, k), . ..
and a left-right order on the leaves i, 7, . . .

In any case:

(t,9) = (i, k) < (J,k)

— w(i,§) = w(i, k)



Ordering the tree encoded by (t5°):

(t2°) induces
a partial order “by descent” on the vertices (z, 5), (i, k), ...

and a left-right order on the leaves i, 7, . . .

The equivalence classes (i, 7) and the two orders < and w(-, -)
In the system &) .= (=, <, w) obey natural axioms
which define what we call a didendritic system with label set N
([EW20, Def. 6.1 and Prop. 6.7])



Leaf-labeled infinite Remy bridge distributions
correspond to exchangeable didendritic systems:

For a leaf-labeled infinite Rémy bridge (T.°),

the random didrentic system (T is exchangeable
In the sense that its distribution is invariant

under finite permutations of the label set N.

Conversely, to every exchangeable didendritic system
there corresponds a (leaf-labeled) infinite Rémy bridge,
and this corresponcence is 1-1 [EGW17, Lemma 5.12].



Extremal infinite Rémy bridge distributions correspond
to ergodic exchangeable didendritic systems
[EGW17, Prop. 5.19]

Definition: An exchangeable didentritic system & is ergodic :

<> Its distribution is trivial
on the o-field of finite-permutation-invariant events.

By a criterion of Aldous on the ergodicity of exchangeable
arrays, & is ergodic iff for all finite disjoint H1,..., Hs C N

the restrictions Zyy,, ..., 2y, are independent.



The elements of the D-M-boundary constitute
extremal infinite bridges [EGW17, Cor. 5.21] :

D-M convergence of (t,) corresponds to f.d.d. convergence
of (@fk) to an exchangeable didentritic system .

We apply Aldous’ criterion to .

Let £ be so large that Hy U---U Hs C [l + 1]. The restrictions
,@2’;1, e ,@z’fs can be generated from the first £ + 1 draws

iIn a drawing without replacement from the leaves of t,..

For kK — oo, this can be coupled with high probability

to a drawing with replacement. For the latter, the resulting

restrictions to Hq, ..., Hs are clearly independent. [



We just saw:

1. Every point in the D-M boundary corresponds
to an infinite Rémy bridge distribution and thus
to an exchangeable didentritic system.

2. Every point in the D-M boundary is extremal (resp. ergodic).
(In more analytic terms: The full D-M boundary is equal to the
minimal boundary )

Le Gall's question: What does the D-M-boundary of the Rémy
chain look like? thus asks for a representation of the
ergodic exchangeable didentritic systems.



zigzad
VAT

A guiding example to our representation theorem
is a sequence of “spinal trees” tiigzag, k=1,2, ...
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a vertical core,

with Lebesgue measure as
sampling measure,

and a continuum of
Isolated leaves dangling off

randomly to left or right



Measuring the set of leaves
of an ergodic exchangeable didendritic system 2

Fix 2,7 € N (and think of 7 and 5 as two leaves). How big
is the fraction of leaves “between” ¢ and j, i.e. above (7, 7)?

Ip =Yg jy<pp)ys PEN

IS an exchangeable sequence of r.v.s.
N AL .

d(i,7) := Jim Epé:l I, exists a.s.

(by de Finetti), is a.s. constant (by ergodicity)




Embedding an ergodic exchangeable DDS 2
Into an ultrametric tree T:
d(i,3) = nl'—>moogp§: L <wn}
1,7 € N 1 J k
IS an exchangeable ultrametric on N:
d(i,7) = max{d(i, k), d(j, k) } (7, k)

Interpret 5d(4, ) as the depth of the MRCA

of the images of 7 and j, with an embedding

2¥)

¥ 2 — T into an ultrametric tree T.



Embedding of an ergodic exchangeable DDS 2
into a metric measure space (S, d, i)

Let S be the closure of the subtree of T
that is spanned by { 7 ((i,5)) : i # j € N}.

(S, d) is an R-tree and

p({z €S 7((4,5)) < x}) :=d(i,j)

defines a diffuse probability measure @ on S.



Theorem [EGW17] All extremal infinite Rémy bridges arise
through a successive sampling of leaves &1, &5, ... from some
complete separable rooted R-tree S, equipped with a diffuse
measure u (the “sampling measure”) and a (randomized)
left-right ordering given by a measurable function

W : (Sx[0,1])? — {~, ~}, and random variables U1, U, . ..
that are independent and uniform on [0, 1]. Here,

W((&,U;),(&,U;)) =
prescribes that the i-th sampled leaf is to the left of the com-

mon ancestor of leaves ¢ and j.



Here, S, n and W satisfy the consistency conditions:

(A)The tree S is “almost binary”:

Almost surely for distinct ¢, 7, k € N, precisely one of

(1) &G AE =& A& <& A&,

(1) & A& =& A& <& A&

(i13) A& =& A& <& A& holds.x

(B) The left-right ordering is consistent along the tree:

(W (&, Ui, 6,U) = <= W(,U;,&,U;) =

() 3

§i A& =& A& =& L&k
= W(&,U;,§,U;) = W&, Us, &, Ug)

\



a vertical core,

with Lebesgue measure as
sampling measure,

and a continuum of
Isolated leaves dangling off

randomly to left or right
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S = [0, 3]
1= Lebesgue measure on S

if &; falls below &; and U; < %



A different Markov chain — and the same boundary

Let v be a diffuse measure on {0, 1},

The PATRICIA(v)-chain is a
full binary tree - valued Markov chain built from an
l.i.d. sequence Zq, Z», ... of infinite binary words

with common distribution v

as follows:



For distinct infinite binary words z1, zo, . . ., the radix sort tree
s = R(z1,...,z2n) is the minimal binary tree whose n leaves
correspond to initial segments of zq, ..., zn.

Example (with n = 4):

1 24z 2
o S 21 = 00100100...
S 25 = 11011011...
< < 23 = 11010010...

z4 = 11010000...



For distinct infinite binary words z1, ..., zn, the radix sort tree
s = R(z1,...,2n) is the minimal binary tree whose n leaves
correspond to initial segments of zq, ..., zn.

Example (with n = 4):

21 24 23 22

) ’ z1 = 00100100...

2o = 11011011...

23 = 11010010. ..

z4 = 11010000...




The PATRICIA contraction @ maps the radix sort tree s into the
full binary tree t = ®(s) by deleting the out-degree 1 vertices
and closing up the gaps.

Example (with n = 4):

21 24 23 22

NN ! t .= ®(R(z1,...,2n)) isthe
PATRICIA tree obtained from

the distinct infinite binary words

Z]_,...,Zn.




The PATRICIA contraction @ maps the radix sort tree s into the
full binary tree t = ®(s) by deleting the out-degree 1 vertices
and closing up the gaps.

Example (with n = 4):

21 24 23 22

NN ! t .= ®(R(z1,...,2n)) isthe
PATRICIA tree obtained from

the distinct infinite binary words
5/ Z]_, c ooy Zn, -




Radix Sort Chains and PATRICIA chains

Let v be a diffuse measure on {0, 1}
and Z1, Z», ... be i.i.d. with distribution v.

Fact ([EW20, Prop. 3.7])

Theradix sortchain YRy, := Rn(Z1,...,Zpn),n=1,2,...,
and the PATRICIAchain*P,, := Py(Z1,...,Zpn),n=1,2,...
are both Markov chains.

This can be seen from their time reversal. E.g., a backward
step of the PATRICIA chain is just an inverse Rémy move.



Fact (Corollary to [EW20, Lemma 3.13]):
P(YP, = t) > 0 for any full binary tree t with n leaves.

Thus the previous observation (on the backward transitions)
has a nice consequence:

The D-M boundary of the PATRICIA(v)-chain equals
the D-M boundary of the Rémy chain !

Infinite PATRICIA(v)-bridges are the same
as infinite Rémy bridges.



Fact: R(Zl, Ceey Zn) = R(za(1)7 e 7za(n))
for any permutation of [n], hence by Hewitt-Savage
the distribution of (¥ Pp,),,cn is trivial on the tail field .7 °.

Consequently, any PATRICIA(v)-chain (¥ Pp),eN
is an extremal PATRICIA (or Rémy) bridge.

Because of the just stated fact that

P(YP, = t) > 0 for any full binary tree t with n leaves,
the above described “zigzag bridge” (though being an
extremal Rémy (and thus also PATRICIA)-bridge)
cannot be a PATRICIA(v)-chain.



Being an extremal Rémy bridge, any PATRICIA(v)-chain must
have a sampling representation in terms of some (S, d, ).

This is as follows:

e S:= completion of the tree with vertices € [ {0, 1}",
nENg
e Ultrametric distance d given by

d(’Ul ... Un, V1 .. 'Unvn—l—l) — 2—n—2

e sampling measure u := v on the tree boundary {0, 1}°°.



&; with distribution v

R
‘ S

S ...the complete
ultrametric binary tree

with d(J, leaves) = %

v 1S a diffuse probability measure

on the leaves of S.

if &, falls to the left of f]



The Doob-Martin boundary of the radix-sort chain

Reference measure ~ := fair coin tossing measure on {0, 1 }*°.
For any diffuse measure v on {0, 1}°°, the radix-sort(~)-chain
...1s a radix-sort(~y)-bridge

(because it has the radix-sort(~) backward dynamics)

...and is even an extremal radix-sort(~y)-bridge
(because its tail field is trivial due to the Hewitt-Savage
0-1 law).



Theorem (EW17)

a) Every extremal radix-sort()-bridge

IS a radix-sort(v)-chain for some diffuse v.
(Consequently, the radix-sort(v)-chains

are precisely the extremal radix-sort(~)-bridges.)

b) Every limit of a sequence of radix-sort(~)-bridges

from CJ to t,,, m — oo, is an extremal radix-sort(~)-bridge.
(In other words: The minimal boundary equals

the full D-M boundary.)



Theorem (EW17)
a) Every extremal radix-sort()-bridge

IS a radix-sort(v)-chain for some diffuse v.

Idea of proof: Let (RS°) be an extremal RST bridge,

and (R%°) its labeled version. The latter induces a random
sequence ((i));cy of leaves of the complete binary tree.

By exchangeabilty of this sequence and by extremality of (R;,),
the (i), =1,2,...,arei.i.d.

For their distribution v we have (R$°) 2 (YRyp). O



Theorem (EW17)
b) Every limit of a sequence of radix-sort(~)-bridges
from CJ to t,,,, m — oo, Is an extremal radix-sort(~)-bridge.
Idea of proof: Let (RS°) be the limit of a sequence of
radix-sort(~y) bridges from [ to t,,, m — oo,
and (RS°) its labeled version. It suffices to show that the asso-
ciated exchangeable sequence ((i));cn Of leaves of the com-
plete binary tree is ergodic. For this, we again use the ergodi-
city criterion of Aldous, this time with the array
A = (i) A (j) ...the “most recent common ancestor”

of the leaves (¢) and (5). O



To summarize:

The D-M boundary of the radix-sort tree chain
with fair coin tossing strings as input
Is in 1-1 correspondence to the radix-sort tree chains

with i.i.d. (v)-input, with v a diffuse measure on {0, 1 }°°.
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