Vorlesung 11a

Markovketten (Teil 1)

1. Markovketten als spezielle mehrstufige Zufallsexperimente

(Buch S. 97)

Zur Erinnerung:

Bei mehrstufigen Zufallsexperimenten

hat man für jedes $i = 1, 2, \dots$

Übergangswahrscheinlichkeiten

$$P(a_1 \dots a_i, a_{i+1}) = P_{a_1 \dots a_i}(X_{i+1} = a_{i+1}),$$
 die angeben,

mit welcher Wahrscheinlichkeit in der (i + 1)-ten Stufe das Ereignis $\{X_{i+1} = a_{i+1}\}$ eintritt,

gegeben das Eintreten von $\{X_1 = a_1, \dots, X_i = a_i\}$.

Eine wichtige Beispielklasse mehrstufiger Zufallsexperimente:

alle X_i haben ein-und denselben Wertebereich S und die Übergangswahrscheinlichkeiten der nächsten Stufe hängen nur von der aktuellen Stufe ab (und nicht von den vorhergehenden):

$$P(\ldots a_{i-2} a_{i-1}, a_i) = P(a_{i-1}, a_i)$$

In dem Fall spricht man von einer **Markovkette** auf dem Zustandsraum S mit Übergangsmatrix P.

Die Stufen sind jetzt mit $i=0,1,2,\ldots$ indiziert. Man denkt sich die Übergangsmatrix P als fest und notiert die Verteilung ρ von X_0 (die "Startverteilung") als Subskript bei der Wahrscheinlichkeit P.

$$P_{\rho}(X_0 = a_0) = \rho(a_0).$$

Die Multiplikationsregel ergibt:

$$\mathbf{P}_{\rho}(X_0 = a_0, \dots, X_n = a_n)$$

= $\rho(a_0)P(a_0, a_1) \cdots P(a_{n-1}, a_n)$

Startet die Kette in $a \in S$, dann ist ρ die auf a konzentrierte Verteilung (notiert als $\rho = \delta_a$).

Statt \mathbf{P}_{δ_a} schreibt man auch \mathbf{P}_a und erhält

$$P_a(X_0 = a) = 1,$$

$$P_a(X_1 = a_1, \dots, X_n = a_n) = P(a, a_1) \cdots P(a_{n-1}, a_n)$$
.

2. Beispiele für Markovketten

(Buch S. 98)

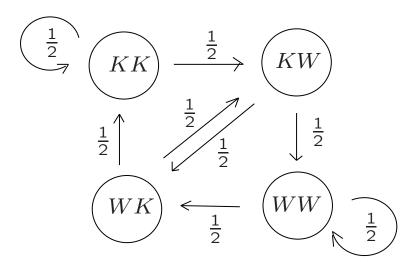
Beispiel 1:

Muster der Länge 2 beim fairen Münzwurf

 Z_0, Z_1, \ldots unabhängig und uniform veteilt auf $\{K, W\}$,

$$X_n := (Z_n, Z_{n+1}), \quad n = 0, 1, 2, \dots$$

Graph der Übergangswahrscheinlichkeiten:



Beispiel 2:

(p,q)-Irrfahrt auf \mathbb{Z} :

$$S = \mathbb{Z}$$

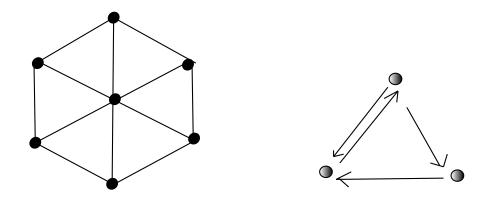
$$P(k, k+1) = p, P(k, k-1) = 1 - p = 0$$

 $Var_a[X_n] = 4npq$ (Warum gilt das?)

Beispiel 3:

Einfache Irrfahrt

auf einem (ungerichteten oder gerichteten) Graphen



S := die Menge der Knoten.

Der nächste Schritt erfolgt jeweils zu einem rein zufällig ausgewählten Nachbarn.

Beispiel 4:

Die Pólya-Urne als Markovkette auf \mathbb{N}^2

$$S = \{(r, b) : w, b \in \mathbb{N}\} = \mathbb{N}^2$$

$$P((r,b), (r+1,b)) := \frac{r}{r+b},$$

$$P((r,b), (r,b+1)) := \frac{r}{r+b}.$$

Das modelliert dieselbe Situation wie in Vorlesung 10b, allerdings "sparsamer":

als aktueller Zustand wird nicht der gesamte bisherige Pfad, sondern nur die Anzahl der weißen und blauen Kugeln in der Urne mitgeführt

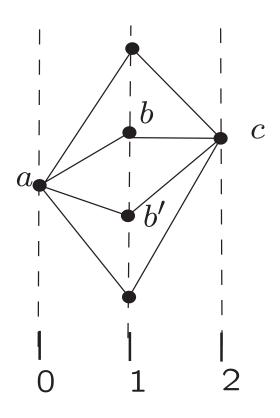
3. Die Zerlegung nach dem ersten Schritt

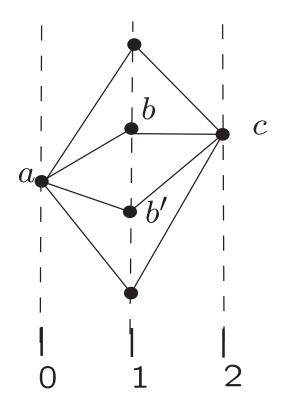
$$P_a(X_1 = b, X_2 = c) = P(a, b)P(b, c).$$

Summation über $b \in S$:

$$P_a(X_2 = c) = \sum_{b \in S} P(a, b) P(b, c)$$

"Zerlegung von zwei Schritten nach dem ersten Schritt"





Und jetzt für n statt 2:

Zerlegung nach dem ersten Schritt.

$$P_a(X_1 = a_1, X_2 = a_2, \dots, X_n = a_n)$$

$$= P(a, a_1)P(a_1, a_2) \cdots P(a_{n-1}, a_n)$$

$$= P(a, a_1)P_{a_1}(X_1 = a_2, \dots, X_{n-1} = a_n)$$

Summation über a_1, a_2, \dots, a_{n-1} , mit b statt a_1 und c statt a_n :

$$\mathbf{P}_a(X_n = c) = \sum_{b \in S} P(a, b) \, \mathbf{P}_b(X_{n-1} = c) .$$

Eben haben wir die Kette in Gedanken laufen lassen bis zu einem festen Zeitpunkt n.

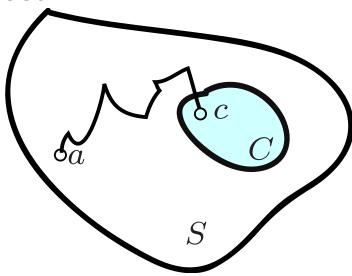
Jetzt lassen wir sie laufen, bis sie erstmals eine bestimmte Menge $C \subset S$ trifft,

und zerlegen wieder nach dem ersten Schritt.

Das eignet sich wunderbar zur Berechnung von Treffwahrscheinlichkeiten.

P sei eine Übergangsmatrix auf der Menge S X sei Markovkette mit Übergangsmatrix P.

 $C \subset S, c \in C$ seien fest.

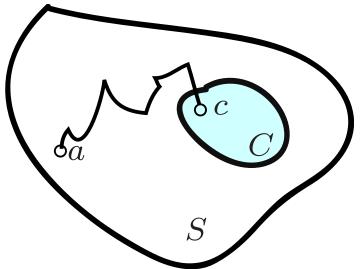


Die Frage:

P sei eine Übergangsmatrix auf der Menge S X sei Markovkette mit Übergangsmatrix P.

 $C \subset S, c \in C$ seien fest.

Wie wahrscheinlich ist es, dass der in $a \in S$ startende Pfad die Menge C erstmals im Zustand c trifft?



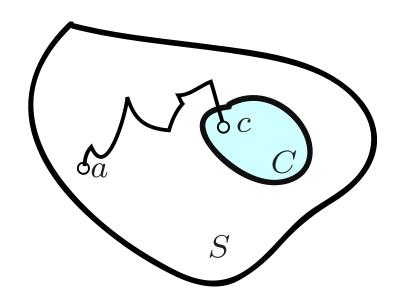
Die Antwort:

Sei w(a) die gesuchte Wahrscheinlichkeit.

Die Zahlen $w(a), a \in S$, erfüllen das Gleichungssystem

$$\sum_{b \in S} P(a, b) w(b) = w(a)$$

$$\text{für } a \in S \setminus C$$



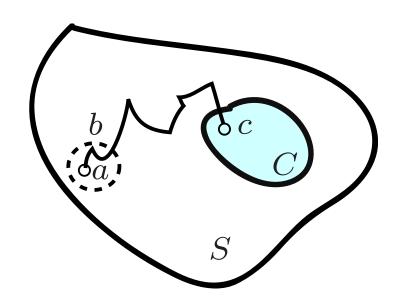
Die Antwort:

Sei w(a) die gesuchte Wahrscheinlichkeit.

Die Zahlen $w(a), a \in S$, erfüllen das Gleichungssystem

$$\sum_{b \in S} P(a, b)w(b) = w(a)$$

$$\text{für } a \in S \setminus C$$



Die Antwort:

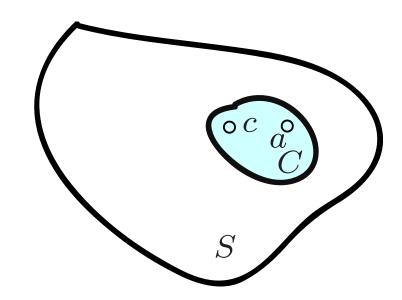
Sei w(a) die gesuchte Wahrscheinlichkeit.

Die Zahlen $w(a), a \in S$, erfüllen das Gleichungssystem

$$\sum_{b \in S} P(a, b)w(b) = w(a)$$

$$f \ddot{\mathsf{u}} \mathsf{r} \ a \in S \setminus C,$$

$$w(a) = \delta_{ac}$$
 für $a \in C$.



5. Beispiele

Beispiel A: Gewinn oder Ruin?

Eine einfache Irrfahrt auf \mathbb{Z} starte im Punkt 3.

Mit welcher W'keit erreicht sie den Punkt c = 10,

bevor sie zum Nullpunkt kommt?

"Zerlegung nach dem ersten Schritt" und Randbedingungen:

$$w(a) = \frac{1}{2}w(a-1) + \frac{1}{2}w(a+1), \quad a = 1, \dots, c-1,$$

 $w(0) = 0, \quad w(c) = 1.$

Fazit: Die w(a) liegen auf einer Geraden,

$$w(a) = \beta a + \gamma$$
 mit $\gamma = 0, \beta = 1/c$.

Die gesuchte Wahrscheinlichkeit ist also 3/10.

Beispiel B

Welches Muster kommt eher?

Mit welcher W'keit kommt beim fairen Münzwurf das Muster KKK früher als das Muster WKW?

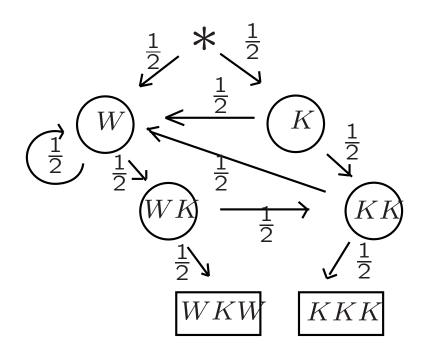
Hier ist ein

"reduzierter Graph"

der relevanten

Zustände

und Übergänge:

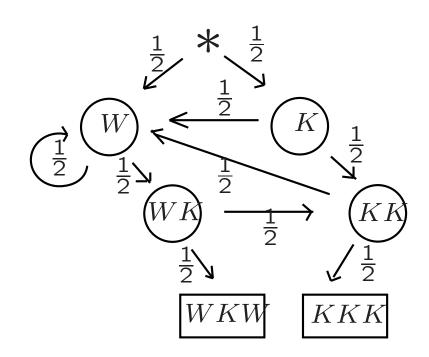


 $F\ddot{u}r w(a) :=$

 $P_a(Spiel endet in KKK)$

ergibt sich das

Gleichungssystem



$$w(KK) = \frac{1}{2} + \frac{1}{2}w(W) , \quad w(WK) = \frac{1}{2}w(KK)$$
$$w(K) = \frac{1}{2}w(KK) + \frac{1}{2}w(W) , \quad w(W) = \frac{1}{2}w(WK) + \frac{1}{2}w(W) .$$

und daraus

$$w(W) = \frac{1}{3}, w(K) = \frac{1}{2}, w(*) = \frac{1}{2}w(W) + \frac{1}{2}w(K) = \frac{5}{12}.$$