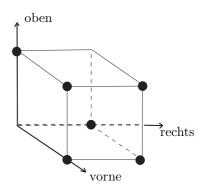
Übungen zur Vorlesung "Stochastik für die Informatik"

Abgabe der Lösungen zu den S-Aufgaben: Freitag, 1. Dezember 2017, vor der Vorlesung (12:10-12:15 im Magnus HS)

21. Paarweise Unabhängigkeit von Ereignissen. X sei eine rein zufällige Wahl aus den 6 in der Skizze markierten Ecken des Würfels (die beiden nicht markierten Ecken bleiben tabu). Vier der markierten Ecken sind "vorne", drei sind "rechts" und drei sind "oben". Wir betrachten die Ereignisse $E_1 := \{X \text{ landet vorne}\}, E_2 := \{X \text{ landet rechts}\}, E_3 := \{X \text{ landet oben}\}.$

a) Gilt
$$\mathbf{P}(E_1 \cap E_2 \cap E_3) = \mathbf{P}(E_1) \cdot \mathbf{P}(E_2) \cdot \mathbf{P}(E_3)$$
?

b) Sind die drei Ereignisse E_1 , E_2 , E_3 unabhängig? Argumentieren Sie hier sowohl rechnerisch als auch anschaulich.



- **22. S.** Paare und Summen von Zählvariablen. In der Situation von Aufgabe 13 sei Z_i die Indikatorvariable des Ereignisses, dass X_i und X_{i+1} in verschiedene Partionselemente fallen (i = 1, ..., 19).
- a) Bestimmen Sie, gerundet auf 4 Nachkommastellen, die Matrix der gemeinsamen Verteilungsgewichte von \mathbb{Z}_3 und \mathbb{Z}_4 .
- b) Welche der drei folgenden Aussagen trifft zu: Z_3 und Z_4 sind
- (i) unkorreliert (ii) positiv korreliert (iii) negativ korreliert?
- c) Berechnen Sie die Varianz von $Z_1 + \cdots + Z_{19}$.
- d) Zusatzfrage für Extra-Punkte: Von n Kugeln sind n_1 schwarz, n_2 grün und n_3 weiß gefärbt (mit $n=n_1+n_2+n_3$). Die Kugeln werden rein zufällig ohne Zurücklegen gezogen. Wir betrachten das Ereignis $E_1:=$ "die Farbe der ersten und der zweiten gezogenen Kugel sind gleich" und das Ereignis $E_2:=$ "die Farbe der zweiten und der dritten gezogenen Kugel sind gleich". Finden Sie ein Beispiel für n,n_1,n_2 und n_3 , in dem E_1 und E_2 negativ korreliert sind, und ein weiteres, in dem E_1 und E_2 positiv korreliert sind. (Eine Frage an den Hausverstand: Wenn es deutlich viel mehr schwarze Kugeln gibt als grüne und weiße und Ihnen jemand verrät, dass E_1 eingetreten ist: würden Sie dann vielleicht eher auf das Eintreten von E_2 wetten als ohne die besagte Information, und wenn ja, aus welchem intuitivem Grund?)
- 23. S. Varianz des Stichprobenmittels. a) Es sei n eine natürliche Zahl, und Y eine auf $\{1,\ldots,n\}$ uniform verteilte Zufallsvariable. Berechnen Sie
- (i) den Erwartungswert μ , (ii) die Varianz σ^2 , (iii) die Standardabweichung von Y. (Die Formel $\sum_{a=1}^{n} a^2 = \frac{1}{6}n(n+1)(2n+1)$ ist dabei hilfreich.)
- b) Wir ziehen rein zufällig und ohne Zurücklegen aus der Menge $\{1,\ldots,20\}$ und bezeichnen mit X_i das beim Zug Nr. i gezogene Element.
- α) Warum hängt (für $1 \le i \ne j \le 20$) die Kovarianz $\mathbf{Cov}[X_i, X_j]$ nicht von i und j ab?
- β) Berechnen Sie die Kovarianz von X_1 und X_2 aus der Identität $0 = \mathbf{Var}(X_1 + \ldots + X_{20})$.
- γ) Berechnen Sie die Varianz des Stichprobenmittels $\frac{1}{10}(X_1 + \cdots + X_{10})$.
- δ) Vergleichen Sie das Ergebnis aus γ) mit der Varianz des entsprechenden Stichprobenmittels beim Ziehen mit Zurücklegen.
- **24.** Die Standardabweichung der zufälligen Trefferquote. In der Stunde Eins haben wir den Anteil p einer Teilfläche F an einer Gesamtfläche G dadurch geschätzt, dass wir n Punkte rein zufällig in G geworfen und als Schätzer \hat{p} die relative Treffzahl von F genommen haben. Berechnen Sie die Standardabweichung von \hat{p} , wenn der tatsächliche Wert von p gleich 1/5 ist. Was ergibt sich für (i) n=100, (ii) n=400, (iii) n=1600?