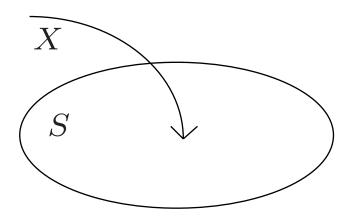
Vorlesung 2a

Diskret uniform verteilte Zufallsvariable

0. Erinnerung und Auftakt



 $X \dots$ Zufallsvariable

mit Zielbereich (Wertebereich) S

Eine Zufallsvariable X heißt diskret uniform verteilt, wenn ihr Zielbereich S endlich ist und

$$P(X = a) = \frac{1}{\#S} \quad \text{für alle } a \in S.$$

Damit beschreibt X eine rein zufällige Wahl aus der (endlichen) Menge S.

Beispiel aus Vorlesung 1b:

$$S = \{1, 2, \dots, r\}^n$$

X:= rein zufällige $1, \ldots, r$ - Folge der Länge n.

Heute lernen wir drei weitere Beispiele von diskret uniform verteilten Zufallsvariablen kennen:

- 1. Rein zufällige Permutation
- 2. Rein zufällige *k*-elementige Teilmenge
 - 3. Uniform verteilte Besetzung

Bei der Gelegenheit erarbeiten wir auch einige Hilfen fürs Abzählen.

1. Rein zufällge Permutation

1a. Elementares

Eine Permutation von $1,\ldots,n$ ist eine bijektive Abbildung der Menge $\{1,\ldots,n\}$ auf sich.

Z. B. mit
$$n=7$$

Wie wahrscheinlich ist es, dass eine rein zufällige Permutation genau **so** ausfällt? Wieviele Permutationen von $1, \ldots, n$ gibt es?

n Möglichkeiten für das Bild von 1 mal (n-1) Möglichkeiten für das Bild von 2 mal (n-2) Möglichkeiten für das Bild von 3

$$= n(n-1)(n-2)\cdots 2\cdot 1 =: n!$$

Sei X eine rein zufällige Permutation von $1, \ldots, n$,

d.h. eine Zufallsvariable, deren Zielbereich S:= die Menge aller Permutationen von $1,\ldots,n$ ist, und die auf S uniform verteilt ist.

Für alle Elemente $a \in S$ gilt also:

$$P(X=a) = \frac{1}{n!}$$

1b. Zufällige Permutation und zufälliges Ziehen

Wie kann man sich eine rein zufällige Permutation entstanden denken?

Zum Beispiel: als Folge der gezogenen Nummern beim n-maligen rein zufälligen Ziehen ohne Zurücklegen aus $\{1, 2, \ldots, n\}$.

Szenario: eine stets ideal durchmischte Urne mit anfangs n Kugeln, beschriftet mit den Nummern $1, \ldots, n$. Ziehe sukzessive ohne Zurücklegen alle n Kugeln, notiere die gezogenen Nummern in Reihenfolge.

Eine rein zufällige Permutation ergibt sich *auch* als n-tupel der Ränge der gezogenen Punkte beim n-maligen rein zufälligen Ziehen aus [0, 1]

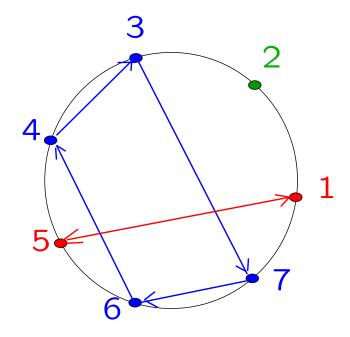
(dabei bekommt der kleinste Punkt den Rang 1, der zweitkleinste den Rang 2,

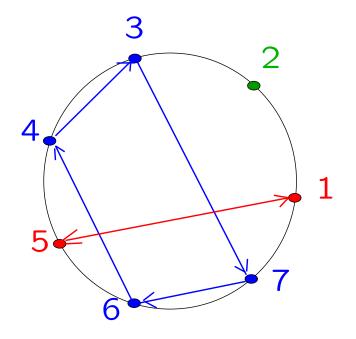
. . . .

der größte den Rang n.)

1c. Zyklendarstellung einer Permutation

Jede Permutation zerfällt in **Zyklen**Beispiel:





Die Länge des Zyklus, der die Eins enthält, ist hier zwei.

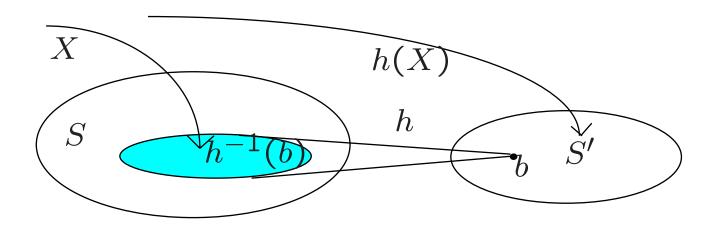
Für eine Permutation $a \in S$ bezeichne h(a)

die Länge des Zyklus von a, der die Eins enthält.

Sei X eine rein zufällige Permutation von $\{1, \ldots, n\}$, also eine rein zufällige Wahl aus S,

und sei
$$b \in \{1, 2, ..., n\}$$
.

$$P(h(X) = b) = ?$$



 $S' = \{1, \dots, n\}$ Wieviele Permutationen $a \in S$ gibt es mit

$$h(a) = b?$$

$$A := \{a \in S : h(a) = b\}$$

$$\#A = ?$$

$$A = \{a \in S : a(1) \neq 1, a^{2}(1) \neq 1, \dots,$$

$$a^{b-1}(1) \neq 1, a^{b}(1) = 1\}$$

$$\#A = (n-1)(n-2) \cdots (n-b+1) \cdot 1 \cdot (n-b) \cdots 1$$

$$= (n-1)!$$

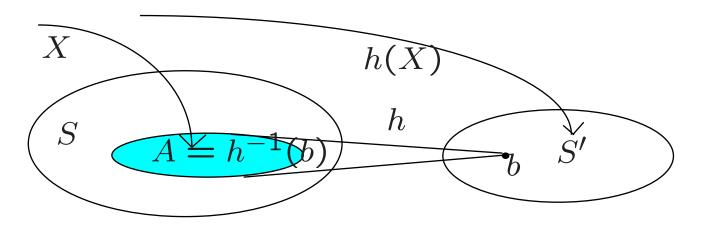
$$\#A = (n-1)!, \quad \#S = n!$$

$$P(X \in A) = \frac{\#A}{\#S}$$

$$=\frac{(n-1)!}{n!}$$

$$=\frac{1}{n}$$

$$\mathbf{P}(X \in A) = \frac{1}{n}$$



$$S' = \{1, \dots, n\}$$

$$A = \{a \in S : h(a) = b\}$$

$${X \in A} = {h(X) = b} P(h(X) = b) = \frac{1}{n}$$

$$P(h(X) = b) = \frac{1}{n}, b = 1, \dots n.$$

Fazit:

Die Länge desjenigen Zyklus einer rein zufälligen Permutation von $1, \ldots, n$, der die Eins enthält, ist uniform verteilt auf $\{1, \ldots, n\}$.

2. Rein zufällige Teilmenge einer festen Größe

2a. Die Anzahl der k-elementigen Teilmengen von $\{1,\ldots,n\}$

Sei $k \leq n$.

 $\mathsf{Jetzt}\;\mathsf{sei}\;S$

die Menge aller k-elementigen Teilmengen von $\{1, \ldots, n\}$.

Wieviele k-elementige Teilmengen von $\{1, \ldots, n\}$ gibt es?

Wird "nach der Reihe" ausgewählt, dann gibt es $n(n-1)\cdots(n-k+1)$ mögliche Wahlprotokolle. Auf die Reihenfolge kommt es nicht an, somit führen jeweils k! dieser Wahlprotokolle auf dieselbe k-elementige Teilmenge.

Also:

$$\#S = \frac{n(n-1)\cdots(n-k+1)}{k!}.$$

$$\#S = \frac{n(n-1)\cdots(n-k+1)}{k!}$$

$$= \frac{n!}{k!(n-k)!} =: \binom{n}{k}$$

Binomialkoeffizient " n über k " .

2b. Mehr zum Binomialkoeffizienten.

 $\binom{n}{k}$... die Anzahl der Möglichkeiten für "k aus n "

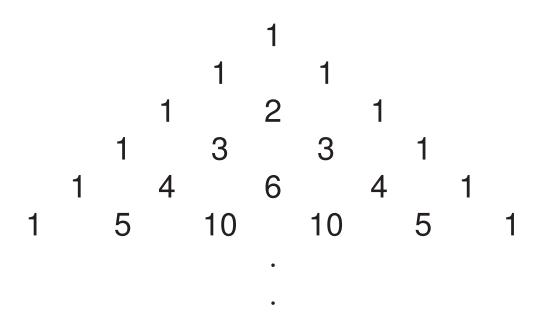
(k-elementige Teilmengen aus $\{1, 2, \ldots, n\}$, k-köpfige Komitees aus n Leuten...)

Beispiel: Binomischer Lehrsatz:

$$(x+y)^n = (x+y)(x+y)\cdots(x+y)$$
$$= \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Die Potenz *k* gibt an, wie oft der Faktor *x* zum Zug kommt.

Pascal'sches Dreieck



Interpretation: Anzahl der Möglichkeiten, aus n Männern und einer Frau ein k+1 köpfiges Komitee auszuwählen.

Entweder die Frau ist nicht dabei... oder sie ist dabei...

2c. Rein zufällige Teilmengen

Sei
$$0 \le k \le n$$

und sei Y eine rein zufällige k-elementige Teilmenge von $\{1,\ldots,n\}$.

Wie wahrscheinlich ist das Ereignis $\{Y = \{1, \dots, k\}\}\$?

Der Zielbereich von Y ist

$$S := \{t : t \subset \{1, \dots, n\}, \#t = k\},\$$

die Menge der k-elementigen Teilmengen von $\{1, \ldots, n\}$.

Wir haben gesehen:

$$\#S = \binom{n}{k}$$

Fazit:

$$P(Y = \{1, ..., k\}) = \frac{1}{\binom{n}{k}}.$$

2d. Ein Zusammenhang mit rein zufälligen Permutationen

Wie gewinnt man eine rein zufällige k-elementige Teilmenge aus einer rein zufälligen Permutation?

Fakt (für
$$k \leq n$$
):

$$\operatorname{lst} X = (X_1, \dots, X_n)$$

eine rein zufälligen Permutation von $1, \ldots, n$,

dann ist
$$\{X_1, \ldots, X_k\}$$

eine rein zufällige k-elementige Teilmenge von $\{1, \ldots, n\}$.

Anders gesagt:

Beim Ziehen ohne Zurücklegen führen die ersten k Züge auf eine rein zufällige Teilmenge des anfänglichen Reservoirs.

Noch eine Möglichkeit zum Erzeugen einer rein zufälligen k-elementigen Teilmenge:

Ziehe sukzessive ohne Zurücklegen aus einer Urne mit k roten und n-k blauen Kugeln.

Notiere die Nummern X_1, \ldots, X_k der Züge, bei denen eine rote Kugel gezogen wird.

Dann ist $\{X_1,\ldots,X_k\}$ eine rein zufällige k-elementige Teilmenge von $\{1,\ldots,n\}$.

3. Besetzungszahlen

3a. Begriffsbildung

Sei $a = (a_1, \dots, a_n)$ eine $1, \dots, r$ - Folge der Länge n.

Vorstellung: i kommt auf Platz a_i .

Wie oft wird in *a* der Platz *j* besetzt?

Anders gesagt: Für wieviele i ist $a_i = j$?

$$b_j(a) := \#\{i : a_i = j, 1 \le i \le n\}$$

Das r-tupel der Besetzungszahlen $b_j(a)$ nennen wir kurz "die (durch a induzierte) Besetzung".

In der Vorstellung des sukzessiven Setzens von n Objekten auf r mögliche Plätze gibt sie an, wieviele Objekte auf welchem Platz landen (und unterscheidet nicht, welche Objekte das sind).

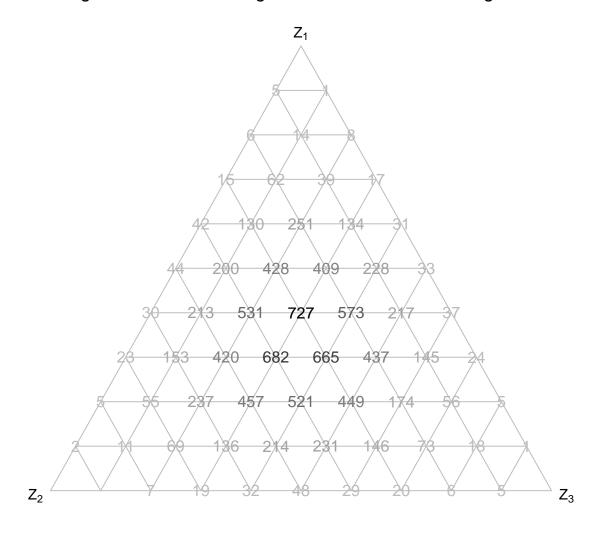
3b. Besetzungszahlen bei sukzessiver rein zufälliger Platzwahl

Machen wir uns ein Bild von der zufälligen Besetzung, die aus einem auf $\{1, \ldots, r\}^n$ uniform verteilten X entsteht.

Das war das Szenario aus Vorlesung 1b: n Individuen werden rein zufällig (und "unabhängig") auf r mögliche Plätze gesetzt.

Es folgt das Ergebis einer Simulation für n=10 und r=3. Die Ecken des *de Finettii-Dreiecks* auf der nächsten Folie entsprechen den Besetzungen (10,0,0) (oben), (0,10,0) (links) und (0,0,10) (rechts).

Häufigkeiten der Besetzungen bei 10000 Wiederholungen



Wir sehen aus der Simulation:

Die Verteilung dieser zufälligen Besetzung ist (bei weitem) nicht uniform.

Wir kommen auf diese Verteilung in der nächsten Vorlesung zurück.

Zum Kontrast betrachten wir jetzt die

3c. Uniform verteilte Besetzung von r Plätzen mit n Objekten:

Der Zielbereich ist

$$S_{n,r} := \{k = (k_1, \dots, k_r) : k_j \in \mathbb{N}_0, k_1 + \dots + k_r = n\}$$

k ist ein r-tupel von Besetzungszahlen, kurz: eine Besetzung.

$$S_{n,r} := \{k = (k_1, \dots, k_r) : k_j \in \mathbb{N}_0, k_1 + \dots + k_r = n\}$$

$$\#S_{n,r} = ?$$

Fakt:

$$h(k_1, k_2, \dots, k_r) := \underbrace{1 \dots 1}_{k_1 \text{-mal}} \underbrace{0 \underbrace{1 \dots 1}_{k_2 \text{-mal}}}_{k_2 \text{-mal}} \underbrace{0 \dots 0 \underbrace{1 \dots 1}_{k_r \text{-mal}}}_{k_r \text{-mal}}$$

ist eine bijektive Abbildung von $S_{n,r}$ nach S:= Menge der 01-Folgen der Länge n+r-1 mit genau n Einsen

$$h(k_1, k_2, \dots, k_r) := \underbrace{1 \dots 1}_{k_1 \text{-mal}} \underbrace{0 \underbrace{1 \dots 1}_{k_2 \text{-mal}}}_{k_2 \text{-mal}} \underbrace{0 \dots 0 \underbrace{1 \dots 1}_{k_r \text{-mal}}}_{k_r \text{-mal}}$$

Beispiel: n = 5, r = 4:

$$(k_1, k_2, \dots, k_4) = (2, 0, 3, 0)$$

$$h(2,0,3,0) = 11001110$$

Der zweite und der vierte Block aus Einsen sind hier leer.

$$h(k_1, k_2, \dots, k_r) := \underbrace{1 \dots 1}_{k_1 \text{-mal}} \underbrace{0 \underbrace{1 \dots 1}_{k_2 \text{-mal}}}_{k_2 \text{-mal}} \underbrace{0 \dots 0 \underbrace{1 \dots 1}_{k_r \text{-mal}}}_{k_r \text{-mal}}$$

Die Länge des j-ten Blocks aus Einsen steht für die Anzahl der Objekte auf Platz j. Die Blöcke aus Einsen sind durch Nullen getrennt.

Die Nullen fungieren als "Trennwände" zwischen den r Plätzen, insgesamt gibt es r-1 solche Trennwände.

S:= Menge der 01-Folgen der Länge n+r-1 mit genau n Einsen

$$\#S = ?$$

$$\#S = \binom{n+r-1}{n}$$

Also (wegen der Bijektion) auch:

$$\#S_{n,r} = \binom{n+r-1}{n}$$

Eine Möglichkeit zum Erzeugen einer uniform verteilten Besetzung:

Ziehe aus einer Urne mit n weißen und r-1 schwarzen Kugeln sukzessive ohne Zurücklegen.

Notiere 0 beim Zug einer schwarzen und 1 beim Zug einer weißen Kugel.

Erzeuge so ein rein zufälliges Element aus S. Übersetze dieses (mit der Umkehrung von h) in eine rein zufällige Besetzung.