Vorlesung 9a

Bedingte Verteilung, bedingte Wahrscheinlichkeiten

Teil 1:

Bedingte Verteilung

(Buch S. 111)

Bisher legten wir das Hauptaugenmerk auf den

Aufbau der gemeinsamen Verteilung von X_1 und X_2

aus der Verteilung ρ von X_1

und Übergangswahrscheinlichkeiten $P(a_1, .)$:

$$P(X_1 = a_1, X_2 = a_2) := \rho(a_1)P(a_1, a_2)$$

Jetzt gewinnen wir die Übergangswahrscheinlichkeiten als

bedingte Verteilung von X_2 gegeben X_1 zurück,

und zwar durch

Zerlegung der gemeinsamen Verteilung von X_1 und X_2

nach der Verteilung von X_1 .

Sei X_1 eine diskrete Zufallsvariable mit Zielbereich S_1 und X_2 eine Zufallsvariable mit Zielbereich S_2 .

Dann ist die

bedingte Wahrscheinlichkeit von $\{X_2 \in A_2\}$,

gegeben
$$\{X_1 = a_1\}$$

definiert als

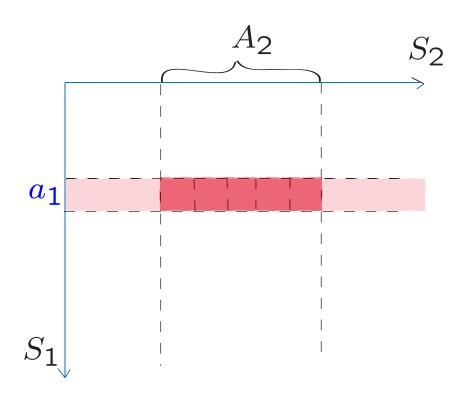
$$\mathbf{P}(X_2 \in A_2 \mid X_1 = a_1) := \frac{\mathbf{P}(X_1 = a_1, X_2 \in A_2)}{\mathbf{P}(X_1 = a_1)} \\
= \frac{\mathbf{P}(X_1 = a_1, X_2 \in A_2)}{\mathbf{P}(X_1 = a_1, X_2 \in S_2)}.$$

In der Matrix der gemeinsamen Verteilungsgewichte

$$\nu(a_1, a_2) = P(X_1 = a_1, X_2 = a_2)$$

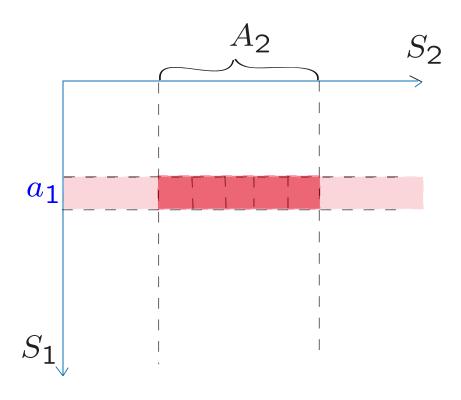
ist $P(X_2 \in A_2 | X_1 = a_1)$ das relative Gewicht von A_2

bezogen auf das Gesamtgewicht der Zeile a_1



Die Verteilung $P(X_2 \in \cdot | X_1 = a_1)$

heißt die bedingte Verteilung von X_2 , gegeben $\{X_1 = a_1\}$.



Im nächsten Beispiel betrachten wir die bedingte Verteilung einer ZV'en unter einem Ereignis.

Sei T eine Geom(p)-verteilte Zufallsvariable, $k \in \mathbb{N}$.

Wir fragen nach der

unter dem Ereignis $E := \{T > k\}$ bedingten

Verteilung der verbleibenden Wartezeit $X_2 := T - k$

und setzen

$$P(X_2 = \ell | E) := P(X_2 = \ell | I_E = 1), \quad \ell = 1, 2, \dots$$

Bedingte Verteilung der verbleibenden Wartezeit: Gedächtnislosigkeit der geometrischen Verteilung:

(Buch S. 116)

T sei Geom(p)-verteilt. Dann gilt

$$P(T > k + \ell | T > k) = q^{k+\ell}/q^k = q^{\ell}$$
.

Die bedingte Verteilung von T-k, gegeben $\{T>k\}$, ist somit gleich Geom(p).

Die Kenntnis, dass T einen Wert größer als k annimmt, ändert also die Verteilung der verbleibenden Wartezeit nicht.

Bedingte Verteilung der verbleibenden Wartezeit: Gedächtnislosigkeit der Exponentialverteilung

Für exponentialverteiltes T zum Parameter λ gilt für r,s>0

$$\mathbf{P}(T > r + s \mid T > r) = e^{-\lambda s}.$$

Die bedingte Verteilung von T-r, gegeben $\{T>r\}$, ist somit gleich $Exp(\lambda)$.

Die Kenntnis, dass T einen Wert größer als r annimmt, ändert also die Verteilung der verbleibenden Wartezeit nicht.