Vorlesung 8b

Bedingte Erwartung und bedingte Varianz

Teil 3:

Erwartete quadratische Prognosefehler und Optimalität der bedingten Erwartung

(Buch S. 90)

Wir erinnern uns an die "hilfreiche Formel für die Varianz":

$$E[Y^2] = Var[Y] + (E[Y])^2.$$

Verschieben um eine Konstante ändert die Varianz nicht:

$$E[(Y - c)^2] = Var[Y] + (E[Y] - c)^2.$$

Was der Varianz recht ist, ist der bedingten Varianz billig:

Für alle $a_1 \in S_1$ und beliebiges $h(a_1) \in \mathbb{R}$ ist

$$\mathbf{E}_{a_1}[(X_2 - h(a_1))^2] = \mathbf{Var}_{a_1}[X_2] + (\mathbf{E}_{a_1}[X_2] - h(a_1))^2.$$

$$\mathbf{E}_{a_1}[(X_2 - h(a_1))^2] = \mathbf{Var}_{a_1}[X_2] + (\mathbf{E}_{a_1}[X_2] - h(a_1))^2.$$

Anstelle von a_1 können wir die Zufallsvariable X_1 einsetzen:

$$\mathbf{E}_{X_1}[(X_2 - h(X_1))^2] = \mathbf{Var}_{X_1}[X_2] + (\mathbf{E}_{X_1}[X_2] - h(X_1))^2.$$

Bilde in dieser Gleichheit den Erwartungswert und verwende links dessen Zerlegung nach X_1 . (also die Formel auf Folie 8 in Teil 1, hier mit $q(a_1, a_2) := (a_2 - h(a_1))^2$:

(*)
$$\mathbf{E}[(X_2 - h(X_1))^2]$$

$$= \mathbf{E}[\mathbf{Var}_{X_1}[X_2]] + \mathbf{E}[(\mathbf{E}_{X_1}[X_2] - h(X_1))^2].$$

(*)
$$\mathbf{E}[(X_2 - h(X_1))^2]$$

= $\mathbf{E}[\mathbf{Var}_{X_1}[X_2]] + \mathbf{E}[(\mathbf{E}_{X_1}[X_2] - h(X_1))^2].$

Diese Formel können wir so lesen:

Der erwartete quadratische Prognosefehler bei Verwendung der Prognose $h(X_1)$ ist die Summe aus dem Erwartungswert der bedingten Varianz und dem "erwarteten quadratischen Bias", der dadurch entsteht, dass man $h(X_1)$ anstelle von $\mathbf{E}_{X_1}[X_2]$ als Prognose von X_2 verwendet.

Satz:

Sei X_2 reellwertige Zufallsvariable mit $\mathbf{E}[X_2^2] < \infty$.

Dann minimiert die bedingte Erwartung $\mathbf{E}_{X_1}[X_2]$ unter allen reellwertigen Zufallsvariablen der Form $h(X_1)$ den erwarteten quadratischen Abstand

$$\mathbf{E}[(X_2 - h(X_1))^2].$$

Beweis.

Wir wissen schon:

(*)
$$\mathbf{E}[(X_2 - h(X_1))^2]$$

= $\mathbf{E}[\mathbf{Var}_{X_1}[X_2]] + \mathbf{E}[(\mathbf{E}_{X_1}[X_2] - h(X_1))^2].$

Der Satz über die Positivität des Erwartungswerts impliziert:

Der letzte Term rechts wird minimal (nämlich 0)

genau dann, wenn

$$P(h(X_1) = E_{X_1}[X_2]) = 1.$$

Äquivalent dazu:

$$h(a_1) = \mathbf{E}_{a_1}[X_2]$$
 für alle a_1 mit $\mathbf{P}(X_1 = a_1) > 0$. \square

Fazit:

- 1. Unter allen Zahlen $h(a_1)$ ist der bedingte Erwartungswert $\mathbf{E}_{a_1}[X_2]$ diejenige Zahl, für die $\mathbf{E}_{a_1}[(X_2-h(a_1))^2]$ minimal wird.
 - 2. Unter allen Zufallsvariablen der Form $h(X_1)$ ist die bedingte Erwartung $\mathbf{E}_{X_1}[X_2]$ diejenige, für die $\mathbf{E}[\mathbf{E}_{X_1}[(X_2-h(X_1))^2]]=\mathbf{E}[(X_2-h(X_1))^2]$ minimal wird.