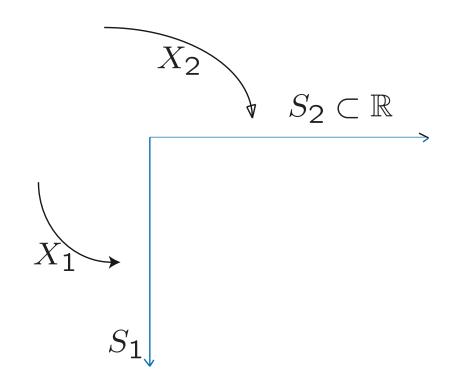
Vorlesung 8b

Bedingte Erwartung und bedingte Varianz

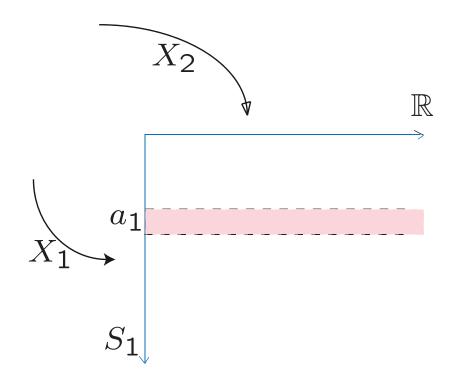
Teil 2:

Bedingte Varianz

(Buch S. 91)



 (X_1,X_2) sei (hier der Einfachheit halber) diskret: S_1 und S_2 endlich oder abzählbar X_2 reellweertig mit $\mathbf{P}(X_2 \in S_2) = 1$



Die auf das Ereignis $\{X_1 = a_1\}$ bedingte Varianz wollen wir verstehen als

die Varianz innerhalb der Zeile namens a_1

Wir definieren die

bedingte Varianz von
$$X_2$$
, gegeben $\{X_1 = a_1\}$ als $\operatorname{Var}_{a_1}[X_2] := \operatorname{E}_{a_1}[(X_2 - \operatorname{E}_{a_1}[X_2])^2]$

Dies ist also die Varianz der Wahrscheinlichkeitsverteilung mit den Gewichten $P(a_1, a_2), a_2 \in S_2 \subset \mathbb{R}$.

Dabei ist $P(a_1, .)$ die Übergangsverteilung "in Zeile a_1 ", siehe V8a1.

Die bedingte Varianz ist somit

der bedingte Erwartungswert der quadratischen Abweichung vom bedingten Erwartungswert, also ein *erwarteter quadratischer Prognosefehler*.

Vergrößert sich der Prognosefehler (und um wieviel), wenn man hier den bedingten Erwartungswert $\mathbf{E}_{a_1}[X_2]$ durch einen anderen "Prognosewert" $h(a_1)$ ersetzt?

Dieser Frage gehen wir im nächsten Teil nach.