Vorlesung 8a

Zweistufige Zufallsexperimente

Teil 1:

Übergangswahrscheinlichkeiten

Stellen wir uns ein zufälliges Paar $X=(X_1,X_2)$ vor, das auf zweistufige Weise zustande kommt:

es gibt eine Regel, die besagt, wie X_2 verteilt ist, gegeben dass X_1 den Ausgang a_1 hat.

Ein erstes Beispiel:

In Stufe 1 entscheiden wir uns

mit Wahrscheinlichkeit 2/3 für einen fairen Würfel

und mit W'keit 1/3 für einen gezinkten:

dieser hat drei Seiten mit 5, drei mit 6 beschriftet.

 X_2 := die dann (in Stufe 2) geworfene Augenzahl.

$$P(X_2 = 6) = ?$$

Wenn in Stufe 1 der faire Würfel gewählt wird, dann sind die Verteilungsgewichte von X_2

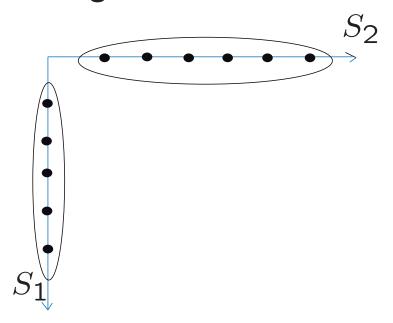
$$\frac{1}{6}$$
 $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$

Wenn in Stufe 1 der gezinkte Würfel gewählt wird, dann sind die Verteilungsgewichte von X_2

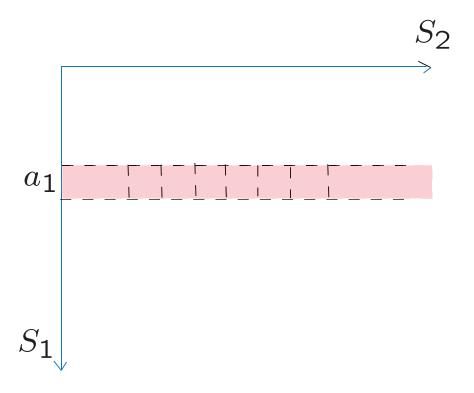
$$0 \quad 0 \quad 0 \quad 0 \quad \frac{1}{2} \quad \frac{1}{2}$$

$$P(X_2 = 6) = \frac{2}{3} \cdot \frac{1}{6} + \frac{1}{3} \cdot \frac{1}{2} = \frac{5}{18}.$$

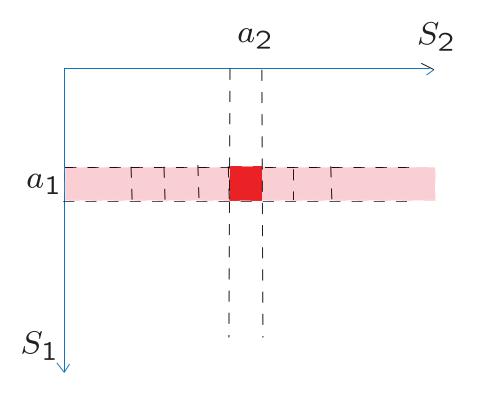
Ein allgemeiner Rahmen.



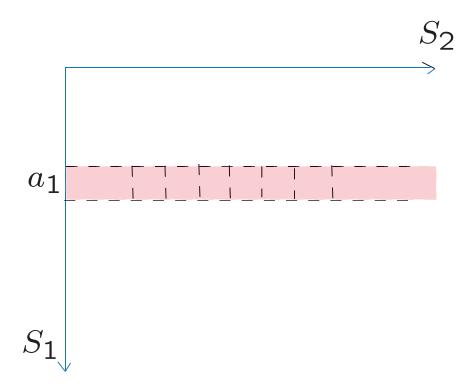
 S_1 und S_2 seien (fürs Erste) diskrete Mengen. Stellen wir uns vor: Wenn in Stufe 1 die Wahl auf das Element $a_1 \in S_1$ fällt, dann landet man in der mit a_1 bezeichneten Zeile.



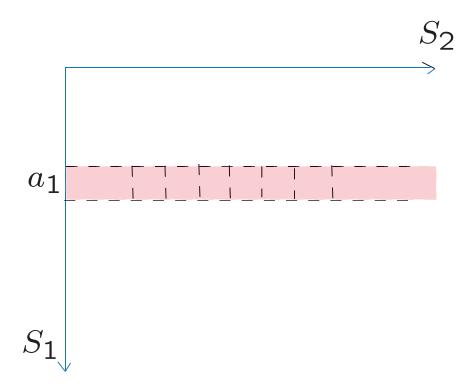
 S_1 und S_2 seien (fürs erste) endliche Mengen. Stellen wir uns vor: Wenn in Stufe 1 die Wahl auf das Element $a_1 \in S_1$ fällt, dann landet man in der mit a_1 bezeichneten Zeile.



Wenn dann in Stufe 2 die Wahl auf das Element $a_2 \in S_2$ fällt, landet man in dem mit (a_1, a_2) bezeichneten Feld (Zeile a_1 , Spalte a_2)

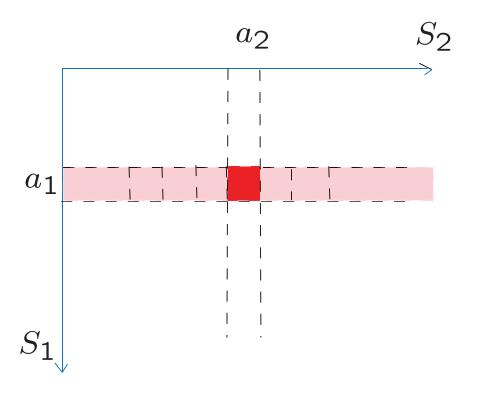


Jetzt bringen wir Wahrscheinlichkeiten ins Spiel. Sei X_1 eine S_1 -wertige Zufallsvariable mit Verteilung ρ . Mit Wahrscheinlichkeit $\rho(a_1)$ fällt X_1 auf a_1 und landet man damit in Stufe 1 in Zeile a_1 .



Für jedes $a_1 \in S_1$ sei $P(a_1, .)$ eine Verteilung auf S_2

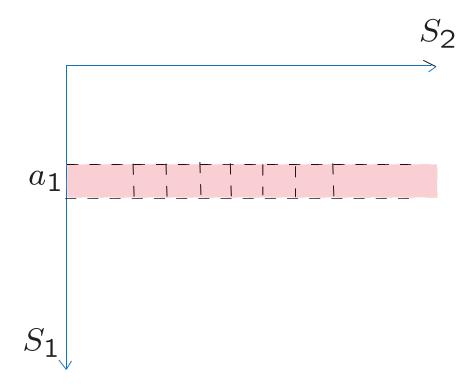
Das heißt im hier betrachteten diskreten Fall: $P(a_1, a_2), a_2 \in S_2$, sind Verteilungsgewichte auf S_2 , also nichtnegative Zahlen, die zu 1 summieren.



Für jedes $a_1 \in S_1$ sei $P(a_1, .)$ eine Verteilung auf S_2 . Vorstellung:

Gegeben
$$\{X_1 = a_1\}$$

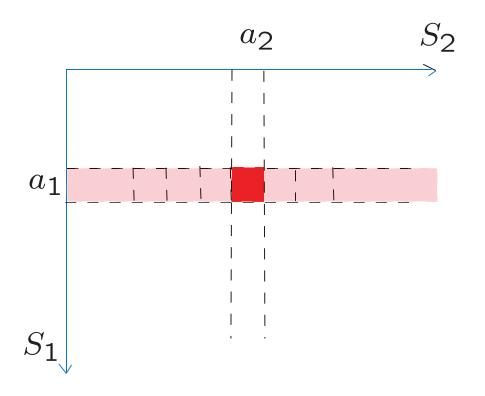
hat das Ereignis $\{X_2 = a_2\}$ die W'keit $P(a_1, a_2)$.



Für jedes $a_1 \in S_1$ sei $P(a_1, .)$ eine Verteilung auf S_2 Anders gesagt:

Gegeben $\{X_1 = a_1\}$

hat die Zufallsvariable X_2 die Verteilung $P(a_1, .)$.



Das Gewicht $\rho(a_1)$ aus Stufe 1 wird in Stufe 2 gemäß $P(a_1,.)$ auf die Zeile a_1 aufgeteilt:

$$P(X_1 = a_1, X_2 = a_2) = \rho(a_1)P(a_1, a_2).$$

Noch zwei Beispiele:

In diesen wird die zweite Stufe jeweils eine *unabhängige Verschiebung* sein:

Beispiel A:

Gegeben $\{X_1 = a_1\}$

ist X_2 uniform verteilt auf $\{a_1 - 1, a_1 + 1\}$.

Beispiel B:

Gegeben $\{X_1 = a_1\}$ ist $X_2 N(a_1, 1)$ -verteilt.

Beispiel A:

In Stufe 1

wählen wir eine auf $\{1,2,3\}$ uniform verteilte Zahl X_1 . In Stufe 2 verschieben wir das in Stufe 1 erzielte Ergebnis mit W'keit 1/2 um eins nach rechts und mit W'kt 1/2 um eins nach links.

Gegeben $\{X_1 = 3\}$, ist X_2 uniform verteilt auf $\{2, 4\}$.

$$P(X_1 = 3, X_2 = 2) = \frac{1}{3} \cdot \frac{1}{2}.$$

$$P(X_2 = 2) = \sum_{i=1}^{3} P(X_1 = i, X_2 = 2) = \frac{1}{3}.$$

Beispiel B:

In Stufe 1 stellt sich eine reelle Zahl X_1 ein.

In Stufe 2 wird dazu

eine unabhängige standard-normalverteilte ZV'e addiert:

Gegeben $\{X_1 = a_1\}$

hat X_2 die Verteilung $N(a_1, 1)$.

(Dieses Beispiel weist über den diskreten Fall hinaus.)