Vorlesung 7b

Korrelationskoeffizient und Regressionsgerade

Teil 2

Der Korrelationskoeffizient

(Buch S. 62)

Definition.

Für zwei Zufallsvariable X, Y mit positiven, endlichen Varianzen ist

$$\kappa_{XY} := \frac{\operatorname{Cov}[X, Y]}{\sqrt{\operatorname{Var} X} \sqrt{\operatorname{Var} Y}}$$

der Korrelationskoeffizient von X und Y.

(kurz auch: $die\ Korrelation\ von\ X\ und\ Y$). Aus der Kovarianz-Varianz-Ungleichung folgt sofort

$$-1 \le \kappa_{XY} \le 1$$
.

Fünf prominente Zahlen zur (teilweisen) Beschreibung der Verteilung eines zufälligen Paares (X,Y) in $\mathbb{R} \times \mathbb{R}$:

 μ_X und μ_Y : die Erwartungswerte von X und Y

 σ_X und σ_Y : die Standardabweichungen von X und Y

 κ_{XY} : der Korrelationskoeffizient von X und Y

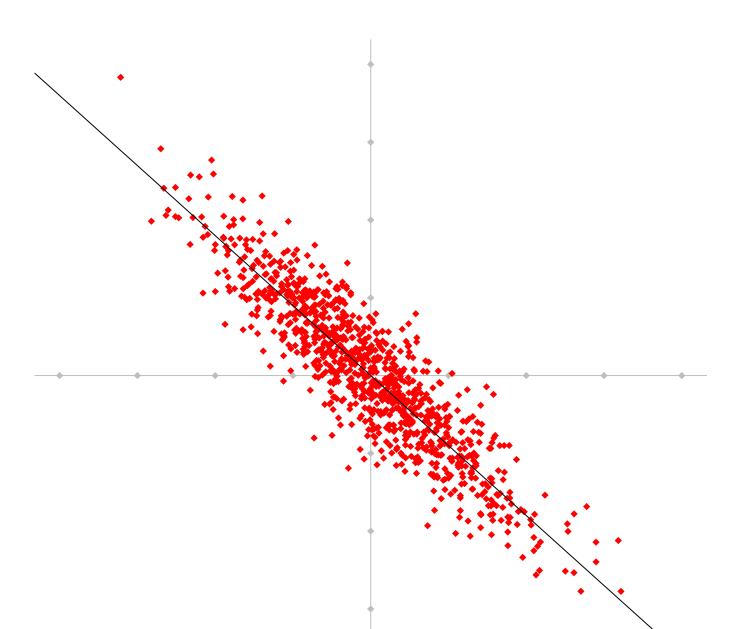
Die folgenden 11 Bilder zeigen jeweils die Realisierungen von 1000 unabhängige Kopien (X_i, Y_i) eines zufälligen Paares (X, Y),

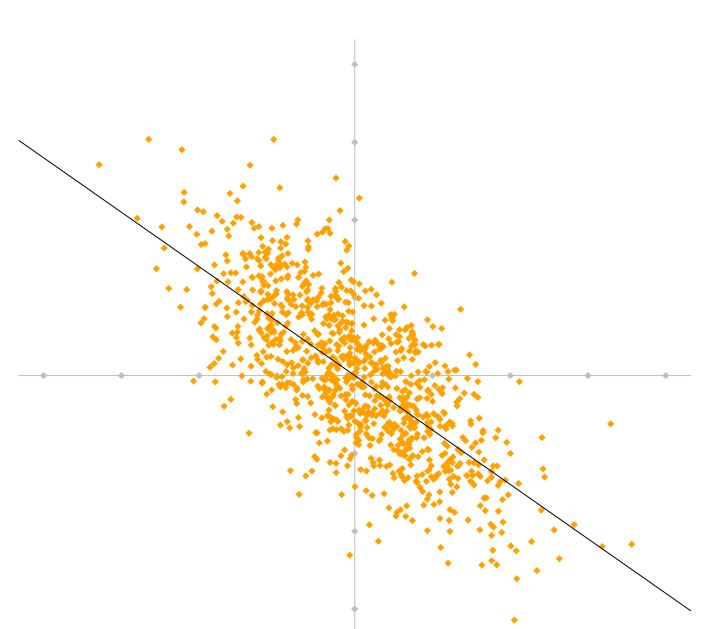
mit X N(0,1)-verteilt , Y N(0,1)-verteilt, und

$$\kappa_{XY} = -0.9, -0.7, \dots, -0.1, 0, 0.1, \dots, 0.7, 0.9,$$

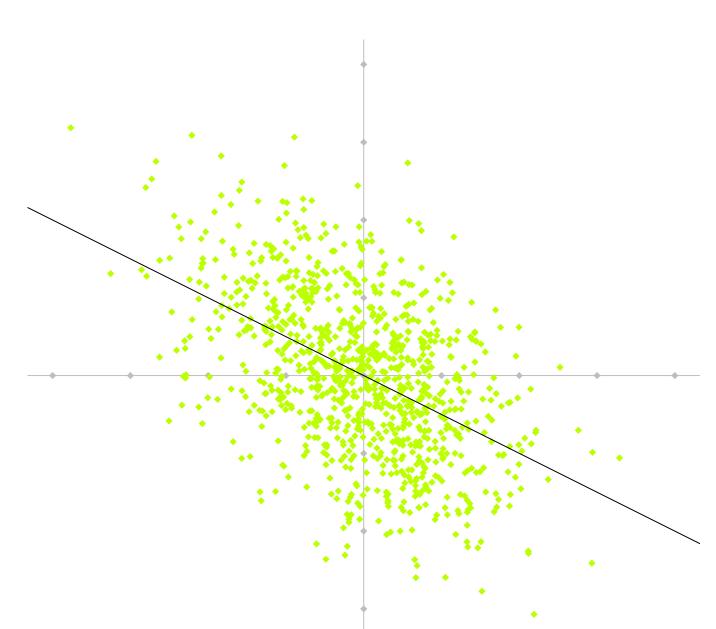
zusammen mit der

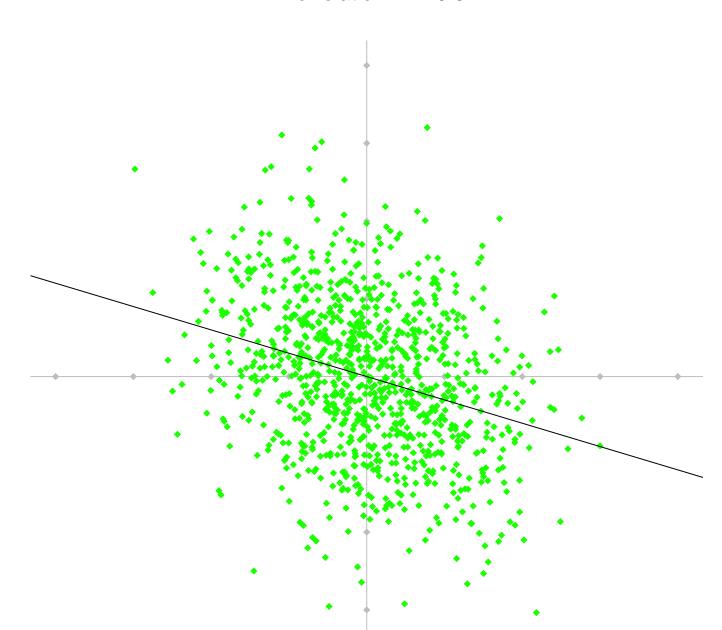
Geraden durch den Ursprung mit Anstieg κ_{XY} .

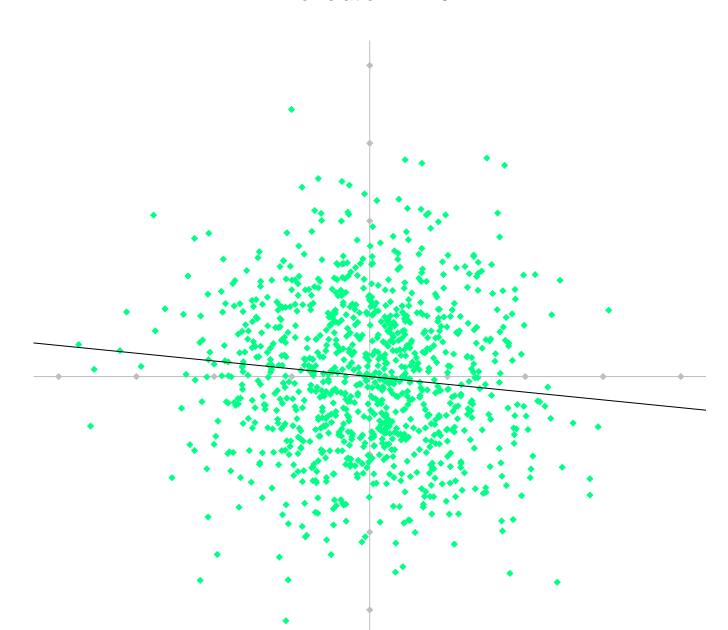


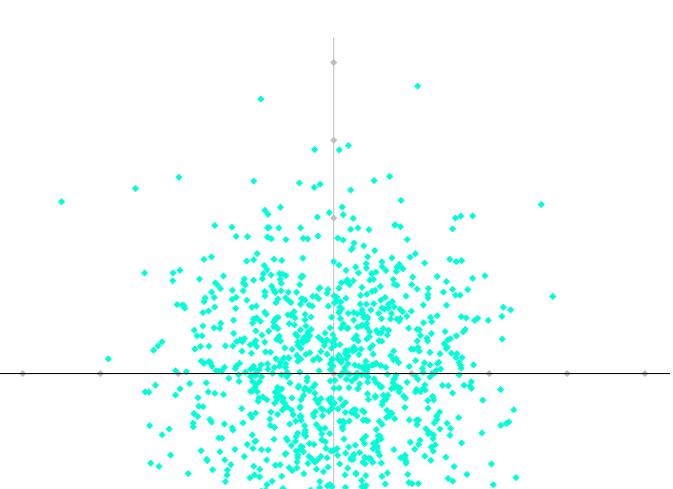


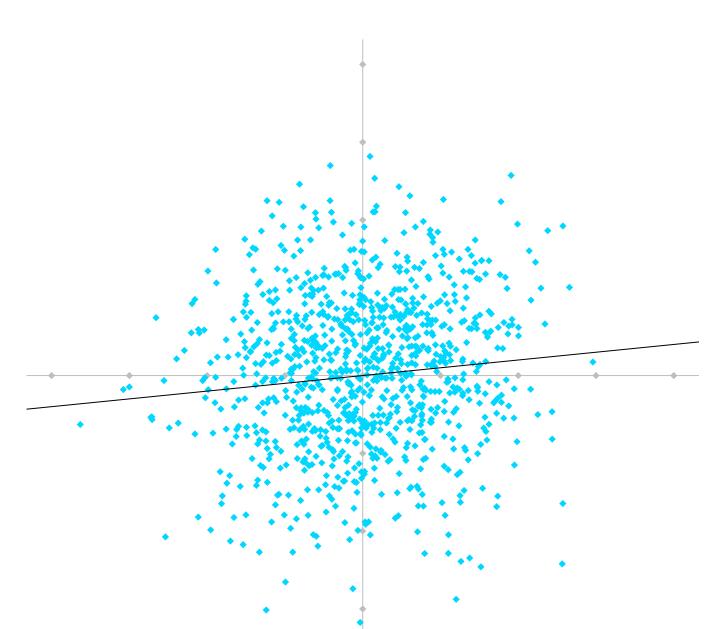


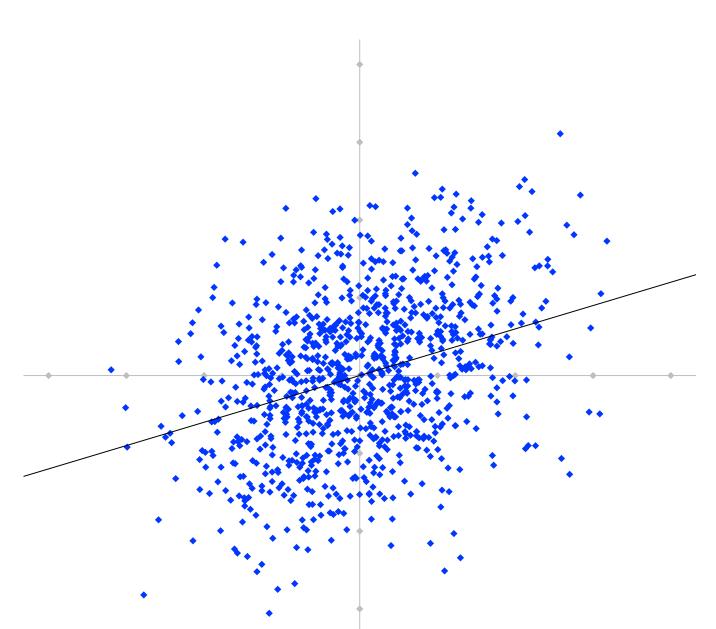


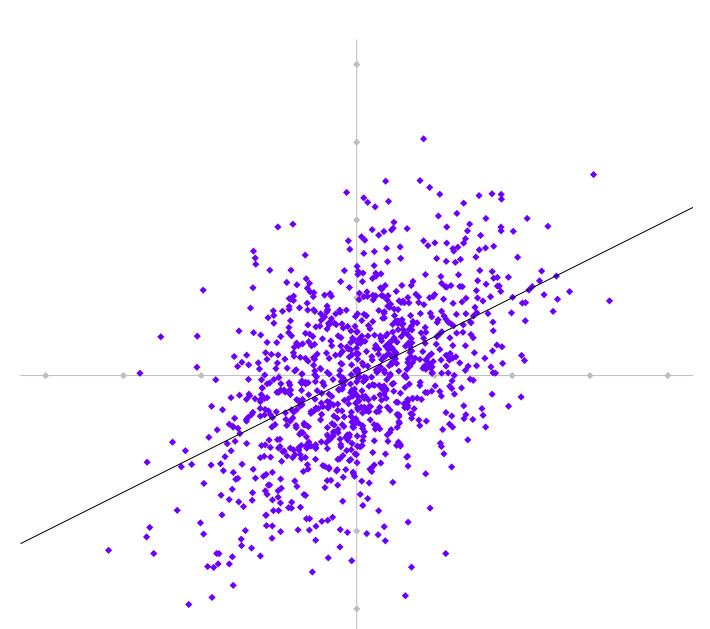


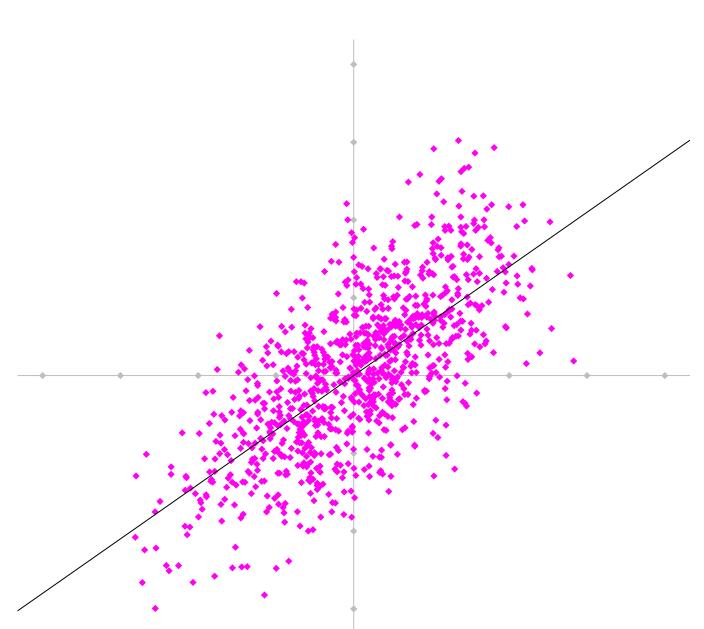


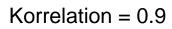


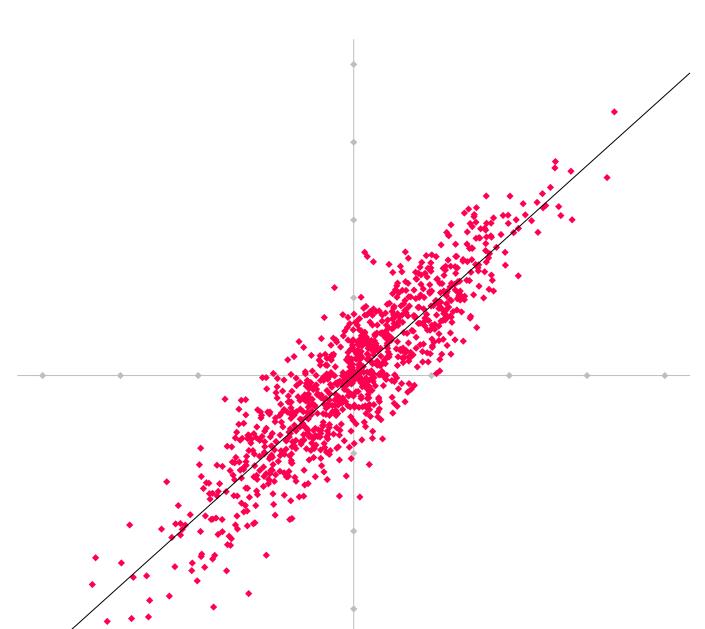












Beispiel:

Gemeinsam normalverteilte Zufallsvariable Z_1,Z_2 seien unabhängig und standard-normalverteilt, Wir wählen eine Konstante $\kappa \in [-1,1]$ und setzen

$$X:=Z_1,\quad Y:=\kappa Z_1+\sqrt{1-\kappa^2}Z_2.$$
 Damit ergibt sich $\mathrm{Cov}[X,Y]=\mathrm{Cov}[Z_1,\rho Z_1]=\kappa,$
$$\sigma_X^2=\sigma_Y^2=1.$$
 Also: $\kappa_{XY}=\kappa.$

Auch Y ist übrigens standard-normalverteilt (siehe V6b4 F9).

Wir werden sehen:

 κ^2 ist ein Maß dafür, um wieviel besser man Y durch eine affin lineare Funktion von X vorhersagen kann:

$$Y = \beta_1 X + \beta_0 + \text{``Fehler''},$$

als durch eine Konstante:

$$Y = c +$$
 "Fehler".

(Die "Güte der Vorhersage" bezieht sich auf die Kleinheit des erwarteten quadratischen Fehler (mean sqare error).)