Vorlesung 6a

Varianz und Kovarianz

Teil 3

 \sqrt{n} -Gesetz, Chebyshev-Ungleichung und Schwaches Gesetz der großen Zahlen

(Buch S. 74)

Das \sqrt{n} -Gesetz für die Standardabweichung

folgt aus der Additivität der Varianz unabhängiger ZV'er:

Seien X_1, \ldots, X_n unabhängig

und identisch verteilt mit Varianz σ^2 .

Dann gilt für die Varianz

des Mittelwerts
$$M_n := \frac{1}{n}(X_1 + \cdots + X_n)$$
:

$$Var[M_n] = \frac{1}{n^2} \cdot n\sigma^2 = \frac{1}{n}\sigma^2.$$

Man hat somit das berühmte \sqrt{n} -Gesetz:

$$\sigma_{M_n} = \frac{1}{\sqrt{n}}\sigma.$$

Die Ungleichung von Chebyshev

liefert eine Quantifizierung der anschaulichen Botschaft

"Je weniger eine reellwertige Zufallsvariable streut, mit um so größerer Wahrscheinlichkeit fällt sie nahe zu ihrem Erwartungswert aus."

Die Ungleichung von Chebyshev:

Y sei eine reellwertige Zufallsvariable mit endlichem Erwartungswert μ .

Dann gilt für alle $\varepsilon > 0$:

$$\mathbf{P}(|Y - \mu| \ge \varepsilon) \le \frac{1}{\varepsilon^2} \mathbf{Var}[Y]$$

Beweis:

Mit $X := (Y - \mu)^2$ ist die Behauptung äquivalent zu $\mathbf{P}(X \ge \varepsilon^2) \le \frac{1}{\varepsilon^2} \mathbf{E}[X]$.

Das aber folgt aus der Ungleichung von Markov.

Das Schwache Gesetz der Großen Zahlen

ist eine unmittelbare Folgerung aus dem \sqrt{n} -Gesetz zusammen mit der Ungleichung von Chebyshev:

Seien X_1,X_2,\ldots unabhängig und identisch verteilt mit Erwartungswert μ und endlicher Varianz. Dann gilt für die Mittelwerte

$$M_n := \frac{1}{n}(X_1 + \dots + X_n):$$

$$\mathbf{P}(|M_n - \mu| \ge \varepsilon) \le \frac{1}{\varepsilon^2} \mathbf{Var}[M_n] \to \mathbf{0} \quad \text{für } n \to \infty.$$