Vorlesung 12b

Relative Entropie

Teil 3:

Entropieschranken

In den folgenden Beispielen benutzen wir den eben bewiesenen Satz in der Gestalt

(*)
$$\mathbf{H}[\rho] \le -\sum_{a} \rho(a) \log \pi(a)$$

mit Gleichheit genau für $\rho = \pi$.

Wir sehen:

Jede Wahl von π liefert in (*) eine Schranke für $\mathbf{H}[\rho]$, mit Gleichheit genau für $\rho = \pi$.

Für jede Wahl von π wird die rechte Seite von (*) zum Erwartungswert der Zufallsvariablen $g(X) := -\log \pi(X)$.

(*) $\mathbf{H}[\rho] \leq -\sum_{a} \rho(a) \log \pi(a)$ mit Gleichheit genau für $\rho = \pi$.

Beispiel 1: Vergleich mit der uniformen Verteilung:

Sei S endlich mit n Elementen

und sei
$$\pi(a) = 1/n$$
 für alle $a \in S$.

Dann folgt aus (*) für jede Verteilung ρ auf S:

$$\mathbf{H}[\rho] \le -\sum_{a} \rho(a) \log \left(\frac{1}{n}\right) = \log n$$
.

$$\mathbf{H}[\rho] \leq \log n.$$

Gleichheit gilt genau im Fall der uniformen Verteilung, sie maximiert auf S die Entropie. \square

(*) $\mathbf{H}[\rho] \leq -\sum_{a} \rho(a) \log \pi(a)$ mit Gleichheit genau für $\rho = \pi$.

Beispiel 2: Vergleich mit der um -1 verschobenen geometrischen Verteilung:

Sei nun $S = \{0, 1, 2, \ldots\}$, und $\pi(k) := 2^{-k-1}$.

Dann folgt aus (*) für alle Verteilungen ρ mit EW $\mu(\rho)$:

$$\mathbf{H}_2[\rho] \le -\sum_k \rho(k) \log_2(2^{-k-1})$$

$$= \sum_{k=0}^{\infty} \rho(k)(k+1) = \mu(\rho) + 1.$$

Gleichheit gilt für $\rho = \pi$, dann ist $H_2[\rho] = 2$. Also: Unter allen Verteilungen auf \mathbb{N}_0 mit $EW \leq 1$

hat die Verteilung π die größte binäre Entropie, nämlich 2. \square

Im nächsten Beispiel betrachten wir (für eine Abbildung $u:S \to \mathbb{R}$) die Frage:

Wie sieht unter allen Verteilungen von X mit vorgegebenem Wert v für $\mathbf{E}[u(X)]$ diejenige mit der größten Entropie aus? (Das obige Beispiel 2 passt in diesem Rahmen mit u(k) := k)

Wieder verwenden wir die Informationsungleichung in der Form

(*)
$$\mathbf{H}[\rho] \leq -\sum_{a} \rho(a) \log \pi(a)$$
 mit Gleichheit genau für $\rho = \pi$.

Beispiel 3: Vergleich mit einer "Boltzmann-Gibbs-Verteilung":

Gegeben sei $u: S \to \mathbb{R}, \ \beta \geq 0.$

Wir definieren die Gewichte $\pi(a) := e^{-\beta u(a)}/z$ mit

$$z := \sum_{a \in S} e^{-\beta u(a)}$$
 (Annahme: $z < \infty$.)

Die Abschätzung (*) ergibt für alle Verteilungen ρ auf S:

$$\mathbf{H}_{e}[\rho] \leq -\sum_{a \in S} \rho(a) \ln \pi(a) = -\sum_{a \in S} \rho(a) (-\beta u(a) - \ln z)$$
$$= \beta \sum_{a \in S} \rho(a) u(a) + \ln z$$

mit Gleichheit genau für $\rho = \pi$.

Anders gewendet:

Sei
$$\pi$$
 wie auf der vorigen Folie, und $v := \sum_{a \in S} u(a)\pi(a)$.

Unter allen Zufallsvariablen X mit vorgegebenem Erwartungswert $\mathbf{E}[u(X)] = v$ hat diejenige die größte Entropie, die die Verteilungsgewichte $\pi(a), \ a \in S$, hat.

Die Verteilung mit den Gewichten $e^{-\beta u(a)}/z$ heißt *Boltzmann-Gibbsverteilung* zum Potenzial u mit Parameter β .