Vorlesung 11a

Bayes'sche Anteilschätzung und die Pólya-Urne

Teil 4

Die Aktualisierung des Bayes-Schätzers aufgefasst als ein Pólya-Schritt

(Buch S. 113-114)

Wir erinnern hier an den direkten Beweis von

$$P(Z_{n+1} = 1 | K_n = k) = \frac{k+1}{n+2}$$

in unserer Übungsaufgabe 36:

Das Kernargument war:

Gegeben dass U_0 das (k+1)-t kleinste der U_0, \ldots, U_n ist, gibt es für das Einfügen von U_{n+1}

k+1 Slots links von U_0

und

n+2-(k+1) Slots rechts von U_0 .

Hier noch einmal langsamer an einem Beispiel:

Wie ist Z_3 verteilt, gegeben $\{K_2=2\}$? Wir übersetzen das in die Darstellung durch U_0, U_1, U_2, U_3 .

Wie wahrscheinlich ist es, dass $U_3 < U_0$, gegeben U_0 ist größer als U_1 und als U_2 ?

Der (Größen-)Rang von U_3 in U_0, U_1, U_2, U_3 ist uniform verteilt, also fügt sich U_3 je mit Wkeit 1/4 in einen der 4 von U_0, U_1, U_2 aufgemachten Slots (einer links vom Minimum, zwei in der Mitte, einer rechts vom Maximum) ein.

Gegeben $U_0=\max(U_0,U_1,U_2)$ (gleichbedeutend damit: gegeben $\{K_2=2\}$), führen 3 dieser Slots auf $U_3 < U_0$ (und damit auf $Z_3=1$) und einer auf $U_3 > U_0$ (und damit auf $Z_3=0$). Fazit:

$$P(Z_3 = 1 | K_2 = 2) = 3/4, P(Z_3 = 0 | K_2 = 2) = 1/4.$$

Folgende Frage zu rein zufälligen Permutationen ist dasselbe in Grün:

Gegeben in einer rein zufälligen Permutation Π von 0,1,2,3 ist $\Pi(0)$ größer als $\Pi(1)$ und als $\Pi(2)$.

Was ist dann die W'keit von $\{\Pi(3) < \Pi(0)\}$?

Antwort: 3 der 4 gleich wahrscheinlichen Slots für $\Pi(3)$ führen auf $\{\Pi(3) < \Pi(0)\}$, einer auf $\{\Pi(3) > \Pi(0)\}$. Also:

$$P(\Pi(3) < \Pi(0)|\Pi(1) < \Pi(0), \Pi(2) < \Pi(0)) = 3/4.$$

Fazit

(vgl. Buch S. 113-114):

 (Z_1,Z_2,\ldots) ist so verteilt wie eine zufällige Pólya-Folge , d.h. wie die Farbfolge (F_i) der Züge aus einer Pólya-Urne (bzw. die Farbfolge der Zugänge in einer Pólya-Urne) mit anfänglich

einer Kugel von Farbe 1 und einer Kugel von Farbe 2

und $F_i := I_{\{i-\text{te gezogene Kugel hat Farbe 1}\}}$

Diese Einsicht können Sie an der folgenden mit unserer A36 verwandten Übungsaufgabe rekapitulieren:

Zusatzaufgabe auf Blatt 10 der "Stochastik für die Informatik", WiSe 19/20: U_0, U_1, U_2, U_3 seien unabhängig und uniform auf [0, 1] verteilt.

- (a) Für i = 0, 1, 2, 3 setzen wir $R(i) := \sum_{j \in \{0,1,2,3\} \setminus \{i\}} I_{\{U_j < U_i\}}$. Begründen Sie, warum (R(0), R(1), R(2), R(3)) eine rein zufällige Permutation von 0,1,2,3 ist.
- b) Bestimmen Sie $P(U_1 < U_0, U_2 < U_0)$ und $P(U_1 < U_0, U_2 < U_0, U_3 \ge U_0).$
- c) Wir definieren $Z_1:=I_{\{U_1< U_0\}}, Z_2:=I_{\{U_2< U_0\}}, Z_3:=I_{\{U_3< U_0\}}.$ (i) Berechnen Sie $\mathbf{P}(Z_2=1|Z_1=1)$ und $\mathbf{P}(Z_3=0|Z_1=1,Z_2=1).$
- (ii) Tragen Sie die Gewichte der Übergangsverteilungen des durch (Z_1, Z_2, Z_3) beschriebenen 3-stufigen Experiments in einen Baum der Tiefe 3 ein.

Die Asymptotik der Farbanteile in der Pólya-Urne.

Wegen der von uns schon erkannten Verteilungsgleichheit einer Münzwurffolge mit uniform verteiltem Erfolgsparameter

und einer Pólya-Folge (F_1, F_2, \ldots)

ist das folgende Simulationsergebnis nicht mehr ganz so erstaunlich.

Dort werden 5 Pólya-Pfade $(X_n) = (X_n^{(1)}, X_n^{(2)}), n = 1, 2, ...$ simuliert,

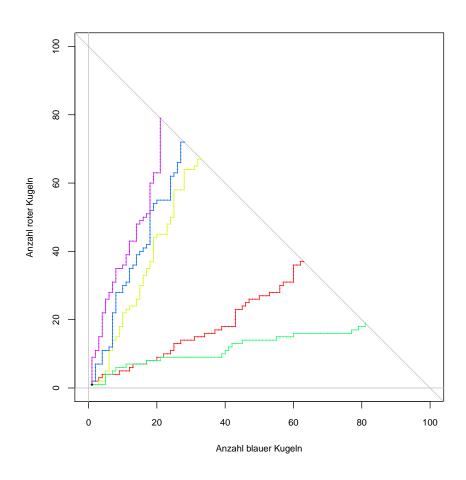
mit
$$X_n^{(1)} := 1 + F_1 + \dots + F_n$$

die Anzahl der Kugeln von Farbe 1 nach n Zügen

und
$$X_n^{(2)} := 1 + (1 - F_1) + \cdots + (1 - F_n)$$

die Anzahl der Kugeln von Farbe 2 nach n Zügen.

5 Realisierungen von Pólya-Pfaden $(X_i)_{i=1,\dots 100}$



$$\frac{1}{n}(F_1 + \cdots + F_n)$$
 scheint zu konvergieren -

allerdings gegen einen zufälligen Grenzwert!

Tatsächlich gilt: Bedingt unter U_0 ist

$$I_{\{U_1 < U_0\}}, I_{\{U_2 < U_0\}}, \dots$$

Münzwurffoge zum Parameter U_0 .

Nach dem Gesetz der großen Zahlen konvergiert

$$\frac{1}{n}\left(I_{\{U_1< U_0\}} + \dots + I_{\{U_n< U_0\}}\right)$$
gegen U_0 .

5 Realisierungen von Pólya-Pfaden $(X_i)_{i=1,\dots 1000}$

