Übungen zur Vorlesung "Elementare Stochastik"

Abgabe der Lösungen zu den S-Aufgaben: Dienstag, 6. Juni 2017, 10:05-10:15, H V

- **21.** S a) Die Zufallsvariable U sei uniform auf [0,1] verteilt. Finden Sie eine Abbildung $h:[0,1]\to\mathbb{R}$, sodass h(U)
- i) Bin (3, 1/4)-verteilt
- ii) Exp(3)-verteilt
- ist. Skizzieren Sie jeweils die Lösung.

Hinweis zu i): Zerlegen Sie das Einheitsintervall in vier Teilintervalle passender Länge.

- b) Z sei standard-normalverteilt. Berechnen Sie den Erwartungswert von e^Z . Hinweis: Erweitern Sie den mittels der Dichte von Z ausgedrückten Erwertungswert $\mathbf{E}[e^Z]$ mit $e^{-1/2}e^{1/2}$ und verwenden Sie die Identität $x^2 - 2x + 1 = (x - 1)^2$.
- **22.** Z=(X,Y) sei uniform verteilt auf $S:=([0,1]\times[0,1])\cup([-1,0]\times[-1,0])$. Berechnen Sie $\mathbf{Cov}[X,Y]$. (Hinweis: Auch für kontinuierlich verteilte reellwertige Zufallvariable gilt die hilfreiche Formel $\mathbf{Cov}[X,Y] = \mathbf{E}[XY] - \mathbf{E}[X]\mathbf{E}[Y]$. Außerdem dürfen Sie verwenden, dass es hier nicht auf die Integrationsreihenfolge ankommt: $\iint_{[\ell_1,r_1]\times[\ell_2,r_2]} xy\,dxdy = \int_{\ell_1}^{r_1} x\,dx \int_{\ell_2}^{r_2} y\,dy.$ Erinnern Sie sich auch an die Transformationsformel für Erwartungswerte: $\mathbf{E}[h(Z)] = \int_S h(a)f(a)\,da$. Wie sieht hier die Dichte f(a) da aus?)
- **23.** a) Z_1 und Z_2 seien unabhängig und N(0,1)-verteilt.
- (i) Berechnen Sie $P(Z_1^2 + Z_2^2 \ge a)$.

Sie dürfen dabei die folgende Identität verwenden:

$$\iint_{\{(x,y):\sqrt{x^2+y^2}>c\}} e^{-(x^2+y^2)/2} \, dx \, dy = 2\pi \int_c^\infty e^{-r^2/2} r \, dr, \qquad c \ge 0.$$

(ii) Sei G das Kreissegment in der (x,y)-Ebene) zwischen den Radien $r_1 < r_2$ und zwischen den (im Bogenmaß gemessenen) Winkeln $\theta_1 < \theta_2$. Begründen Sie, warum gilt:

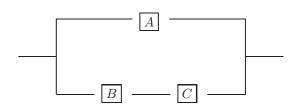
$$\mathbf{P}((Z_1, Z_2) \in G) = (e^{-r_1^2/2} - e^{-r_2^2/2}) \frac{1}{2\pi} (\theta_2 - \theta_1).$$

- $\mathbf{P}((Z_1,Z_2)\in G)=(e^{-r_1^2/2}-e^{-r_2^2/2})\frac{1}{2\pi}(\theta_2-\theta_1).$ (iii) Sei $R^2:=Z_1^2+Z_2^2$ das Normquadrat und Θ der im Bogenmaß gemessene Winkel des Punktes mit den kartesischen Koordinaten (Z_1, Z_2) . Zeigen Sie: R^2 ist Exp(1/2)-verteilt, Θ ist $\text{Unif}([0, 2\pi]$ verteilt, und R^2 und Θ sind unabhängig.
- b) (Box-Müller-Verfahren). U und V seien unabhängig und uniform verteilt auf [0,1]. Wir setzen

$$X_1 := \sqrt{-2 \ln U} \cos(2\pi V), \quad X_2 := \sqrt{-2 \ln U} \sin(2\pi V).$$

Dann sind X_1 und X_2 unabhängig und standard-normalverteilt. Begründen Sie diese Aussage, indem Sie die gemeinsame Verteilung von $-2 \ln U$ und $2\pi V$ betrachten.

24. S a) Die Lebensdauern der Geräte A, B, C seien unabhängig und exponentialverteilt mit Parametern α, β, γ . Das aus A, B und C zusammengesetzte System (siehe Bild) ist so lange funktionstüchtig, bis sowohl das Gerät A als auch mindestens eines der Geräte B oder C ausgefallen sind. Berechnen Sie in Abhängigheit von α, β, γ die Wahrscheinlichkeit dafür, dass das System vor der Zeit t ausfällt.



b) X_1, X_2, \ldots seien unabhängig und standard-exponentialverteilt. Berechnen Sie für $a \in \mathbb{R}$ den Grenzwert von

$$\mathbf{P}(\max(X_1,\ldots,X_n)<\ln n+a)$$

für $n \to \infty$.