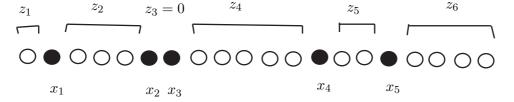
Übungen zur Vorlesung "Elementare Stochastik"

Abgabe der Lösungen zu den S-Aufgaben: Dienstag, 15. Mai 2017, 10:05-10:15, H V

9. a) Aus den Zahlen $\{1, 2, ..., 20\}$ werden rein zufällig fünf verschiedene ausgewählt. Es bezeichne $X_1 < X_2 < X_3 < X_4 < X_5$ die ausgewählten Zahlen, angeordnet in aufsteigender Reihenfolge. Weiter bezeichne $(Z_1, ..., Z_6) := (X_1 - 1, X_2 - X_1 - 1, ..., 20 - X_5)$ die Längen der Zwischenräume (einschließlich derer am Anfang und am Ende, siehe Zeichnung):



In Vorlesung 2a) bemerkten wir, dass (Z_1, \ldots, Z_6) uniform verteilt ist auf der Menge $S_{15,6} := \{(k_1, \ldots, k_6) : k_j \in \mathbb{N}_0, k_1 + \cdots + k_6 = 15\}$. Verwenden Sie diese Einsicht, um den Erwartungswert von $20 - X_5$ zu berechnen.

- b) 20 Karten, von denen genau 5 rot sind, werden perfekt gemischt und der Reihe nach aufgeschlagen. Es bezeichne T die Anzahl der Karten, die aufgeschlagen werden, bis alle 5 roten Karten erschienen sind. (T hat somit den Wertebereich $\{5,\ldots,20\}$.) Berechnen Sie $\mathbf{E}[T]$.
- c) Bestimmen Sie in der Situation von b) die Wahrscheinlichkeiten (i) $\mathbf{P}(T=20)$, (ii) $\mathbf{P}(T=19)$, (iii) $\mathbf{P}(T=17)$.
- 10. Eine aus 210000 Individuen bestehende Population S zerfällt in 21 gleich große Klassen $C_{k,\ell}$, $k=0,\ldots,6$; $\ell=1,2,3$. Jedem Individuum $a\in C_{k,\ell}$ ist der Wert $h(a):=10k+\ell$ zugeordnet. Es seien J_1,J_2,\ldots die Ergebnisse eines rein zufälligen Zi ehens ohne Zurücklegen aus S. Berechnen Sie den Erwartungswert des Stichprobenmittels $\frac{1}{20}\sum_{i=1}^{20}h(J_i)$.
- **11.** S Es sei X eine rein zufällige Permutation von $1, \ldots, 1000$.
- a) Berechnen Sie den Erwartungswert der Anzahl der Zykeln in X. (Hinweis: Aufgabe 7 ist hilfreich.)
- b) Für jedes $i=1,\ldots,995$ bekommen Sie einen Euro, wenn X_i,\ldots,X_{i+5} in aufsteigender Reihenfolge ausfällt. Was ist der Erwartungswert Ihrer gesamten Auszahlung?
- **12. S** Wie groß ist die Wahrscheinlichkeit, beim 20-maligen (gewöhnlichen) Würfeln mindestens eine der Augenzahlen 1, 2, 3 kein einziges Mal zu werfen? Hinweis: Betrachten Sie für i=1,2,3 das Ereignis E_i , dass i in den 20 Würfen nicht vorkommt, und berechnen Sie $\mathbf{P}(E_1 \cap \ldots \cap E_i)$.