1 Crump-Mode-Jagers process counted by random characteristics

We give here only an informal description of the Crump-Mode-Jagers process counted by random characteristics or, what is the same, of the general branching process counted by random characteristics. A particle, say, x, of this process is characterised by three random processes

$$(\lambda_x, \xi_x(\cdot), \chi_x(\cdot))$$

which are iid copies of a triple $(\lambda, \xi(\cdot), \chi(\cdot))$ and whose components have the following sense:

- if a particle was born at moment σ_x then
 λ_x is the life-length of the particle;
- $\xi_x(t - \sigma_x)$ is the number of children produced by the particle within the time-interval $[\sigma_x, t]$; $\xi_x(t - \sigma_x) = 0$ if $t - \sigma_x < 0$;
- $\chi_x(t - \sigma_x) \geq 0$ is a stochastic process subject to changes ONLY within the time-interval $[\sigma_x, \sigma_x + \lambda_x)$ while outside the interval it has the form

$$\chi_x(t - \sigma_x) = \begin{cases}
0 & \text{if } t - \sigma_x < 0 \\
\chi_x(\lambda_x) & \text{if } t - \sigma_x \geq \lambda_x
\end{cases}$$

(it is NOT assumed that $\chi_x(t)$ is a nondecreasing function in $t \geq 0$).

The stochastic process

$$Z^x(t) = \sum_x \chi_x(t - \sigma_x)$$

where summation is taken over all particles x born in the process up to moment t is called the general branching process counted by random characteristics.
Examples:
1) \(\chi(t) = I \{ t \in [0, \lambda) \} \) in this case \(Z^\chi(t) = Z(t) \) is the number of particles existing in the process up to moment \(t \);
2) \(\chi(t) = tI \{ t \in [0, \lambda) \} + \lambda I \{ \lambda < t \} \) then
\[
Z^\chi(t) = \int_0^t Z(u)du;
\]
3) \(\chi(t) = I \{ t \geq 0 \} \) then \(Z^\chi(t) \) is the total number of particles born up to moment \(t \).

Classification. \(E \xi(\infty) <,=,> 1 \) - subcritical, critical and supercritical, respectively.

Let
\[
0 \leq v(1) \leq v(2) \leq \ldots \leq v(n) \leq \ldots
\]
be the birth moments of the children of the initial particle. Then
\[
\xi_0(t) = \# \{ n : v(n) \leq t \}
\]
is the number of children born by the initial particle up to moment \(t \). We have
\[
Z^\chi(t) = \chi_0(t) + \sum_{x \neq 0} \chi_x(t - \sigma_x) = \chi_0(t) + \sum_{v(n) \leq t} Z^\chi_n(t - v(n))
\]
where \(Z^\chi_n(\cdot), n = 1, 2, \ldots \) are iid copies of \(Z^\chi(\cdot) \). Hence it follows that
\[
E Z^\chi(t) = E \chi(t) + E \left[\sum_{v(n) \leq t} Z^\chi_n(t - v(n)) \right]
\]
\[
= E \chi(t) + E \left[\sum_{v(n) \leq t} E[Z^\chi_n(t - v(n)) | v(1), v(2), \ldots, v(n), \ldots] \right]
\]
\[
= E \chi(t) + E \left[\sum_{v(n) \leq t} E[Z^\chi_n(t - v(n)) | v(n)] \right]
\]
\[
= E \chi(t) + E \left[\sum_{u \leq t} E[Z^\chi(t - u)] (\xi_0(u) - \xi_0(u-)) \right]
\]
\[
= E \chi(t) + \int_0^t E Z^\chi(t - u) E \xi(du).
\]
Thus, we get the following renewal-type equation for \(A^\chi(t) = E Z^\chi(t) \) and \(\mu(t) = E \xi(t) \) :
\[
A^\chi(t) = E \chi(t) + \int_0^t A^\chi(t - u) \mu(du).
\] (1)
Malthusian parameter: a number \(\alpha \) is called the Malthusian parameter of the process if
\[
\int_0^\infty e^{-\alpha t} \mu(dt) = 1
\]
(such a solution not always exists). For the critical processes \(\alpha = 0 \), for the supercritical processes \(\alpha > 0 \), and for the subcritical processes \(\alpha < 0 \) (if exists).

If the Malthusian parameter exists we can rewrite (1) as
\[
C(t) = e^{-\alpha t} \int_0^t C(t-u) d\left(\int_0^u e^{-\alpha y} \mu(dy) \right)
\]
where \(C(t) = e^{-\alpha t} A(t) \). In view of (2) and given that, say, \(e^{-\alpha t} E(t) \) is directly Riemann integrable and
\[
\int_0^\infty e^{-\alpha t} E(t) dt < \infty, \quad \int_0^\infty te^{-\alpha t} \mu(dt) < \infty
\]
we can apply the key renewal theorem to conclude that if the measure
\[
M(t) = \int_0^t e^{-\alpha y} \mu(dy)
\]
is non-lattice then
\[
\lim_{t \to \infty} C(t) = \lim_{t \to \infty} e^{-\alpha t} A(t) = \int_0^\infty e^{-\alpha t} E(t) dt \left(\int_0^\infty te^{-\alpha t} \mu(dt) \right)^{-1}.
\]
In particular, if \(G(t) \) is the life-length distribution of particles and \(\chi(t) = I \{ t \in [0, \lambda] \} \) we get
\[
E(t) = P(\lambda > t) = 1 - G(t)
\]
and
\[
\lim_{t \to \infty} e^{-\alpha t} EZ(t) = \frac{\int_0^\infty e^{-\alpha t} (1 - G(t)) dt}{\int_0^\infty te^{-\alpha t} \mu(dt)}
\]
if the respective integrals converge.

2 M|G|1 system with processor sharing discipline

The model: a Poisson flow of customers with intensity \(\Lambda \) comes to a system with one server which has unit service intensity. The service time distribution of a particular customer is (if there are no other customers in the queue) \(B(u) \). If there are \(M \) customers in the system at some moment \(T \) they are served simultaneously with intensity \(M^{-1} \) each.

Let
\[
W_{l_1, \ldots, l_{N-1}}(l_N)
\]
be the waiting time for the end of service of a customer which arrived to the queue at the moment when the queue had $N-1$ customers with remaining service times l_1, \ldots, l_{N-1}.

The question is to study the properties of the random variable $W_{l_1, \ldots, l_{N-1}, l_N}$ when $l_N \to \infty$.

To solve this problem we construct an auxiliary general branching process.

Construction of the branching process.

Consider a general branching process in which initially at time $t = 0$ there are N particles with remaining life-lengths $l_1, \ldots, l_{N-1}, l_N$ and which constitute the zero generation of this process. The life-length distribution of any newborn particle λ_x is $P(\lambda_x \leq u) = B(u)$, the reproduction process $\xi_x(t)$ of the number of children produced by a particle up to moment t has the probability generating function

$$E_{t}^{\xi_x(t)} = \int_{0}^{t} e^{A(s-1)u} dB(u) + e^{A(s-1)t} (1 - B(t))$$

that is, this is an ordinary Poisson flow with intensity Λ stopped when the particle dies:

$$E_{t}^{\xi_x(t)} = E_{\Delta}^{\text{Poi}_\Lambda(t^\wedge \lambda_x)}.$$

Let $Z(t; l_1, \ldots, l_{N-1}, l_N)$ denote the number of particles in the process at moment t with the mentioned initial conditions. We use a simplified notation $Z(t)$ if at moment $t = 0$ there is only one particle of zero age in the process.

We will consider also the process with immigration $X(t; l_1, \ldots, l_{N-1}, l_N)$ which has the same initial conditions and development as $Z(t; l_1, \ldots, l_{N-1}, l_N)$ but, in addition, given $X(t; l_1, \ldots, l_{N-1}, l_N) = 0$ it starts again by one individual of zero age after a random time r_i having distribution $P(r_i \leq u) = 1 - e^{-\lambda u}$ (if the process dies out for the i-th time). $X(t)$ is used if we initially start by the process $Z(t)$.

Now let $\sigma_x \leq \sigma_x \leq \ldots$ be the sequential moments of jumps of the process $X(t; l_1, \ldots, l_{N-1}, l_N)$. We construct by the general branching process the following queueing system with $S(T)$ being the number of customers in the queue at moment T:

1) the queue has N customers at $T = 0$ with remaining service times $l_1, \ldots, l_{N-1}, l_N$;

2) the moment T_i of the i-th jump of the queue size $S(\cdot)$ is specified as

$$T_i = \int_{0}^{\sigma_x} X(y; l_1, \ldots, l_{N-1}, l_N) dy + \int_{0}^{\sigma_x} I \{X(y; l_1, \ldots, l_{N-1}, l_N) = 0\} dy.$$

3) the service discipline is such that at each moment T the number of customers in the queue and their remaining service times coincide with the number of individuals and the remaining life-lengths of individuals in the branching process at moment $t(T)$ where

$$T = \int_{0}^{t(T)} X(y; l_1, \ldots, l_N) dy + \int_{0}^{t(T)} I \{X(y; l_1, \ldots, l_N) = 0\} dy.$$
Thus, $t \mapsto T$ is a random change of time.

Theorem. The described queueing system is a processor-sharing system with service time of customers $B(u)$ and a Poisson flow of customers with intensity of arrivals Λ.

Proof. Let $S(T)$ be the number of customers in the queue at time T and let $\Theta_1, \Theta_2, \ldots$ be the moments of changes the size of the queue. Let us show that the evolution of the constructed queue coincides with the evolution of a queueing system with processor sharing discipline. It is enough to show that this is true for $T \in [0, \Theta_1]$ and then, using the memoryless property of the Poisson flow to show in a similar way that this is true for $T \in [\Theta_1, \Theta_2]$ and so on.

To demonstrate this it is enough to check that:

1) $\Theta_1 = Nl_1 \land \ldots \land Nl_N \land d$ where $P(d \leq u) = 1 - e^{-\Lambda u}$;
2) If $\Theta_1 = Nl_i$ then at this moment the i-th customer comes out of the queue; if $\Theta_1 = d$ then one new customer arrives;
3) at any moment $T \in [0, \Theta_1]$ the remaining service times of the initial N customers are $l_1 - N^{-1}T, \ldots, l_N - N^{-1}T$.

Let θ_1 be the first moment of change of $X(t; l_1, \ldots, l_N)$. Clearly,

$$\theta_1 = l_1 \land \ldots \land l_N \land d_1 \land \ldots \land d_N$$

where $P(d_i \leq u) = 1 - e^{-\Lambda u}$ and where the sense of d_i is the birth of an individual by the initial particle labelled i. On the interval $u \in [0, \theta_1]$ the processing time of the queueing system T and the time t passed from the start of the evolution of the general branching process are related by $T = Nt$. Hence 3) is valid.

Further, $\Theta_1 = N(l_1 \land \ldots \land l_N \land d_1 \land \ldots \land d_N) = Nl_1 \land \ldots \land Nl_N \land (N(d_1 \land \ldots \land d_N))$ and

$$P(N(d_1 \land \ldots \land d_N) \geq y) = \left(e^{-y/N}\right)^N = e^{-y}.$$

This proves 1). Point 2) is evident.

Corollary 1.

$$S(T) = X(t(T); l_1, \ldots, l_N).$$

Corollary 2.

$$W_{l_1, \ldots, l_{N-1}}(l_N) = \int_0^{l_N} Z(y; l_1, \ldots, l_N)dy.$$

More detailed construction:

Let L be the life-length of a particle and let $0 \leq \delta(1) \leq \delta(2) \leq \ldots$ be the birth moments of her children. Denote

$$\xi(t, L) = \#\{n: \delta(n) \leq t\}.$$

Then the process generated by this particle can be treated as a process with immigration stopped at moment L where

$$E_S^{\xi(t, L)} = e^{\Lambda(s-1)\min(t, L)}.$$
and, since each newborn particle generates an *ordinary* process without immigration, we see that the offspring size of new particles at moment t in the process is

$$
\int_0^t Z_{(u,L)}(t-u)\xi(du, L)
$$

where $Z_i(y)$ are independent branching processes initiated by one individual of zero age. Thus,

$$
Z(y; l_1, \ldots, l_N) = I \{ l_1 \geq y \} + \int_0^y Z_{(u,l_1)}(y-u)\xi(du,l_1)
$$

$$
+ \ldots + I \{ l_N \geq y \} + \int_0^y Z_{(u,l_N)}(y-u)\xi(du,l_N)
$$

and, in particular, we have

$$
W_{l_1, \ldots, l_{N-1}}(l_N) = \int_0^{l_N} \int_0^y Z(y; l_2, \ldots, l_N) dy
dy
$$

Since the birth moments of new particles constitute a Poisson flow with intensity Λ we have $E[\xi(u,l)|l] = \min(u,l)$. Hence

$$
E \left[\int_0^{l_k} dy \int_0^y Z_{(u,l_k)}(y-u)\xi(du,l_k) \right]
$$

$$
= E \left[\int_0^{l_k} dy \int_0^y Z_{(u,l_k)}(y-u)\xi(du,l_k) | \xi(u,l_k), 0 \leq u \leq l_k \right]
$$

$$
= E \left[\int_0^{l_k} dy \int_0^y E \left[Z_{(u,l_k)}(y-u) | \xi(u,l_k), 0 \leq u \leq l \right] \xi(du,l_k) \right]
$$

$$
= E \left[\int_0^{l_k} dy \int_0^y E \left[Z(y-u) \right] \xi(du,l_k) \right]
$$

$$
= E \left[\int_0^{l_k} dy \int_0^y E \left[Z(y-u) \right] E \left[\xi(du,l_k) | l_k \right] \right]
$$

$$
= E \left[\int_0^{l_k} dy \int_0^y E \left[Z(y-u) \right] \Lambda du \right] = \Lambda E \left[\int_0^{l_k} dy \int_0^y E \left[Z(u) \right] du \right].
$$

Hence

$$
E W_{l_1, \ldots, l_{N-1}}(l_N) = E \left[\sum_{k=1}^N \min(l_N, l_k) + \Lambda \sum_{k=1}^N \int_0^{l_k} dy \int_0^y E \left[Z(u) \right] du \right].
$$
One can prove also that if

$$\beta_1 = \mathbf{E}l_N = \int_0^\infty udB(u) < \infty$$

and $\Lambda \beta_1 < 1$ then for fixed l_1, \ldots, l_{N-1}

$$\lim_{l_N \to \infty} W(l_1, \ldots, l_{N-1}, l_N) = \frac{1}{1 - \Lambda \beta_1}$$

almost surely (in particular, if it comes to an empty system).