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Introduction

The Problem

Denote by Y, the result of an insurance company in year n. We
suppose Y, € IN and the variables {Y,} are iid. Without any
control the surplus of the insurer becomes

x3=x+znjvk.
k=1

The insurer pays a dividend U, at the end of year n. Then the
pre-dividend process becomes

X,sj =X+ Z(Yk — kal) .
k=1

An admissible dividend fulfils 0 < U, < X,fj.
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Introduction

The Value Function

Let 7V = inf{n: XY < 0} be the time of ruin. The value of a
dividend strategy is

for some discounting variable r € (0, 1).

The goal is to maximise the value

V() = sup VU(x),

and — if it exists — to find an optimal strategy.

Hanspeter Schmidli Universitat zu Koln

Optimisation Problems in Non-Life Insurance



The de Finetti Problem
[e]e]e] lelele]

Introduction

Bellman's Equation

Suppose we know already the dividend Uy = u at time zero. This
is the same as starting with initial capital x — u and not paying a
dividend at time zero.

At time 1 one has the capital x — u + Y;. The optimal dividend
value at time 1 is V/(x — v+ Y7). The value at time zero is
rV(x — u+ Yi1). Thus the value at time zero is

u+rE[V(x—u+ Y1)].
We have the maximal value, thus

V(x)= sup u+rE[V(x—u+ Yi)].

0<u<x
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Introduction

Some Properties

The dividend strategy Uy = x — |[x — Up| and

U, = | Xn] — | Xn — Un] leads to the process X], = | X,].

Ruin occurs at the same time, but dividends are paid out earlier.
Thus VVU(x) < VY (x). If{XY:n>1} #{XY :n>1} then
VY(x) < VY (x).

Moreover, V(x) = V/(|x])+ (x — [x]). Thus it is enough to
consider integer values only. In particular, there exists u(x), such
that

V(x) = sup u+rIE[V(x—u+Y1)] = u(x)+rE[V(x—u(x)+Y1)] .

0<u<x
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Introduction

A Lower Bound

Use the following strategy. Let Uy = x and U, = Y,. Then
Xn, = Y, and ruin occurs at the first time where Y,, < 0. The value

of this strategy is

rE[Y*]
T_pir VU(x) < V(x),

where py =IP[Y) > 0].
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Introduction

An Upper Bound

Suppose we use the dividend strategy Uy = x and U, = Y}, but
we do not stop at ruin. The aggregate dividend payment of this
strategy is an upper bound for the aggregate dividend payment of
any admissible strategy. Hence any admissible strategy must have
a smaller value. Thus we get the upper bound

rIE[Y "]

V(x) <
(x) < x+ 1—r
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The Optimal Strategy

Consider the Strategy U, = u(X,). Then the process

{V(X,,)r” + i rkUk}
k=0

is a martingale.

In particular,
(tAn)—1 —1
V(x) = lim B[V(Xpn)r™n + rkuk} :IE[Z rkuk} .
e k=0 k=0
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The Optimal Strategy

The same argument shows that if U, is not a maximiser of
u+ rE[V(X, — u+ Yny1)]

then {U,} is not an optimal strategy.
If there are several maximisers u we choose u(x) the largest value.
We can characterise the strategy in the following way

u(x) =sup{n: V(x) = V(x — n)+ n}.

Thus u(x) =0if V(x) > V(x—1)+ 1.
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The Optimal Strategy

Suppose u(x) =0. Then

Y vy = e S Vi)

1—pyr =
rIE[Y ]
< .
< f.ZPJ<X+J+ o )
j=—x
rIE[Y ]
< +
< rx+r (]E[Y]—i— - r)
rIE[Y ]
= X+ —".
1—r
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The Optimal Strategy

Solving for x gives

- PEY(1-py)
SA-nE-pen)

Thus there is a barrier xg = sup{x : u(x) = 0}. The post-dividend
process fulfils X, — U, < xp, thus ruin will occur almost surely.
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De Finetti's Example

Let P[Y =1]=1-P[Y =-1] =p.

Consider first the case where all capital is paid out as dividend.
Plugging in the function V(x) = x + pr/(1 — pr) into Bellman’s
equation

V(x) = max{r(pV(x + 1) + (1 — p)V(x — 1)), V(x — 1) + 1}

yields that this is the solution whenever

12r<p+\/p(1*p)) :
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de Finetti's Example: Equations

Let x; = sup{n: u(n) = 0} and suppose x; > 0 and let n < xy.
Then we have the equations

1 1—p
Vin+1)=—V(n)——V(n-1),
(n+1)= - v(n) - —Pv(n-1)
ifn>1, )
V(l)=—V
()= v(0).
and

\/(Xl + 1) = V(Xl) +1.
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de Finetti's Example: Solution

The solution is ) .
AP DT

Vin) = 22— V(0).

where

1++/1—4p(1—p)r2  r it /r2—1+(2p—1)2
A1 = 5 = > .
pr p
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de Finetti's Example: Solution

The equation
Vix1+1)=V(x)+1

yields V(0). Maximising V/(0) gives the solution on [0, x; + 1]. It
turns out that this solution solves Bellman's equation, thus the
optimal strategy is a barrier strategy.
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Introduction

The Classical Risk Model

x: initial capital

C: premium rate

{N;}: Poisson process with rate A
{Y;}: iid, independent of {/V;}
0=Tog< Ty < Ty <---: claim times
G(y): distribution of Y;, G(0) =0

pn =IE[Y]],  p=mwm
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Proportional Reinsurance

The insurer can buy proportional reinsurance. Choosing retention
level b the premium rate ¢ — c(b) has to be paid. For a strategy
{b:} the surplus process becomes

t Ne
Xb=x+ / c(bs)ds — > br_Yi.
/0 k=1

We let 72 = inf{t : X? < 0} denote the time of ruin and by
YP(x) = P[r? < c] the ruin probability.
We define the value function

5(x)=1- ir;fwb(x) .
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Proportional Reinsurance

We assume:

G(x) is continuous.
) continuous.

b) increasing.
)=c.

c(b
<
c(1
c(0) <O.
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The Hamilton-Jacobi-Bellman Equation

If the function 0(x) is ‘nice’ it fulfils the Hamilton-Jacobi-Bellman
equationHamilton-Jacobi-Bellman equation

x/b
sup c(b)d'(x) + A[/ 5(x — by) dG(y) — 8(x)| = 0.
be[0,1] 0

Reformulation yields

000 - 272 5(x — by) dG(y)
be(0,1] (c(b))™

§(x)=A

Continuity gives that there is a value b(x) where the sup (inf) is
taken.
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The Hamilton-Jacobi-Bellman Equation

Existence of a Solution

Denote by d1(x) the survival probability without reinsurance. Then

fo(x) = cd1(x)/(c — ) fulfils

fo(x) — Jo folx — y) dG(y)
c(1) ’

fO) = A £(0) =1.

Define recursively

() — Jo!" Falx — by) dG(y)
fla(x) =X inf 0
i) =2 (c(b))*
Then f,(x) is decreasing in n and converges to some function f(x)

fulfilling the Hamilton-Jacobi-Bellman equation. Thus there is a
solution to the Hamilton-Jacobi-Bellman equation.

fn+1(0) — 1 .
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The Verification Theorem

Let f(x) be an increasing solution to the Hamilton-Jacobi-Bellman
equation. Then the process

1o [ etearoan ] [ o6t ac 100} as

is a martingale.
Because f(x) solves the Hamilton-Jacobi-Bellman equation the
process {f(X;)} is a supermartingale.
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The Hamilton-Jacobi-Bellman Equation

The Verification Theorem

We get
f(x) = £(X3) = E[f(X?)] — f(c0)8°(x) .

Thus f(x) is bounded.
Let b} = b(X/). Then f(XJ) is a martingale and

f(x) =E[f(X])] — f(c0)d"(x) = f(c0)d(x) .

Thus d(x) really solves the Hamilton-Jacobi-Bellman equation and
{b;} is an optimal strategy.
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Two Examples

Exponentially Distributed Claim Sizes

In the following two examples we choose A = =1 and
c(b) =1.7b—0.2.

Example

Exponentially distributed claim sizes:
Gly)=1-¢".

61(x) = 1 —2¢7*/3/3. From Waters (1983)

bR — (1 . %) (1 n \/%) — 0.504847 .

6R(x) known explicitly.
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Two Examples

Pareto Distributed Claim Sizes

Pareto distributed claim sizes:

Gly)=1-(1+y)?*
Asymptotically optimal strategy?

1 b 1

V)~ 575 =02 T x/b ~ (07— 02/B)L + x/b)

Minimised for b = 0.4x/(0.7x — 0.2).
bR =4/7.
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Optimal Dividends in a Diffusion Approximation

Consider the Diffusion Approximation
X2 = x+ oW, + mt

where {W;} is a standard Brownian motion.

A dividend strategy is an increasing process {D;} with Dy > 0.
The surplus becomes X? = X? — D;.

The value of a strategy is

We let V(x) = supp VP(x).
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Dividends in a Diffusion Approximation

The Hamilton-Jacobi-Bellman Equation

The value function then fulfils
max{1 — V/(x), 20 V" (x) + mV'(x) = V(x)} = 0.

We know that V/(0) = 0.
Optimal Strategy: Do not pay dividend if V/(x) > 1. At a point
where V’(x) =1 reflect the process.
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Dividends in a Diffusion Approximation

The Value Function

Intuition: Barrier strategy close to zero.
Solve $02f"(x) + mf'(x) — 6f(x) = 0 with £(0) = 0.

f(x) = el — f2x | V(x) = Cf(x) .

Barrier in a yields V/(a) = 1. Solution is maximal if
1

f'(a)

is maximal, i.e. f”’(a) = 0. Note that V(a) = m/J.
The optimal solution is

V(X)_{f(x)/f’(a)7 if x < a,

f(a)+x—a, otherwise.
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Dividends in a Diffusion Approximation

The Verification Theorem

By Itd's formula
0 = V(X,)e % = V(X)) + /0 TJV'(Xs)e_édes
/ [252V"(Xs) + mV'(Xs) — 6V(Xs)]e % ds
- /0 e % V/(X,) dDs
< V(X0)+/OTUV'(XS)e55dWs—/oTe‘ss dD; .

Taking expected values yields the result. Using the optimal
strategy equality holds.
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Dividends in the Classical Model

Consider the classical model

N
XP:X—i_Ct_ZYk'
k=1

With dividend payments we have XP = X° — D,.
Here we get the equation

max{l - V'(x),

V' (x) — 6V(x) + A[/OX V(x — y) dG(y) — V(X)}} ~0.
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Dividends in the Classical Model

The Optimal Strategy

It turns out: The solution is not unique and not necessarily
differentiable. But the jumps of V’(x) are all upwards with
V/(x—) = 1. The correct solution is the minimal solution.

The optimal strategy is the following:

No dividend if V/(x—) > 1.

Dividends at rate c if x is an upper boundary point of the set
where no dividend is paid.

A dividend of size sup{y : V(x) = V(x — y) + y}.
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Dividends with Reinvestment

We now consider the process XtD = X? — D + A; where A; is the
minimal increasing process such that X,_P > 0 for all t. That is, the
process is reflected in 0 and A; is the cumulative investments until
time t. The value of a strategy {D;} is

VO (x) = IE[/ et dD, — 0 / o0t dAt} .
JO JO

The value function is V/(x) = supp VP (x)

If & <1 then V(x) = occ.

If & =1 then the optimal process fulfils X;" = 0.
We assume 6 > 1.
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Dividends with Reinvestment

Concavity of V(x)

Let x # y and a € (0,1), 5 =1—a. Let Dy and A{ be a strategy
for initial capital v. We let z = ax + By, D; = aD} + 8D},

B: = aAY + BAY.

For initial capital z we get the process

XZ = aX?+ X! >0.

We conclude that A7 < B7.
Thus V(z) > V*(z) > aV*(x) + BVY(y). Taking the supremum
we find

V(ax+ By) > aV(x) + BV(y)
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The Diffusion Approximation

The value function fulfils
max{1 — V/(x), %02 V'(x)+ mV'(x) = §V(x)} =0.

Moreover, V/(0) < 6. The strategy becomes a barrier strategy at a
barrier a with V/(a) = 1.
The solution is of the form

V(x) = Ce?™ + Coe?x

The constants are determined such that V/(0) =6, V/(a) =1 and
V(0) becomes maximal.
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The Classical Model

The value function fulfils

max{l — V'(x),cV'(x) — 6V (x)

+ A[/: V(x —y) dG(y) +/ (V(0) = 0(y — x)) dG(y)

X

—V(x)}}:o.

The optimal strategy is a barrier strategy with a barrier at a.
Problem: 1 < V’(0) < #. Thus no condition at zero.
Calculate the value of a barrier strategy, and maximise V/(0).
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Further Problems

Optimal Investment

Let Z; = exp{(r — 307)t + oy W{/} be the value of some risky asset
or some portfolio. The insurer invests the amount A; into the risky
asset. Then the surplus fulfils

dX = dX? + rA; At + oA dW]

We want to minimise the ruin probability.
The corresponding HJB equation becomes

sup Ad(x) + rAY (x) + 307A%5"(x) = 0.
AelR

Here 2 is the generator of the uncontrolled process {X?}.
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Further Problems

Optimal New Business

Let {Y:} be another independent surplus process. The insurer can
buy part of the risk. Then the surplus fulfils

t
xtb:xt‘hr/ bs_ dYs,
0

where by € [0,1]. We again minimise the ruin probability. The
corresponding HJB equation is

"x/b
sup_ xd(x)+beyd'(x)+ Ay | / 5(x—by) dGy(y)—o(x)] = 0.
bel0,1] 0

Hanspeter Schmidli Universitat zu Koln

Optimisation Problems in Non-Life Insurance



Further Problems
00@000000

Further Problems

Maximising the Surplus

Consider a diffusion approximation with reinsurance. We only allow
'cheap’ reinsurance. We want to maximise

IE[/OT e 95xb ds} .

The HJB equation is

x +sup mbV'(x) + 302b*V"(x) = §V(x) = 0.
b

It turns out that ruin will never occur (b(x) — 0 as x — 0)
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Further Problems

Maximising the Surplus

For a classical model the HJB equation is

x/b
x +supc(b)V'(x) —V(x) + )\[/ V(x — by) dG(y) — V(x)
b Jo

Usually, there is a positive probability for ruin.
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Further Problems

Minimal Reinvestment

Consider the process with reinsurance {X?}. Suppose the insurer
has to reinvest a possible deficit. The surplus becomes
Y = XP + AL. The value of the strategy is

Vb(x) = IE[/OOo o0t dAt} .

The value function is V/(x) = inf, V2(x).

0 > 0: Future reinvestment preferred to present reinvestment.
6 = 0: Indifferent between future and present reinvestment.

0 < 0: Present reinvestment preferred to future reinvestment.
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Further Problems

Minimal Reinvestment

V(x) fulfils for x > 0 the HJB equation
inf e(B)V/(x) + /\[/ V(x — by) dG(y) — V(x)]| = 6V(x) =0,
J0

with V(x) = V(0) — x for x < 0.
The solution we look for is the maximal decreasing solution.
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