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Modelling prices and volatility

The beginning:

Black and Scholes model (1973):

The log-price process Gt = logSt is modelled by geometric Brownian motion

Gt = G0 + µt+ σBt , t ≥ 0 .

Equivalently, given S0, the price process is the solution to the SDE

dSt
St

= (µ+
σ2

2
)dt+ σdBt , t > 0 .

The stochastic integral used is the Itô integral.

Kiyosi Itô is the Winner of the Gauss Prize 2006,

awarded jointly by the DMV and the IMU.



Kiyosi Itô is one of the pioneers of probability theory, and the originator of

Itô Calculus. First published in 1942 in Japanese, this epoch-making theory of

stochastic differential equations describes nondeterministic and random evolutions.

The so-called Itô formula has found applications in other branches of mathematics

as well as in various other fields including, e.g., conformal field theory in physics,

stochastic control theory in engineering, population genetics in biology, and most

recently, mathematical finance in economics.

The citation from the National Academy of Science states:

If one disqualifies the Pythagorean Theorem from contention, it is hard to think

of a mathematical result which is better known and more widely applied in the

world today than ”Ito’s Lemma.” This result holds the same position in stochastic

analysis that Newton’s fundamental theorem holds in classical analysis. That is,

it is the sine qua non of the subject.



More than 40 years after Black and Scholes:

Gt = G0 +

∫ t

0

µsds+

∫ t

0

σs−dLs , t ≥ 0 ,

where L is a Lévy process and µ, σ are adapted càdlàg processes.

The Lévy-Itô representation states that for t ≥ 0,

Lt = γLt+τLBt+

∫

(0,t]×{|x|>1}

xJL(ds×dx)+lim
ε↓0

∫

(0,t]×{|x|∈(ε,1]}

x(JL(ds×dx)− dsΠL(dx)),

where JL is a Poisson random measure on [0, t] × R with intensity dtΠL(dx).



Question: How to model the volatility (σt)t≥0.
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Figure 1: Deseasonalised 5 minutes log-returns of Intel (February 1 - May 31,

2002) and estimated volatility.



Stylized facts of volatility:

(1) volatility is not constant (smile effect);

(2) volatility is random;

(3) volatility has heavy-tailed marginals (higher moments do not exist);

(4) volatility has skewed marginals (leverage effect)

(5) volatility is a stochastic process with long-range dependence effect;

(6) volatility is a stochastic process with clusters in the extremes.



Recall discrete time GARCH(1,1) model

As an Euler approximation of the above Lévy log-price model we obtain for the

martingale part

Yn = σnZn i.i.d. innovations (Zn)n∈N0,

Volatility process: Define for σ2 the random recurrence equation

σ2
n = β + λY 2

n−1 + δσ2
n−1, n ∈ N.

Random recurrence equation models are successfully applied in many areas

of stochastics; see Diaconis and Freedman (1999). For the introduction of such

models 1982 into econometrics, and his contributions to their statistical analysis

Robert Engle was awarded in 2003 the Nobel prize in Economics.



Reorganise and iterate the recurrence:

σ2
n = β + λY 2

n−1 + δσ2
n−1 = β + (δ + λZ2

n−1)σ
2
n−1

...

= β

n−1∑

i=0

n−1∏

j=i+1

(δ + λZ2
j ) + σ2

0

n−1∏

j=0

(δ + λZ2
j ) (1)

Under appropriate conditions

σ2
n

d
→ σ2

∞
d
= β

∞∑

i=0

i∏

j=1

(δ + λZ2
j ).



Continuous time GARCH(1,1)

Idea: start with (1) and replace the sum by an integral

⇔ σ2
n =


β

∫ n

0

exp


−

[s]∑

j=0

log(δ + λZ2
j ) ds


 + σ2

0


 exp



n−1∑

j=0

log(δ + λZ2
j )




Replace Zj by jumps of a Lévy process L and take β, η = − log δ, ϕ = λ/δ.

Then for a finite r.v. σ2
0 define the volatility process

σ2
t =

(
β

∫ t

0

eXsds+ σ2
0

)
e−Xt t ≥ 0.

with auxiliary process

Xt = tη −
∑

0<s≤t

log(1 + ϕ(∆Ls)
2) t ≥ 0.



Recall: (Lt)t≥0 is Lévy process if EeisLt = etψL(s), s ∈ R, with

ψL(s) = iγLs− τ2
L

s2

2
+

∫

R

(eisx − 1 − isxI{|x|<1})ΠL(dx), s ∈ R.

(γL, τL,ΠL) characteristic tripel, ΠL Lévy measure:
∫
|x|<ε

x2ΠL(dx) <∞.

Define the COGARCH(1,1)process by

Gt =

∫

(0,t]

σt− dLt t ≥ 0.

(Note: this defines the martingale part of the price process.)
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First: Simulated VG driven COGARCH(1,1) process with β = 0.04, η = 0.053 and ϕ = 0.038;

second: differenced COGARCH process (G
(1)
t );

third: volatility process (σt);

last: VG process (Lt) with characteristic function EeiuL1 = (1 + u2/(2C))−C and C = 1;



Properties

• G jumps at the same times as L with jump size ∆Gt = σt∆Lt.

• (Xt)t≥0 is spectrally negative, has drift η, no Gaussian part, Lévy measure

ΠX([0,∞)) = 0 ΠX((−∞,−x]) = ΠL({|y| ≥
√

(ex − 1)ϕ}) for x > 0.

• dσ2
t = (β − ησ2

t−) dt+ ϕσ2
t−d[L,L]

(d)
t

where [L,L]
(d)
t =

∑
0<s≤t(∆Ls)

2 and

σ2
t = σ2

0 + βt− η

∫ t

0

σ2
sds+ ϕ

∑

0<s≤t

σ2
s−(∆Ls)

2 t ≥ 0. (2)

•

∫

R

log
(
1 + ϕx2

)
ΠL(dx) < η ⇐⇒ EX1 > 0

⇐⇒ σ2
t

d
→ σ2

∞
d
= β

∫ ∞

0

e−Xt dt.



Sample path behaviour

• From (2) we know that σ2
t has only upwards jumps.

• If (Lt)t≥0 is compound Poisson with jump times 0 = T0 < T1 < . . .,

σ2
t =

β

η
+

(
σ2
Tj

−
β

η

)
e−(t−Tj)η, t ∈ (Tj, Tj+1).

• For the stationary process, we have σ2
∞ ≥

β

η
a.s.
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Volatility process for L compound Poisson with Weibull distributed jump sizes.
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Theorem Suppose that EL1 = 0, var(L1) = 1. Define Ee−sXt = etΨX(s).

Assume that the volatility process is stationary, and define G
(1)
i :=

∫ i
i−r

σs−dLs.

If ΨX(1) < 0, then

EG
(1)
i = 0, E(G

(1)
i )2 =

rβ

−ΨX(1)
EL2

1 and corr(G
(1)
i , G

(1)
i+h) = 0.

If EL4
1 <∞, ΨX(2) < 0 and

∫
R
x3 νL(dx) = 0, then for k, p > 0

corr((G
(1)
i )2, (G

(1)
i+h)

2) = ke−hp, h ∈ N. 2

Theorem Assume that L1 is symmetric and that there exists κ > 0 such that

|L1|
κ log+ |L1| <∞ and ΨX(κ/2) = 1.

Then a stationary version of the volatility process exists with

P (σt > x) ∼ cx−κ/2, x→ ∞. 2



Stylized facts of volatility:

(1) volatility is not constant (smile effect);

(2) volatility is random;

(3) volatility has heavy-tailed marginals (higher moments do not exist:

K., Lindner and Maller (2004), Fasen, K., Lindner (2004));

(4) volatility has skewed marginals (leverage effect introduced in Haug et al.)

(5) volatility is a stochastic process with long-range dependence effect

(acf decreases geometrically: K., Lindner and Maller (2004));

(6) volatility is a stochastic process with clusters in the extremes:

Fasen: Extremes of genOU processes (2006,2007).



• (σ2
t )t≥0 is a Markov process.

• (σ2
t , Gt)t≥0 is a bivariate Markov process.

• The infinitesimal generator of (σ2
t , Gt)t≥0 can be calculated:

Kallsen and Vesenmayer (2006): can be used for derivatives pricing.



Question: Can we find a discrete time skeleton, which approximates the

COGARCH(1,1) process, and is a GARCH(1,1) process.

The following approximation, called first jump approximation shows that (under

some technical conditions) the solution of a Lévy-driven SDE can be approximated

arbitrarily close, by replacing the Lévy process with its first jump approximation.

Theorem [Szimayer and Maller (2007), Haug and Stelzer (2007)]

Let L be a Lévy process in R
d, which has no Brownian part, drift γL and Lévy

measure ΠL and satisfies EL2(1) = 1.

For n ∈ N let 1 > ε(n) ↓ 0 and 0 = t
(n)
0 < t

(n)
1 < t

(n)
2 · · · ↑ ∞.

Set δ(n) := supi∈N
(t

(n)
i − t

(n)
i−1) and assume that limn→∞ δ(n) = 0. Assume that

lim
n→∞

δ(n)(Π({x ∈ R
d : |x| > ε(n)})2 = 0 . (3)



Define for all n ∈ N

γ(n) := γL −

∫

ε(n)<|x|≤1

xΠL(dx)

τ
(n)
i := inf{t : t

(n)
i−1 < t ≤ t

(n)
i , |∆Lt| > ε(n)} ∀i ∈ N

L̃
(n)
t := γ(n)t+

∑

{i∈N:τ
(n)
i ≤t}

∆L
τ
(n)
i

∀t ≥ 0

L
(n)

t := L̃
(n)

t
(n)
i−1

.

Then

L̃(n) → L in ucp as n→ ∞ and dS(L
(n)
, L)

P
→ 0 n→ ∞.

2



Remark (i) Whenever one of the sequences (δ(n)) or (ε(n)) are given, one can

always choose the other such that (3) holds.

(ii) Note that the time grid is not necessarily equidistant. The construction allows

for discrete sampling of a continuous-time Lévy-driven model. This is useful for

high-frequency data.

(iii) The construction allows also the embedding of a discrete-time jump model

into a continuous-time one. 2



Example [COGARCH(1,1) and its GARCH(1,1) approximation,

Maller, Müller and Szimayer (2007)]

We use the notation as in the theorem and assume that all assumptions hold.

For n ∈ N set ∆ti(n) := t
(n)
i − t

(n)
i−1 and define ∆L

τ
(n)
i

as the first jump of size

larger than ε(n) in (t
(n)
i−1, t

(n)
i ]. Define

Zi,n =
1
{τ

(n)
i }<∞

∆L
τ
(n)
i

− ν
(n)
i

ξ
(n)
i

, i ∈ N.

By the strong Markov property (1
{τ

(n)
i <∞}

∆L
τ
(n)
i

)i∈N is an iid sequence with

distribution

Π(dx)1{|x|>ε(n)}

Π({x ∈ Rd : |x| > ε(n)}

(
1 − e−η∆ti(n)Π({x∈R

d : |x|>ε(n)})
)
, x ∈ R \ {0}.



Then (Zi,n)i∈N is an iid sequence with mean 0 and variance 1.

Now recall

dσ2
t = (β − ησ2

t−) dt+ ϕσ2
t−d[L,L]

(d)
t and Gt =

∫

(0,t]

σt−dLt t > 0.

We discretise as follows: for G0,n = G0 = 0 set

Gi,n −Gi−1,n = σi−1,n

√
∆ti(n)Zi,n, i ∈ N,

and

σ2
i,n = β∆ti(n) +

(
1 + ϕ∆ti(n)Z2

i,n

)
e−η∆ti(n)σ2

i−1,n, i ∈ N.

This defines a discrete time GARCH(1,1) random recurrence equation; cf. p. 8.



Follow the construction as before and introduce continuous-time versions

(piecewise constant) of the auxiliary process Xi,n, σ
2
i,n and Gi,n. Then with

the usual technical efforts, it is shown that

dS((Gn, σ
2
n), (G, σ

2))
P
→ 0 n→ ∞. 2
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