Vorlesung 2b

Diskrete Zufallsvariable und ihre Verteilungen

mit den Beispielen Anzahl der Erfolge beim n-fachen p-**Münzwurf** und

Besetzungen beim n-fachen (p_1, \ldots, p_g) -Würfeln

Teil 1: Grundbegriffe (Buch S. 20-21)

Abzählbare Additivität von Wahrscheinlichkeiten

Verteilung und Verteilungsgewichte

Zufällige Paare: gemeinsame Verteilung und Projektionen

Weiterverarbeitung von Zufallsvariablen und

Transport von Verteilungen

Bisher hatten wir uns mit Zufallsvariablen beschäftigt, deren Wertebereich S endlich war.

Die (schon in Vorlesung 1b formulierten)

zwei Grundregeln

für Wahrscheinlichkeiten lauteten für diesen Fall:

Normiertheit auf Eins:

$$P(X \in S) = 1.$$

(Folgerung aus der) Additivität:

$$\mathbf{P}(X \in A) = \sum_{a \in A} \mathbf{P}(X = a), \qquad A \subset S$$

Diese beiden Regeln behalten ihren Sinn, wenn der Wertebereich nicht endlich, sondern abzählbar unendlich ist.

Beispiel:
$$S = \mathbb{N}$$

$$P(X = 1) = \frac{1}{2}, P(X = 2) = \frac{1}{4}, P(X = 3) = \frac{1}{8},...$$

$$P(X = a) = 1/2^a, a \in \mathbb{N}.$$

Auch wenn der Wertebereich von X eine überabzählbare Menge ist

(wie z.B. die Menge der reellen Zahlen $\mathbb R$

oder das "Einheitsintervall" [0, 1]

oder das "Einheitsquadrat" $[0,1] \times [0,1]$),

behalten beide Regeln ihren Sinn, wenn man fordert,

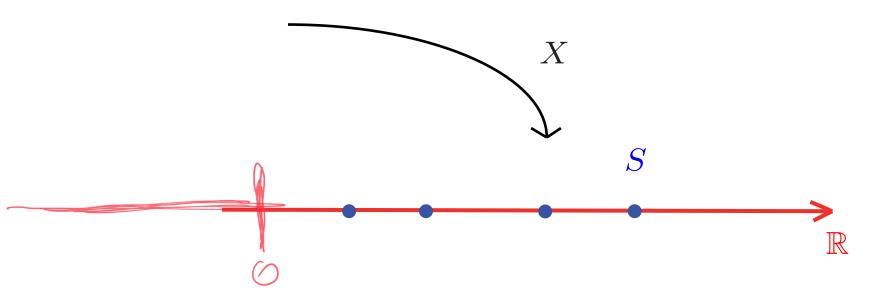
dass der Wertebereich

eine endliche oder abzählbar unendliche Menge S enthält

$$mit | P(X \in S) = 1.$$

Eine Zufallsvariable X mit dieser Eigenschaft nennen wir diskret.

Beispiel: Wertebereich R



 $S \subset \mathbb{R}$ endlich oder abzählbar unendlich mit $P(X \in S) = 1$

$$(z.B. S = \{1, 2, ..., g\}, oder S = \mathbb{N})$$

Warum ist das interessant?

Wie wir sehen werden (und wie jetzt schon intuitiv klar ist), kann man mit reellwertigen Zufallsvariablen rechnen.

Warum ist das interessant?

Wie wir sehen werden (und wie jetzt schon intuitiv klar ist), kann man mit reellwertigen Zufallsvariablen rechnen.

Man kann z.B. eine reellwertige Zufallsvariable X durch 2 teilen, und wenn die Zufallsvariable X diskret ist, ist auch die Zufallvariable X/2 diskret.

Nochmal die Definition:

Eine Zufallsvariable X heißt **diskret**, falls ihr Wertebereich (nennen wir ihn W) eine diskrete (d.h. endliche oder abzählbar unendliche) Menge S enthält mit $\mathbf{P}(X \in S) = 1.$

 $P(X \in W) = 1$

Für diskretes X mit Wertebereich W und diskretem S mit $\mathbf{P}(X \in S) = 1$ gilt:

$$P(X \in A) = \sum_{a \in A} P(X = a), \qquad A \subset S$$

(Wahrscheinlichkeiten sind abzählbar additiv)

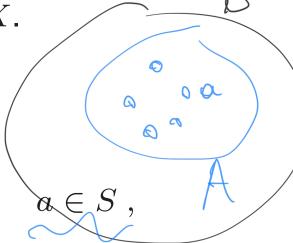
$$\mathbf{P}(X \in W \setminus S) = \mathbf{P}(X \in W) - \mathbf{P}(X \in S) = 1 - 1 = 0$$

(X fällt mit Wahrscheinlichkeit 0 außerhalb von S.)

Die Abbildung
$$A \mapsto \rho(A) := \mathbf{P}(X \in A)$$
,

heißt die Verteilung von X.

Die Zahlen
$$\rho(a) := P(X = a),$$



sind die (atomaren) **Gewichte** der Verteilung ρ . Wir nennen sie auch die **Verteilungsgewichte** von X.

Zufällige Paare und ihre Komponenten

(Buch S. 21)

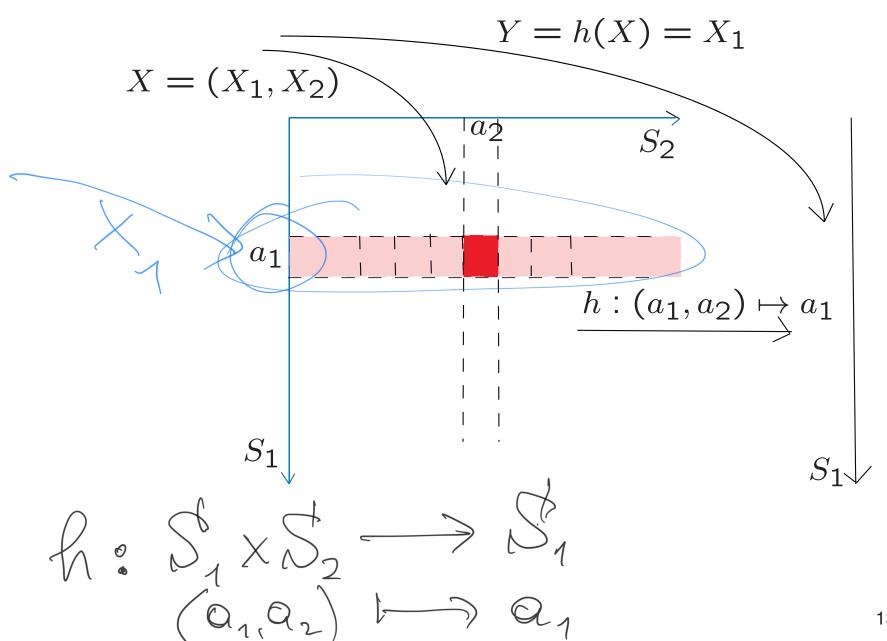
rariable $\sqrt{\frac{1}{5}}$

 $X=(X_1,X_2)$ sei eine Zufallsvariable $\bigvee_{S_{\wedge}}$ (ein "zufälliges Paar") mit diskreten Komponenten X_1,X_2 .

Dann ist auch X diskret, denn die Diskretheit von S_1 und S_2 vererbt sich auf $S_1 \times S_2$, und $\mathbf{P}(X_i \in S_i) = 1$, i = 1, 2, impliziert $\mathbf{P}(X \in S_1 \times S_2) = 1$.

Die Ereignisse $\{(X_1, X_2) = (a_1, a_2)\}$ notieren wir auch als $\{X_1 = a_1, X_2 = a_2\}.$

 $\{X_1=a_1,X_2=a_2\}.$ $\{X_1=a_1,X_2=a_2\}.$ $\{X_1=a_1,X_2=a_2\}.$ $\{X_1=a_1,X_2=a_2\}.$ $\{X_1=a_1,X_2=a_2\}.$ $\{X_1=a_1,X_2=a_2\}.$ $\{X_1=a_1,X_2=a_2\}.$ $\{X_1=a_1,X_2=a_2\}.$



Die Verteilungsgewichte von X (man sagt auch: die gemeinsamen Verteilungsgewichte von X_1 und X_2)

schreiben wir als
$$\rho(a_1,a_2) = P((X_1,X_2) = (a_1,a_2))$$
$$= P(X_1 = a_1, X_2 = a_2),$$

Die Verteilungsgewichte von X_1 erhält man

durch Summation über die a_2 :

$$\rho_1(a_1) = \sum_{a_2 \in S_2} \rho(a_1, a_2)$$

aurch Summation über die
$$a_2$$
:
$$\rho_1(a_1) = \sum_{a_2 \in S_2} \rho(a_1, a_2).$$

$$S_1(2) = \sum_{a_2 \in \{x, y, z\}} g(2, a_2) = g(2, x) \pm g(2, y) + g(2, z)$$

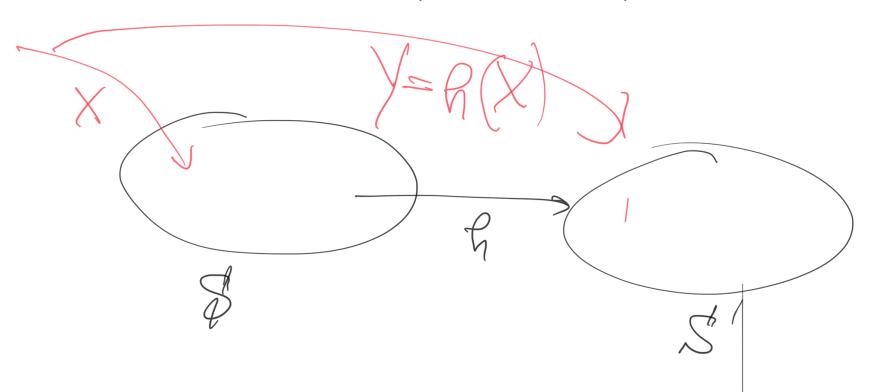
$$a_2 \in \{x, y, z\}$$

14

3. Weiterverarbeitung von Zufallsvariablen und

Transport von Verteilungen

(Buch S. 21-22)



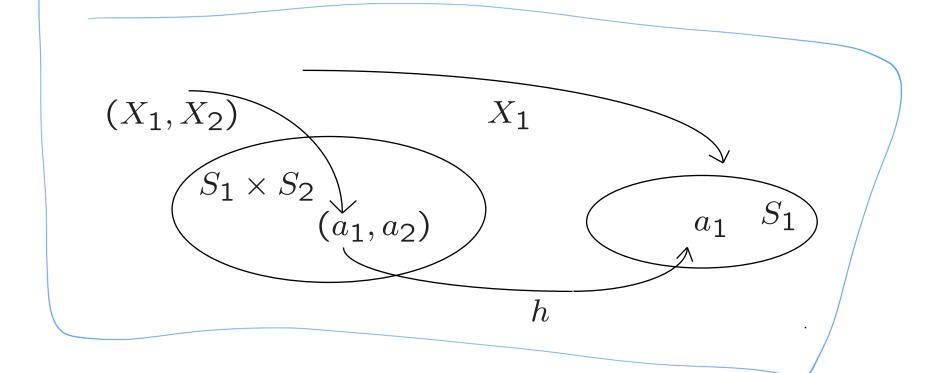
Der Übergang von $X=(X_1,X_2)$ zur Komponente X_1 ist ein Beispiel einer

Weiterverarbeitung einer Zufallsvariablen:

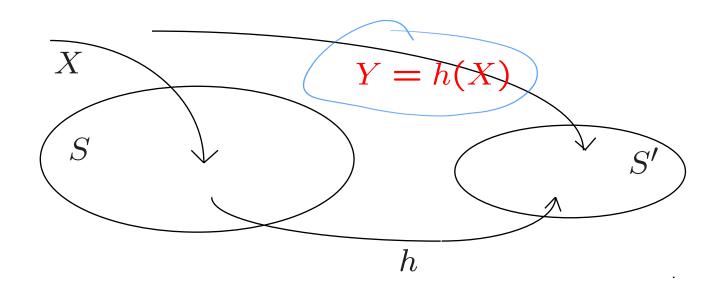
$$X_1 = h(X)$$

$$\min h((a_1, a_2)) := a_1,$$

also die Projektion des Paares (a_1, a_2) auf seine erste Komponente.



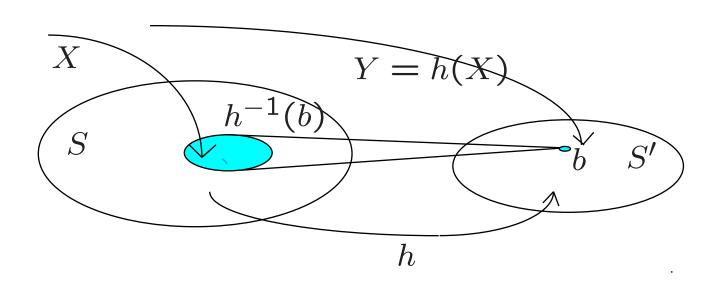
Sind S und S' zwei Mengen, X eine Zufallsvariable mit Zielbereich S, h eine Abbildung von S nach S', und nimmt man X als zufällige Eingabe von h, dann bekommt man eine Zufallsvariable Y mit Zielbereich S':



Für jedes $b \in S'$ gilt:

$$\{h(X) = b\} = \{X \in h^{-1}(b)\}$$

$$\mathbb{P}(\mathcal{R}(X) = b) = \mathbb{P}(X \in \mathcal{R}^{-1}(b))$$

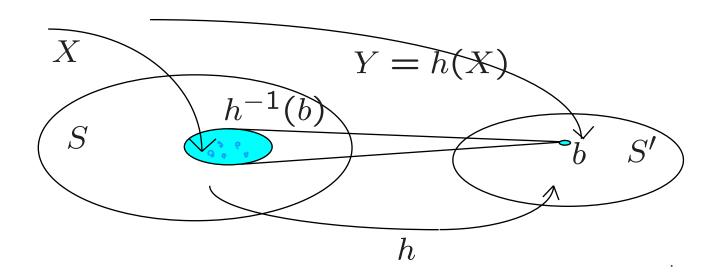


Für jedes $b \in S'$ gilt:

$${h(X) = b} = {X \in h^{-1}(b)}.$$

Für die Verteilungsgewichte von Y = h(X) ergibt sich:

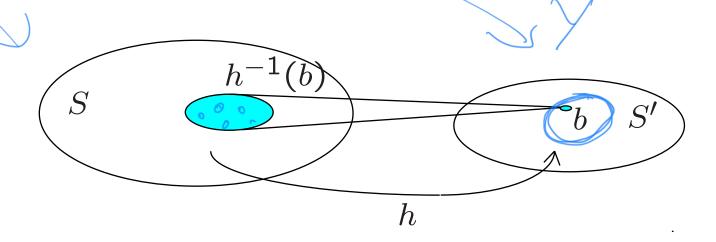
$$P(Y = b) = P(X \in h^{-1}(b)) = \sum_{a \in h^{-1}(b)} P(X = a).$$



Bezeichnet ρ die Verteilung von X und ρ' die von Y, dann ist

$$\rho'(b) = \sum_{a \in h^{-1}(b)} \rho(a).$$

Man sagt: Die Verteilung ρ wird durch die Abbildung h in die Verteilung ρ' transportiert.



Diese Situation haben wir schon mehrmals angetroffen:

in Vorlesung 1b:

X:= rein zufällige $1,\ldots,g$ -Folge der Länge g+1 T=h(X):= Zeitpunkt der ersten Kollision.

X := rein zufällige Permutation von $1, \ldots, n$ h(X) := Länge des Zyklus von X, der die Eins enthält.

Heutiges Programm:

Zusätzliche Beispiele für

"Weiterverarbeitungen von zufälligen Folgen"

Daraus bekommen wir wichtige Beispiele diskreter Zufallsvariabler und diskreter Verteilungen.