1a. Zufallsvariable, Ereigniss, Wahrscheinlichkeiten und Verteilungen

- 1b. Wahrscheinlickheit von Kollisionen (bei der wiederholten rein zufälligen Wahl aus endlich vielen möglichen Ausgängen)
 - 1b1. Vom Modell zur Formel
 - 1b2. Approximationen der Wahrscheinlichkeit für Kollisionsfreiheit

2a. Diskret uniform verteilte Zufallsvariable

- 2a1. Rein zufällige Permutationen
- 2a2. Rein zufällige Teilmengen einer festen Größe
- 2a3. Besetzungszahlen
- 2b. **Diskrete Zufallsvariable und ihre Verteilungen** (mit den Beispielen Anzahl der Erfolge beim n-fachen p-Münzwurf und Besetzungen beim n-fachen (p_1, \ldots, p_q) -Würfeln)
 - 2b1. Grundbegriffe: Abzählbare Additivität von Wahrscheinlichkeiten, Verteilung und Verteilungsgewichte, Zufällige Paare: gemeinsame Verteilung und Projektionen, Weiterverarbeitung von Zufallsvariablen und Transport von Verteilungen.
 - 2b2. Die Anzahl der Erfolge: Vom Münzwurf zur Binomialverteilung
 - 2b3: Zufällige Besetzungen: Vom Würfeln zur Multinomialverteilung
- 3a. Der Erwartungswert von diskreten reellwertigen Zufallsvariablen
 - 3a1. Der Erwartungswert als gewichtetes Mittel
 - 3a2. Die Transformationsformel für Erwartungswerte
 - 3a3. Linearität des Erwartungswertes
 - 3a4. Beispiele
 - 3a5. Wie erlebt man den Erwartungswert? Der Erwartungswert als Langzeitmittelwert.
- 3b. Indikatorvariable: Rechnen mit Ereignissen und Wahrscheinlichkeiten
 - 3b1. Ereignisse und ihre Indikatorvariablen
 - 3b2. Rechnen mit Ereignissen
 - 3b3. Rechnen mit Wahrscheinlichkeiten
 - 3b4. Die Einschluss-Ausschlussregel
 - 3b5. Positivität und Monotonie des Erwartungswertes
- 4a. Versuche, Erfolge, Wartezeiten: Die Welt des p-Münzwurfs von Bernoulli zu Poisson
 - 4a1. Der fortgesetze p-Münzwurf
 - 4a2. Der Zeitpunkt des ersten Erfolgs und die geometrische Verteilung
 - 4a3. Die Exponentialapproximation. Oder: Münzwurf mit kleiner Erfolgswahrscheinlichkeit: Wie lange dauert es bis zum ersten Erfolg?
 - 4a4. Die Poissonapproximation. Oder: Münzwurf mit kleiner Erfolgswahrscheinlichkeit: Wie ist die Anzahl der Erfolge verteilt bei einer großen Zahl von Versuchen?

4b. Zufallsvariable mit Dichten: Grundbegriffe

- 4b1. Kontinuierlich uniform verteilte Zufallsvariable
- 4b2. Dichten auf ℝ (bzgl des Längenmaßes)
- 4b3. Verteilungsfunktionen

5a. Zufallsvariable mit Dichten: Transformationen, Exponentialverteilung, Normalverteilung

- 5a1. Transformationen
- 5a2. Exponential verteilung
- 5a3. Erwartungswert und Transformationsformel
- 5a4. Die Standardnormalverteilung auf \mathbb{R}

5b. Unabhängigkeit

- 5b1. Zwei (diskrete) Zufallsvariable
- 5b2. Produktformel für Erwartungswerte unabhängiger Zufallsvariabler
- 5b3. Mehrere Zufallsvariable
- 5b4. Unabhängigkeit von Ereignissen
- 5b5. Unabhängige Teilbeobachtungen abhängiger Inputs
- 5b6. Abhängige Verquickungen unabhängiger Bausteine

6a. Varianz und Kovarianz

- 6a1. Varianz und Standardabweichung: Elementare Eigenschaften
- 6a2. Summen unabhängiger Zufallsvariabler: Varianz der Binomialverteilung, \sqrt{n} -Gesetz, Chebyshev-Ungleichung und Schwaches Gesetz der großen Zahlen
- 6a3. Umrechung von Var[X], Varianz der Poissonverteilung
- 6a4. Die Varianz einer Summe von Zufallsvariablen und die Kovarianz von zwei ZV'en
- 6a5. Die Varianz der hypergeometrischen Verteilung

6b. Die Normalverteilung

- 6a1. Von den Binomialgewichten zur Gauß'schen Glockenkurve
- 6a2. Die Standardnormalverteilung auf \mathbb{R} und ihre Schwestern $N(\mu, \sigma^2)$
- 6a3. Intermezzo: Dichten von Produktform

7a. Normalverteilung und Zentraler Grenzwertsatz

- 7a1. Die Standardnormalverteilung auf \mathbb{R}^2
- 7a2. Die Standardnormalverteilung auf \mathbb{R}^n
- 7a3. Die Botschaft des Zentralen Grenzwertsatzes
- 7a4. Erlebnis: Via Monte Carlo zur Gaußschen Glockenkurve
- 7a5. Warum gerade e^{-cx^2} ?

7b. Korrelationskoeffizient und Regressionsgerade

- 7b1. Die Varianz-Kovarianz-Ungleichung
- 7b2. Der Korrelationskoeffizient
- 7b3. Beste affin lineare Vorhersage: die Regressionsgerade
- 7b4. Korrelation und Regression: eine Illustration aus B. Ferebees Statistik für Biologen

¹Die Teile 7a4 und 7a5 wurden in der Vorlesung nicht vorgetragen.

8a. Zweistufige Zufallsexperimente

- 8a1. Übergangswahrscheinlichkeiten
- 8a2. Von der Startverteilung mit den Übergangswahrscheinlichkeiten zur gemeinsamen Verteilung
- 8a3. Addieren von unabhängigen Zufallsvariablen zweistufig aufgefasst
- 8a4. Bedingte Verteilung
- 8a5. Bedingte Verteilung mit X_2 als erster Stufe: Die Formel von Bayes
- 8a6: Bedinger Wahrscheinlichkeiten

8b. Mehrstufige Zufallsexperimente

- 8b1. Mehrstufigkeit und Multiplikationsregel
- 8b2. Die Pólya-Urne

9a. Markovketten 1

- 9a1. Markovketten als spezielle mehrstufige Zufallsexperimente
- 9a2. Zerlegung nach dem ersten Schritt
- 9a3. Treffwahrscheinlichkeiten
- 9a4. Erwartete Treffzeiten

9b. Markovketten 2

- 9b1. Transport von Verteilungen
- 9b2. Gleichgewichtsverteilungen
- 9b3. Das Ehrenfest-Modell

10. Schätzen mit Verlass: Konfidenzintervalle

- 1. Schätzen von Anteilen
- 2. Schätzen des Erwartungswertes einer Verteilung auf \mathbb{R}
 - a. Großer Stichprobenumfang n, Normal approximation
 - b. Kleiner Stichprobenumfang n, Student-Verteilung²
- 3. Ein Konfidenzintervall für den Median²

11. Kann das Zufall sein? Beispiele von statistischen Tests.

- 1. Testen von Anteilen
 - a. Fishers exakter Test mittels der hypergeometrischen Verteilung
 - b. Normalapproximation
- 2. Tests der Hyothese $\mu = \mu_0$
 - a. Normalapproximation (bei großem n)
 - b. Der t-Test²
- 3. Tests der Hypothese $\mu_1 = \mu_2$ bei ungepaarten Stichproben²
 - a. Normalapproximation (bei großen n_1, n_2)²
 - b. Der t-Test für zwei ungepaarte Stichproben 2
- 4. Der Wilcoxon-Test (Oder: Wie untypisch ist die Lage der Ränge zweier Stichproben?)²

²Die Teile 10.2b, 10.3, 11.2b, 11.3 und 11.4 wurden in der Vorlesung nicht vorgetragen.