"Stochastik für die Informatik" Ubungen zur Vorlesung

Abgabe der Lösungen zu den S-Aufgaben per E-Mail bis Freitag, 18. Dezember 2020, 10 Uhr Leitfaden zur Abgabe der Übungsaufgaben: siehe "Ankündigungen" im Moodle Kurs

21.S. Unabhängig? Unkorreliert?

a) X_1 sei eine $\{1,2,3\}$ - wertige Zufallsvariable, X_2 sei eine $\{b, c, d\}$ -wertige Zufallvariable und die Matrix der gemeinsamen Verteilungsgewichte von (X_1, X_2) sei

		b	c	d
Ī	1	6γ	7γ	10γ
	2	12γ	14γ	19γ
	3	18γ	21γ	31γ

Dabei ist γ so gewählt, dass die Summe der 9 Verteilungsgewichte gleich 1 ist.

- (i) Warum sind X_1 und X_2 nicht unabhängig? (Sie dürfen dabei ein in V5b1 vorgestelltes Kriterium verwenden.)
- (ii) Finden Sie eine (möglichst einfache) Verarbeitung h, sodass X_1 und $h(X_2)$ unabhängig sind.
- (iii) Andern Sie zwei der 9 Verteilungsgewichte in der angegebenen Matrix so ab, dass zwei Zufallsvariable mit diesen gemeinsamen Verteilungsgewichten unabhängig sind.
- (iv) Hat es eine Sinn zu fragen, ob X_1 und X_2 unkorreliert snd?
- b) (X_1, X_2) sei das Koordinatenpaar eines im Einkeitskreis $\{(a_1, a_2): a_1^2 + a_2^2 \leq 1\}$ uniform verteilten zufälligen Punktes X. Sind X_1 und X_2 (i) unabhängig? (ii) unkorreliert? (Hinweis zu (ii): (X_1, X_2) ist so verteilt wie $(-X_1, X_2)$ - warum?)

22. Paarweise Unabhängigkeit von Ereignissen.

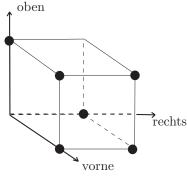
 $X = (X_1, X_2, X_3)$ mit Wertebereich $\{o, u\} \times \{\ell, r\} \times \{h, v\}$ beschreibe eine rein zufällige Wahl aus den 6 in der Skizze markierten Ecken des Würfels (die beiden nicht markierten Ecken bleiben tabu). Vier der markierten Ecken sind "vorne", drei sind "rechts" und drei sind "oben". Wir betrachten die Ereignisse

$$E_1 := \{X_1 = o\} = \{X \text{ landet oben}\},\$$

$$E_2 := \{X_2 = r\} = \{X \text{ landet rechts}\},$$

$$E_3 := \{X_3 = v\} = \{X \text{ landet vorne}\}.$$

- a) Bestimmen Sie
- (i) $P(E_1 \cap E_2)$ (ii) $P(E_1^c \cap E_2)$ (iii) $P(E_1 \cap E_2^c)$ (iv) $P(E_1^c \cap E_2^c)$.



- b) Bestimmen Sie die 2×2 -Matrix der Verteilungsgewichte von (X_1, X_2) . Sind E_1 und E_2 unabhängig? Sind sie positiv korelliert?
- c) Gilt $\mathbf{P}(E_1 \cap E_2 \cap E_3) = \mathbf{P}(E_1) \cdot \mathbf{P}(E_2) \cdot \mathbf{P}(E_3)$?
- 23. Die Standardabweichung der zufälligen Trefferquote. In der Stunde Eins haben wir den Anteil p einer Teilfläche F an einer Gesamtfläche G dadurch geschätzt, dass wir n Punkte rein zufällig in G geworfen und als Schätzer \hat{p} die relative Treffzahl von F (d.h. den Qotienten aus der Anzahl der Treffer und der Anzahl der Versuche) genommen haben. Berechnen Sie die Standardabweichung von \hat{p} , wenn der tatsächliche Wert von p gleich 1/5 ist. Was ergibt sich für (i) n = 100, (ii) n = 400, (iii) n = 1600?
- 24.S. Ziehen so lange das Zeug hält. Wir beschäftigen uns wieder mit dem Wald aus A11 b) und A13. Die Gesamtanzahl der Bäume sei g=100, und T_1,\ldots,T_{100} seien die nacheinander rein zufällig aus dem Wald entfernten ("ohne Zurücklegen gezogenen") Bäume. Wir setzen $X_i :=$ $h(T_i)$, die Höhe des *i*-ten gezogenen Baumes.
- a) Berechnen Sie $\sigma^2 := \mathbf{Var}[X_1]$.
- b) Welche Werte kann die Zufallsvariable $Y := X_1 + \cdots + X_{100}$ annehmen?
- c) Warum ist das zufällige Paar (T_5, T_{26}) so verteilt wie (T_1, T_2) ? Warum ist das zufällige Paar
- (X_5, X_{26}) so verteilt wie das zufällige Paar (X_1, X_2) ? Warum ist $\mathbf{Cov}[X_5, X_{26}] = \mathbf{Cov}[X_1, X_2]$? d) Drücken Sie die Summe $\sum_{i=1}^g \mathbf{Var}[X_i] + 2 \sum_{1 \le i < j \le g} \mathbf{Cov}[X_i, X_j]$ durch g, σ^2 und $\mathbf{Cov}[X_1, X_2]$ aus.
- e) Verwenden Sie b) und d), um $\mathbf{Cov}[X_1,X_2]$ durch σ^2 und g auszudrücken.

 $^{^1}$ Wenn wir uns die Bäume mit $1,\ldots,100$ nummeriert denken, entspricht damit (T_1,\ldots,T_{100}) einer rein zufälligen Permutation von $1, \ldots, 100$.