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Asymptotics of the intersection intensity

of two independent renewal processes:
a note on Lemma 3c in [BGKS]

The aim of this little note is to clarify one more nice connection between the
papers [BGKS] and [HS], beyond those that are already discussed in [BGKS].
This concerns one single (part of a) lemma in [BGKS], for whose proof the
authors of [BGKS] refer to [HS], apparently with a typo in the number of
the cited lemma. Recently we were able to find the desired proof “in and
between the lines” of [HS], at least under a (generic) additional assumption,
namely the ultimate monotonicity of the right hand side of (5). Already
before this, we had found an independent proof that works under an even
less restrictive assumption, see (16) below. While the proof based on [HS]
works with arguments based on Fourier analysis and Tauberian arguments,
our alternative proof, making use of a result of [D] on the asymptotics of
(2), plugs this asymptotics in and proceeds fairly directly to the analysis of
a Riemann sum.

In passing, we could repair misprints of the constants in (5), (6) and (16)
as they appear in [BGKS], [HS] and [D], respectively. The fact that these
constants in their various forms fit together so nicely is a consequence not
least of Euler’s beautiful reflection formula (14).

Here is the setting: Let α ∈ (0, 12 ), and let µ be a probability distributi-
on on N obeying

µ({n, n + 1, . . .} ∼ n−αL(n) (1)

for some slowly varying function L. A renewal process with interarrival time
distribution µ will be called a µ-renewal process for short. Specifically, we
consider an i.i.d. sequence R1, R2, . . . of random variables with distribution µ
and put

qn := P(∃j ≥ 0 : R1 + · · ·+Rj = n) (2)

i.e. q = (qn)n≥0 is the (sequence of weights of the) intensity measure of the
µ-renewal point process started in 0. We write

R := {n ∈ N : R1 + · · · +Rj = n for some j ≥ 0} (3)

for the support of this process, i.e. the set of renewal points. Let R(m),
m ∈ Z, be i.i.d. copies of R, and put Rm := m + R(m). Hence, Rm is the
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support of of a µ-renewal process started in m, with all these processes being
independent.

For m > 0 and k ∈ Z,

E[|Rk ∩Rk+m|] = E[|R0 ∩Rm|] =
∞
∑

j=0

qjqj−m =
∞
∑

j=0

qjqj+m. (4)

We refer to (4) as the intersection intensity of two independent µ-renewal
processes started distance m apart.

Lemma 3c in [BGKS] states that

∞
∑

j=0

qjqj−m ∼
(1− α)2

Γ(2− α)2Γ(2α)
m2α−1L(m) as m → ∞ (5)

For the proof of this result, the authors refer to Lemma 5.1 in [HS].
While such a direct reference seems to be missing in the published version
of [HS], a trace that comes close is the proof of Lemma 3.1 in [HS], in which
the following asymptotics is proved:

n
∑

m=1

∞
∑

j=0

qjqj+m ∼
1

4α cos(πα)Γ(1 − α)2Γ(2α)

n2α

L(n)2
(6)

Note that the prefactor that is stated in the formula in [HS], top of p. 706,
has a 2α instead of 4α, and also has Γ(1− 2α)2 instead of Γ(1− α)2. These
typos are corrected in [I], where the proof from [HS] is reproduced in detail.
Briefly stated, the proof of (6) in [HS] consists in recognizing

(|Q|2)m :=
∞
∑

j=0

qjqj+m (7)

as the coefficients in the Fourier series

|Q(t)|2 =
∑

m∈Z

(|Q|2)m eimt, (8)

with
Q(t) :=

∑

k∈Z

qk e
ikt, (9)

and qk := 0 for k < 0. With

pn := µ({n}), n ∈ Z, (10)
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a “first jump decomposition” for R translates into the convolution relation

qm :=
m
∑

n=1

pnqm−n (11)

and with
P (t) :=

∑

m∈Z

pm eimt (12)

the relation (11) together with q0 = 1 turns into Q(t) = (1 − P (t))−1. The
asymptotics (6) then follows from known behaviour of the Fourier trans-
form (12) near t = 0 (based on the assumption (1)) and a Tauberian argu-
ment ([BGT], Theorem 4.10.1 (a)).

If n2α−1L(n) is ultimately monotone, then (11) together with [F], Ch. XIII.5,
Theorem 5, implies

∞
∑

j=0

qjqj+m ∼
1

2 cos(πα)Γ(1 − α)2Γ(2α)

m2α−1

L(m)2
. (13)

By Euler’s reflection formula

Γ(x)Γ(1− x) =
sin(πx)

x
(14)

and the relation 2 cos(πα) = sin(2πα)/ sin(πα), the asymptotics (13) beco-
mes

∞
∑

j=0

qjqj+m ∼
Γ(1− 2α)

Γ(α)Γ(1 − α)3
m2α−1

L(m)2
(15)

We are going to give an alternative proof of (15) which works without the
assumption of ultimate monotonicity of n−αL(n) but instead uses the weaker
assumption

sup
n≥1

nP(R1 = n)

P(R1 > n)
< ∞. (16)

Indeed, Theorem B in [D] states that (1) together with the assumption (16)
implies1

qn ∼
1

Γ(α)Γ(1 − α)
nα−1 1

L(n)
(17)

1Note that in [D] Theorem B the prefactor is erroneously printed as Γ(1 − α)/Γ(α),
but a look e.g. into [GL] shows the correct prefactor π

sin(πα)
= 1

Γ(α)Γ(1−α)
.
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Proposition 0.1 Let α ∈ (0, 12 ) and assume (17). Then, as m → ∞,

∑

j≥1

qjqm+j ∼ C2L̃(m)2m2α−1

∫ ∞

0
(1 + x)α−1xα−1dx (18)

for C := 1
Γ(α)Γ(1−α) and L̃(m) := (L(m))−1.

Before turning to the proof of Proposition 0.1, let us note that the right
hand sides of (18) and (15) are equal. Indeed, the substitution x = t

1+t
,

dx = dt
(1−x)2

, gives

∫ ∞

0
(1 + x)α−1xα−1dx = B(α, 1− 2α) =

Γ(α)Γ(1 − 2α)

Γ(1− α)
. (19)

We will prove (18) first under a special assumption on the Karamata
representation of the slowly varying function L.

Lemma 0.2 Let α ∈ (0, 12), and assume

rn = nα−1K(n) (20)

where K(n) is of the form

K(n) = exp

(
∫ n

B

l(t)

t
dt

)

(21)

with B a positive constant and l(t), t ≥ B, a bounded measurable function

converging to 0 as t → ∞. Then (rn) is ultimately decreasing, and

∑

j≥1

rjri+j ∼ K(i)2i2α−1

∫ ∞

0
(1 + x)α−1xα−1dx. (22)

Proof. a) The fact that (rn) is ultimately decreasing follows from (20) to-
gether with the Karamata representation (21) of K(n): We first set β :=
1 − α. Now since l(t) tends to zero for t → ∞ we know that there exists
n0 ∈ N such that for alle t ≥ n0 one has l(t) < β. This implies

rn
rn+1

=
nα−1

(n+ 1)α−1
·

K(n)

K(n+ 1)

=
nα−1

(n+ 1)α−1
exp

(

−

∫ n+1

n

l(t)

t
dt

)

= exp

(

β (ln(n+ 1)− ln(n))−

∫ n+1

n

l(t)

t
dt

)

= exp

(
∫ n+1

n

(

β

t
−

l(t)

t

)

dt

)

.
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Since by assumption the integrand on the r.h.s. is strictly positive for n ≥ n0,
we obtain that (rn)n is decreasing for n ≥ n0.

b) In view of (20), the claimed asymptotics (22) is equivalent to

1

i

∑

j≥1

rj
ri

ri+j

ri
→

∫ ∞

0
(1 + x)α−1xα−1dx. (23)

We now set out to prove (23). To this purpose we show first that for all
ε > 0 there exists an N ∈ N such that for all sufficiently large i

1

i

∑

j≥Ni

rj
ri

ri+j

ri
< ε. (24)

Since (rn) is ultimately decreasing, (24) will follow if we can show that exists
an N ∈ N such that for all sufficiently large i

1

i

∑

j≥Ni

(

rj
ri

)2

< ε. (25)

Again because of the ultimate monotonicity of (rn), the l.h.s. of (25) is for
sufficiently large i bounded from above by

∞
∑

m=N

(

rmi

ri

)2

=

∞
∑

m=N

m2α−2

(

K(mi)

K(i)

)2

. (26)

Using (21) one obtains that for any δ > 0 and i so large that l(t) < δ for all
t ≥ i,

K(mi)

K(i)
= exp

(
∫ mi

i

l(t)

t
dt

)

≤ exp (δ (ln(mi)− ln(i))) ≤ mδ, (27)

which implies by dominated convergence that for sufficiently large N the
r.h.s. of (26) is smaller than ε for all sufficienly large i. We have thus pro-
ved (24).

Next we show that for all ε > 0 there exists an η ∈ N such that for all
sufficiently large i

1

i

∑

j≤ηi

rj
ri

ri+j

ri
< ε. (28)

Again by ultimate monotonicity of (rn) which gives us
ri+j

ri
≤ 1 for i large

enough, for this it suffices to show that for all ε > 0 there exists an η > 0 ∈ N
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such that for all sufficiently large i

1

i

∑

j≤ηi

rj
ri

< ε. (29)

From Feller Vol 2, Theorem 5 on p. 447 we obtain that

∑

j≤ηi

rj ∼
1

α
(ηi)αK(⌊ηi⌋), (30)

and hence
1

i

∑

j≤ηi

rj
ri

∼
1

α
ηα

K(⌊ηi⌋)

K(i)
∼

ηα

α
, (31)

which proves (29), and hence also (28).(The last asymptotic is by the fact
that K is slowly varying.)

In view of (20), (24) and (28), for proving (22) it remains to show that

1

i

∑

ηi≤j≤Ni

K(j)

K(i)

K(i+ j)

K(i)

(

1 +
j

i

)α−1 (j

i

)α−1

→

∫ N

η

(1 + x)α−1xα−1dx.

(32)
From (21) one derives that

lim
i→∞

sup
ηi≤j≤(N+1)i

∣

∣

∣

∣

K(j)

K(i)
− 1

∣

∣

∣

∣

= 0. (33)

Hence (32) boils down to a convergence of Riemann sums to its integral
limit. �

Let us now complete the proof of the Proposition. The assumption (17)
can be rewritten as

qn = Cnn
α−1L̃(n) (34)

where L̃(n) is a slowly varying function and Cn → C > 0. As in the proof
of the Lemma, it suffices to show that

1

i

∑

j≥1

qj
qi

qi+j

qi
→

∫ ∞

0
(1 + x)α−1xα−1dx. (35)

Because of the Karamata representation theorem (see e.g. Theorem 1.3.1 in
[BGT]) there exists a K(n) satisfying (21) and a sequence Dn converging to
a positive constant D such that

L̃(n) = DnK(n), n = 1, 2, . . . (36)
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Defining rn as in (20) we have

qn = DnCnrn, n = 1, 2, . . . (37)

Since the asymptotics of neither the l.h.s. of (23) nor that of the l.h.s. of
(35) reacts to the omission of a fixed finite number of summands, we see
that (23) carries over to (35). �
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