Detecting stochastic inclusions in electrical impedance tomography

Bastian von Harrach
harrach@math.uni-stuttgart.de

(joint work with A. Barth, N. Hyvönen and L. Mustonen)

Chair of Optimization and Inverse Problems, University of Stuttgart, Germany

ICIAM 2015 – The 8th International Congress on Industrial and Applied Mathematics
Beijing, China
August 10–14, 2015
Electrical impedance tomography (EIT)

- Apply electric currents on subject’s boundary
- Measure necessary voltages
- Reconstruct conductivity inside subject.

B. Harrach: Detecting stochastic inclusions in electrical impedance tomography
Mathematical Model (deterministic)

Electrical potential $u(x)$ solves
\[\nabla \cdot (\sigma(x) \nabla u(x)) = 0 \quad x \in D \]

$D \subset \mathbb{R}^n$: imaged body, $n \geq 2$
$\sigma(x)$: conductivity
$u(x)$: electrical potential

Idealistic model for boundary measurements (continuum model):
\[\sigma \partial_{\nu} u(x) \big|_{\partial D}: \text{applied electric current} \]
\[u(x) \big|_{\partial D}: \text{measured boundary voltage (potential)} \]
Calderón problem (deterministic)

Can we recover $\sigma \in L_+^\infty(D)$ in

$$\nabla \cdot (\sigma \nabla u) = 0, \quad x \in D \quad (1)$$

from all possible Dirichlet and Neumann boundary values

$$\{(u|_{\partial D}, \sigma \partial_{\nu} u|_{\partial D}) : u \text{ solves } (1)\}?$$

Equivalent: Recover σ from **Neumann-to-Dirichlet-Operator**

$$\Lambda(\sigma) : L^2_\diamond(\partial D) \to L^2_\diamond(\partial D), \quad g \mapsto u|_{\partial D},$$

where u solves (1) with $\sigma \partial_{\nu} u|_{\partial D} = g$.

B. Harrach: Detecting stochastic inclusions in electrical impedance tomography
Inclusion detection in EIT

\[\sigma: \text{Actual (unknown) conductivity} \]
\[\sigma_0: \text{Initial guess or reference state (e.g. exhaled state)} \]

- \(\text{supp}(\sigma - \sigma_0) \) often relevant in practice

Inclusion detection problem (aka shape reconstruction or anomaly detection)

Can we recover \(\text{supp}(\sigma - \sigma_0) \) from \(\Lambda(\sigma), \Lambda(\sigma_0) \)?

- Generic approach: parametrize \(\text{supp}(\sigma - \sigma_0) \), Level-Set-Methods
- Problems:
 - PDE solutions required in each iteration
 - convergence unclear
Linearization and inclusion detection

Theorem ([H. Seo, SIAM J. Math. Anal. 2010])

Let κ, σ, σ_0 piecewise analytic.

$$\Lambda'(\sigma_0) \kappa = \Lambda(\sigma) - \Lambda(\sigma_0) \quad \Rightarrow \quad \text{supp}_{\partial D} \kappa = \text{supp}_{\partial D}(\sigma - \sigma_0)$$

$\text{supp}_{\partial D}$: outer support ($= \text{supp} + \text{parts unreachable from } \partial D$)

\sim Inclusion detection is essentially a linear problem.

\sim Fast, rigorous and globally convergent inclusion detection methods are possible.

- Next slides: Monotonicity method.
Monotonicity

For two conductivities $\sigma_0, \sigma_1 \in L^\infty(\Omega)$:

$$\sigma_0 \leq \sigma_1 \implies \Lambda(\sigma_0) \geq \Lambda(\sigma_1)$$

This follows from

$$\int_{\Omega} (\sigma_1 - \sigma_0)|\nabla u_0|^2 \geq \int_{\partial \Omega} g (\Lambda(\sigma_0) - \Lambda(\sigma_1)) g \geq \int_{\Omega} \frac{\sigma_0}{\sigma_1} (\sigma_1 - \sigma_0)|\nabla u_0|^2$$

for all solutions u_0 of

$$\nabla \cdot (\sigma_0 \nabla u_0) = 0, \quad \sigma_0 \partial_{\nu} u_0 |_{\partial \Omega} = g.$$

(e.g., Kang/Seo/Sheen 1997, Ikehata 1998)
Monotonicity based imaging

- Monotonicity:
 \[\tau \leq \sigma \implies \Lambda(\tau) \geq \Lambda(\sigma) \]

- Idea: Simulate \(\Lambda(\tau) \) for test cond. \(\tau \) and compare with \(\Lambda(\sigma) \).
 (Tamburrino/Rubinacci 02, Lionheart, Soleimani, Ventre, . . .)

- Inclusion detection: For \(\sigma = 1 + \chi_A \) with unknown anomaly \(A \),
 use \(\tau = 1 + \chi_B \), with small ball \(B \).
 \[B \subseteq A \implies \tau \leq \sigma \implies \Lambda(\tau) \geq \Lambda(\sigma) \]

- Algorithm: Mark all balls \(B \) with \(\Lambda(1 + \chi_B) \geq \Lambda(\sigma) \)
- Result: upper bound of anomaly \(A \).

Only an upper bound? Converse monotonicity relation?
Monotonicity method

Theorem (H./Ullrich, 2013)

\[D \setminus \overline{A} \text{ connected. } \sigma = 1 + \chi_A. \]

\[B \subseteq A \iff \Lambda(1 + \chi_B) \geq \Lambda(\sigma). \]

For faster implementation:

\[B \subseteq A \iff \Lambda(1) + \frac{1}{2} \Lambda'(1) \chi_B \geq \Lambda(\sigma). \]

Inclusion can be reconstructed by linearized monotonicity tests.

\[\sim \text{ Fast, rigorous, allows globally convergent implementation} \]

- Ideas of proof evolved from the similar Factorization Method

(For EIT: Arridge, Betcke, Brühl, Chaulet, Choi, Hakula, Hanke, H., Holder, Hyvönen, Kirsch, Lechleiter, Nachman, Päivärinta, Pursiainen, Schappel, Schmitt, Seo, Teirilä, . . .)

B. Harrach: Detecting stochastic inclusions in electrical impedance tomography
Calderón problem

Deterministic Calderón Problem: Can we recover σ from $\text{NtD} \Lambda(\sigma) : L^2_\partial(\partial D) \to L^2_\partial(\partial D)$, $g \mapsto u|_{\partial D}$, where u solves $\nabla \cdot (\sigma \nabla u) = 0$ with $\sigma \partial_\nu u|_{\partial D} = g$?

- Stochastic Calderón problem:

 Can we recover $E(\sigma)$ from $E(\Lambda(\sigma))$?

- Stochastic inclusion detection in hom. background ($\sigma_0 = 1$):

 Can we recover $\text{supp}(E(\sigma) - 1)$ from $E(\Lambda(\sigma))$?

- (Possible) Application: Biomedical anomaly detection from temporally averaged measurements.

B. Harrach: Detecting stochastic inclusions in electrical impedance tomography
Detecting stochastic inclusions

Theorem (Barth/H./Hyvönen/Mustonen, submitted)
Consider a domain with a stochastic inclusion \(A \),

\[
\sigma = \begin{cases}
1 & \text{in } D \setminus A, \\
\sigma_A(x, \omega) & \text{in } A,
\end{cases}
\]

- \(\sigma_A : \Omega \rightarrow L^\infty_+ (A) \), \(\Omega \) probability space,
- \(\sigma_A, \sigma_A^{-1} \in L^1(\Omega, L^\infty_+(A)) \)

If

\[
\mathbb{E}(\sigma_A) > 1 \quad \text{and} \quad \mathbb{E}(\sigma_A^{-1})^{-1} > 1,
\]

then, both, the Factorization Method and the Monotonicity Method applied to \(\mathbb{E}(\sigma) \) recover the inclusion \(A \).
Monotonicity for stochastic inclusions

Main idea of the proof: Monotonicity for stochastic inclusions:

For deterministic \(\sigma_0 \) and stochastic \(\sigma \):

\[
\int_D (\mathbb{E}(\sigma) - \sigma_0) |\nabla u_0|^2 \, dx \geq \int_{\partial D} g(\Lambda(\sigma_0) - \mathbb{E}(\Lambda(\sigma))) g \, ds \\
\geq \int_D \sigma_0^2 (\sigma_0^{-1} - \mathbb{E}(\sigma^{-1})) |\nabla u_0|^2 \, dx.
\]

In particular,

\[
\sigma_0 \leq \mathbb{E}(\sigma) \text{ and } \sigma_0 \leq \mathbb{E}(\sigma^{-1})^{-1} \implies \Lambda(\sigma_0) \geq \mathbb{E}(\Lambda(\sigma))
\]
Example

- Background conductivity \(\sigma_0 = 1 \)
- Inclusions conductivity uniformly distributed in \([0.5, 3.5]\)

\[
\mathbb{E}(\sigma_A) \geq \mathbb{E}(\sigma_A^{-1})^{-1} \approx 1.54 > 1 = \sigma_0
\]

- Images show result of Factorization Method applied to \(\mathbb{E}(\sigma)\)
 (Left Image: no noise, Right Image: 0.1% noise)

B. Harrach: Detecting stochastic inclusions in electrical impedance tomography
Conclusions

In EIT, stochastic inclusions in a deterministic background

- can be detected by deterministic Factorization or Monotonicity Method applied to the measurement’s expectation value,

- if, both, $\mathbb{E}(\sigma_A)$ and $\mathbb{E}(\sigma_A^{-1})^{-1}$ are larger than bg conductivity (or both are smaller than background conductivity)

Roughly speaking,

- stochastic conductivity uncertainty in σ is analogous to deterministic uncertainty in $[\mathbb{E}(\sigma^{-1})^{-1}, \mathbb{E}(\sigma)]$

Outlook:

- Stochastic inclusions in stochastic backgrounds may be treatable by resolution guarantees
 (Deterministic case: H., Ullrich, IEEE TMI 2015)