Inverse coefficient problems and shape reconstruction

Bastian von Harrach

harrach@math.uni-stuttgart.de

Chair of Optimization and Inverse Problems, University of Stuttgart, Germany

Darmstadt, November 19, 2013.
Electrical impedance tomography (EIT)

Apply electric currents on subject’s boundary
Measure necessary voltages
Reconstruct conductivity inside subject.

Images from BMBF-project on EIT
(Hanke, Kirsch, Kress, Hahn, Weller, Schilcher, 2007-2010)

B. Harrach: Inverse coefficient problems and shape reconstruction
Mathematical Model

Electrical potential $u(x)$ solves

$$\nabla \cdot (\sigma(x) \nabla u(x)) = 0 \quad x \in \Omega$$

$\Omega \subset \mathbb{R}^n$: imaged body, $n \geq 2$

$\sigma(x)$: conductivity

$u(x)$: electrical potential

Idealistic model for boundary measurements (continuum model):

$\sigma \partial_{\nu} u(x)|_{\partial \Omega}$: applied electric current

$u(x)|_{\partial \Omega}$: measured boundary voltage (potential)
Calderón problem

Can we recover $\sigma \in L^\infty_+(\Omega)$ in

$$\nabla \cdot (\sigma \nabla u) = 0, \quad x \in \Omega \quad (1)$$

from all possible Dirichlet and Neumann boundary values

$$\{(u|_{\partial \Omega}, \sigma \partial_{\nu} u|_{\partial \Omega}) : u \text{ solves } (1)\} ?$$

Equivalent: Recover σ from Neumann-to-Dirichlet-Operator

$$\Lambda(\sigma) : L^2_\diamond(\partial \Omega) \rightarrow L^2_\diamond(\partial \Omega), \quad g \mapsto u|_{\partial \Omega},$$

where u solves (1) with $\sigma \partial_{\nu} u|_{\partial \Omega} = g.$
Partial/local data

Measurements on open part of boundary $\Sigma \subset \partial \Omega$: ($\partial \Omega \setminus \Sigma$ is kept insulated.)

Recover σ from

$$\Lambda(\sigma) : L^2(\Sigma) \rightarrow L^2(\Sigma), \quad g \mapsto u|_{\Sigma},$$

where u solves $\nabla \cdot (\sigma \nabla u) = 0$ with

$$\sigma \partial_{\nu} u|_{\Sigma} = \begin{cases} g & \text{on } \Sigma, \\ 0 & \text{else}. \end{cases}$$
Challenges

Challenges in inverse coefficient problems such as EIT:

- **Uniqueness**
 - Is σ uniquely determined from the NtD $\Lambda(\sigma)$?

- **Non-linearity and ill-posedness**
 - Reconstruction algorithms to determine σ from $\Lambda(\sigma)$?
 - Local/global convergence results?

- **Realistic data**
 - What can we recover from real measurements? (Finite number of electrodes, realistic electrode models, . . .)
 - Measurement and modelling errors? Resolution?

In this talk: A simple strategy (monotonicity + localized potentials) to attack these challenges.
Uniqueness
Uniqueness results

- Measurements on complete boundary (full data):

- Measurements on part of the boundary (local data):

- \(L^\infty \) coefficients are uniquely determined from full data in 2D.
- In all cases, piecew.-anal. coefficients are uniquely determined.
- Sophisticated research on uniqueness for \(\approx C^2 \)-coefficients (based on CGO-solutions for Schrödinger eq. \(-\Delta u + qu = 0\), \(q = \frac{\Delta \sqrt{\sigma}}{\sqrt{\sigma}} \)).
Monotonicity

For two conductivities $\sigma_0, \sigma_1 \in L^\infty(\Omega)$:

$$\sigma_0 \leq \sigma_1 \implies \Lambda(\sigma_0) \geq \Lambda(\sigma_1)$$

This follows from

$$\int_\Omega (\sigma_1 - \sigma_0)|\nabla u_0|^2 \geq \int_\Sigma g(\Lambda(\sigma_0) - \Lambda(\sigma_1)) g \geq \int_\Omega \frac{\sigma_0}{\sigma_1} (\sigma_1 - \sigma_0)|\nabla u_0|^2$$

for all solutions u_0 of

$$\nabla \cdot (\sigma_0 \nabla u_0) = 0, \quad \sigma_0 \partial_{\nu} u_0|_{\Sigma} = \begin{cases} g & \text{on } \Sigma, \\ 0 & \text{else.} \end{cases}$$

(e.g., Kang/Seo/Sheen 1997, Ikehata 1998)

Can we prove uniqueness by controlling $|\nabla u_0|^2$?

B. Harrach: Inverse coefficient problems and shape reconstruction
Localized potentials

Theorem (H., 2008)

Let σ_0 fulfill unique continuation principle (UCP),

$$\overline{D_1} \cap \overline{D_2} = \emptyset, \quad \text{and} \quad \Omega \setminus (\overline{D_1} \cup \overline{D_2}) \text{ be connected with } \Sigma.$$

Then there exist solutions $u_0^{(k)}$, $k \in \mathbb{N}$ with

$$\int_{D_1} |\nabla u_0^{(k)}|^2 \, dx \to \infty \quad \text{and} \quad \int_{D_2} |\nabla u_0^{(k)}|^2 \, dx \to 0.$$

$|\nabla u_0|^2$ small

$|\nabla u_0|^2$ large

Σ

B. Harrach: Inverse coefficient problems and shape reconstruction
Proof 1/3

Virtual measurements:

\[L_D : H^1(D)' \to L^2(\Sigma), \quad f \mapsto u|_{\Sigma}, \text{ with} \]
\[\int_{\Omega} \sigma \nabla u \cdot \nabla v \, dx = \langle f, v|_{D} \rangle \quad \forall v \in H^1(D). \]

By (UCP): If \(\overline{D_1} \cap \overline{D_2} = \emptyset \) and \(\Omega \setminus (\overline{D_1} \cup \overline{D_2}) \) is connected with \(\Sigma \), then \(\mathcal{R}(L_{D_1}) \cap \mathcal{R}(L_{D_2}) = 0. \)

Sources on different domains yield different virtual measurements.

B. Harrach: Inverse coefficient problems and shape reconstruction
Proof 2/3

Dual operator:

\[L'_D : L^2_\diamond(\Sigma) \rightarrow H^1_\diamond(D), \quad g \mapsto u|_D, \] with

\[\nabla \cdot (\sigma \nabla u) = 0, \quad \sigma \partial_\nu u|_\Sigma = \begin{cases} g & \text{on } \Sigma, \\ 0 & \text{else.} \end{cases} \]

Evaluating solutions on \(D \) is dual operation to virtual measurements.

B. Harrach: Inverse coefficient problems and shape reconstruction
Proof 3/3

Functional analysis:
X, Y_1, Y_2 reflexive Banach spaces, $L_1 \in \mathcal{L}(Y_1, X)$, $L_2 \in \mathcal{L}(Y_1, X)$.

$$\mathcal{R}(L_1) \subseteq \mathcal{R}(L_2) \iff \|L'_1 x\| \lesssim \|L'_2 x\| \ \forall x \in X'.$$

Here: $\mathcal{R}(L_{D_1}) \not\subseteq \mathcal{R}(L_{D_2}) \implies \|u_0|_{D_1}\|_{H^1_\diamond} \not\lesssim \|u_0|_{D_2}\|_{H^1_\diamond}$.

If two sources do not generate the same data, then the respective evaluations are not bounded by each other.

Note: $H^1_\diamond(D)'$-source $\iff H^1_\diamond(D)$-evaluation.
Consequences

- Back to Calderón: Let $\Lambda(\sigma_0) = \Lambda(\sigma_1)$, σ_0 fulfills (UCP).
- By monotonicity,

\[
\int_\Omega (\sigma_1 - \sigma_0)|\nabla u_0|^2 \, dx \geq 0 \geq \int_\Omega \frac{\sigma_0}{\sigma_1} (\sigma_1 - \sigma_0)|\nabla u_0|^2 \, dx \quad \forall u_0
\]

- Assume: \exists neighbourhood U of Σ where $\sigma_1 \geq \sigma_0$ but $\sigma_1 \neq \sigma_0$

\Rightarrow Potential with localized energy in U contradicts monotonicity.

Higher conductivity reachable by the bndry cannot be balanced out.

Corollary (Druskin 1982±85, Kohn/Vogelius, 1984±85)
Calderón problem is uniquely solvable for piecw.-anal. conductivities.

B. Harrach: Inverse coefficient problems and shape reconstruction
Two coefficients

Can we recover two coefficients $a(x), c(x) \in L^\infty_+(\Omega)$ in

$$- \nabla \cdot (a \nabla u) + cu = 0 \quad \text{in } \Omega$$ \hspace{1cm} (1)

from the NtD (with partial data)

$$\Lambda(a, c) : L^2(\Sigma) \to L^2(\Sigma), \quad g \mapsto u|\Sigma,$$

where u solves (1) with

$$\sigma \partial_\nu u|\Sigma = \begin{cases} g & \text{on } \Sigma, \\ 0 & \text{else}. \end{cases}$$

Application: Diffuse optical tomography (DOT).

Quasilinear case $a(u), c(x)$: Egger, Pietschmann, Schlottbom 2013

B. Harrach: Inverse coefficient problems and shape reconstruction
Monotonicity

\[
\int_{\Omega} \left((a_2 - a_1)|\nabla u_1|^2 + (c_2 - c_1)|u_1|^2 \right) \, dx \\
\geq \int_{\Sigma} g \left(\Lambda(a_1, c_1) - \Lambda(a_2, c_2) \right) g \, ds \\
\geq \int_{\Omega} \left((a_2 - a_1)|\nabla u_2|^2 + (c_2 - c_1)|u_2|^2 \right) \, dx,
\]

Method of localized potentials:

▷ Again, sources on different regions produce different data.
▷ \((H^1)'\)-sources produce different data than \(L^2\)-sources

\[\Rightarrow \|u\|_{H^1(D)} \not\lesssim \|u\|_{L^2(D)} \cdot\]

We can control \(|\nabla u_1|^2\) and \(|u_1|^2\) separately.

B. Harrach: Inverse coefficient problems and shape reconstruction
Uniqueness

Theorem (H., 2009)

Let

- $a_1, a_2 \in L^\infty_+(\Omega)$ piecewise constant,
- $c_1, c_2 \in L^\infty_+(\Omega)$ piecewise analytic.

Then

$$\Lambda(a_1, c_1) = \Lambda(a_2, c_2) \iff a_1 = a_2, \quad c_1 = c_2.$$

Note that $v := \sqrt{au}$ transforms $-\nabla \cdot (a \nabla u) + cu = 0$ into

$$-\Delta v + \eta v = 0, \quad \eta := \frac{\Delta \sqrt{a}}{\sqrt{a}} + \frac{c}{a}$$

(when the coefficients are smooth).
Uniqueness

Theorem (H., 2012)
Let $a_1, a_2, c_1, c_2 \in L^\infty_+(\Omega)$ be piecew. analytic. Then $\Lambda(a_1, c_1) = \Lambda(a_2, c_2)$ if and only if

(a) $a_1|\Sigma = a_2|\Sigma$, $\partial_\nu a_1|\Sigma = \partial_\nu a_2|\Sigma$ on Σ,
(b) $\frac{\partial_\nu a_1}{a_1}|_{\partial B \setminus \overline{\Sigma}} = \frac{\partial_\nu a_2}{a_2}|_{\partial B \setminus \overline{\Sigma}}$ on $\partial \Omega \setminus \Sigma$,
(c) $\eta_1 = \eta_2$ in smooth regions,
(d) $\frac{a_1^+|\Gamma}{a_1^-|\Gamma} = \frac{a_2^+|\Gamma}{a_2^-|\Gamma}$, $\frac{[\partial_\nu a_2]|\Gamma}{a_2^-|\Gamma} = \frac{[\partial_\nu a_1]|\Gamma}{a_1^-|\Gamma}$ on inner boundaries Γ.

NtD $\Lambda(a, c)$ determines $\eta = \frac{\Delta \sqrt{a}}{\sqrt{a}} + \frac{c}{a}$ and the jumps of a and ∇a.

B. Harrach: Inverse coefficient problems and shape reconstruction
Non-linearity
Non-linearity

Back to the non-linear forward operator of EIT

\[\Lambda : \sigma \mapsto \Lambda(\sigma), \quad L^\infty_{+}(\Omega) \to \mathcal{L}(L^2_{\circ}(\Sigma)) \]

Generic approach for inverting \(\Lambda \): **Linearization**

\[\Lambda(\sigma) - \Lambda(\sigma_0) \approx \Lambda'(\sigma_0)(\sigma - \sigma_0) \]

\(\sigma_0 \): known reference conductivity / initial guess / \ldots

\(\Lambda'(\sigma_0) \): Fréchet-Derivative / sensitivity matrix.

\[\Lambda'(\sigma_0) : L^\infty_{+}(\Omega) \to \mathcal{L}(L^2_{\circ}(\Sigma)). \]

\(\leadsto \) Solve linearized equation for difference \(\sigma - \sigma_0 \).

Often: \(\text{supp}(\sigma - \sigma_0) \subset \Omega \) ("shape" / "inclusion")

B. Harrach: Inverse coefficient problems and shape reconstruction
Linearization

Linear reconstruction method

e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve $\Lambda' (\sigma_0) \kappa \approx \Lambda(\sigma) - \Lambda(\sigma_0)$, then $\kappa \approx \sigma - \sigma_0$.

- Multiple possibilities to measure residual norm and to regularize.
- No rigorous theory for single linearization step.
- Almost no theory for Newton iteration:
 - Dobson (1992): (Local) convergence for regularized EIT equation.
 - No (local) convergence theory for non-discretized case!
 Non-linearity condition (Scherzer / tangential cone cond.) still open problem
- D-bar method: convergent 2D-implementation for $\sigma \in C^2$ and full bndry data (Knudsen, Lassas, Mueller, Siltanen 2008)
Linear reconstruction method

e.g. NOSER (Cheney et al., 1990), GREIT (Adler et al., 2009)

Solve $\Lambda'(\sigma_0)\kappa \approx \Lambda(\sigma) - \Lambda(\sigma_0)$, then $\kappa \approx \sigma - \sigma_0$.

- **Seemingly**, no rigorous results possible for single lineariz. step.
- **Seemingly**, only justifiable for small $\sigma - \sigma_0$ (local results).

Here: Rigorous and global(!) result about the linearization error.
Linearization and shape reconstruction

Theorem (H./Seo 2010)

Let κ, σ, σ_0 piecewise analytic and $\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) - \Lambda(\sigma_0)$. Then

$$\text{supp}_\Sigma \kappa = \text{supp}_\Sigma (\sigma - \sigma_0)$$

supp_Σ: outer support (= support, if support is compact and has conn. complement)

- Solution of lin. equation yields correct (outer) shape.
- No assumptions on $\sigma - \sigma_0$!
- Linearization error does not lead to shape errors.

Taking the (wrong) reference current paths for reconstruction still yields the correct shape information!
Proof

▷ Linearization: \(\Lambda'(\sigma_0)\kappa = \Lambda(\sigma) - \Lambda(\sigma_0) \)

▷ Monotonicity: For all ”reference solutions“ \(u_0 \):

\[
\int_{\Omega} (\sigma - \sigma_0)|\nabla u_0|^2 \, dx \\
\geq \int_{\Sigma} g \left(\Lambda(\sigma_0) - \Lambda(\sigma) \right) g \\
\geq \int_{\Omega} \frac{\sigma_0}{\sigma} (\sigma - \sigma_0)|\nabla u_0|^2 \, dx.
\]

\[
= \int_{\Sigma} g \left(\Lambda'(\sigma_0)\kappa \right) g = \int_{\Omega} \kappa|\nabla u_0|^2 \, dx
\]

▷ Use localized potentials to control \(|\nabla u_0|^2 \)

\[\supp_{\Sigma}\kappa = \supp_{\Sigma}(\sigma - \sigma_0)\]

In shape reconstruction problems we can avoid non-linearity.

B. Harrach: Inverse coefficient problems and shape reconstruction
Reconstruction from realistic data
Monotonicity based imaging

- Monotonicity:
 \[\tau \leq \sigma \implies \Lambda(\tau) \geq \Lambda(\sigma) \]

- Idea: Simulate \(\Lambda(\tau) \) for test cond. \(\tau \) and compare with \(\Lambda(\sigma) \).
 \(\text{(Tamburrino/Rubinacci 02, Lionheart, Soleimani, Ventre, …)} \)

- Inclusion detection: For \(\sigma = 1 + \chi_D \) with unknown \(D \), use \(\tau = 1 + \chi_B \), with small ball \(B \).
 \[B \subseteq D \implies \tau \leq \sigma \implies \Lambda(\tau) \geq \Lambda(\sigma) \]

- Algorithm: Mark all balls \(B \) with \(\Lambda(1 + \chi_B) \geq \Lambda(\sigma) \)

- Result: upper bound of \(D \).

Only an upper bound? Converse monotonicity relation?

B. Harrach: Inverse coefficient problems and shape reconstruction
Converse monotonicity relation

$\Omega \setminus \overline{D}$ connected. $\sigma = 1 + \chi_D$.

$$B \subseteq D \iff \Lambda(1 + \chi_B) \geq \Lambda(\sigma).$$

\Rightarrow Monotonicity method detects exact shape.

For faster implementation:

$$B \subseteq D \iff \Lambda(1) + \frac{1}{2} \Lambda'(1) \chi_B \geq \Lambda(\sigma).$$

\Rightarrow Linearized monotonicity method detects exact shape.

Proof: Monotonicity + localized potentials

B. Harrach: Inverse coefficient problems and shape reconstruction
General case

Let \(\sigma \in L_1^\infty(\Omega) \) be piecewise analytic. The intersection of all *hole-free* \(C \subseteq \overline{\Omega} \) with

\[
\exists \alpha > 1 : \Lambda(1 + \alpha \chi_C) \leq \Lambda(\sigma) \leq \Lambda(1 - \chi_C/\alpha)
\]

is identical to the (outer) support of \(\sigma - 1 \).

- Result also holds with linearized condition

\[
\exists \alpha > 1 : \Lambda(1) + \alpha \Lambda'(1) \chi_C \leq \Lambda(\sigma) \leq \Lambda(1) - \alpha \Lambda'(1) \chi_C.
\]

- Result covers indefinite case,
 e.g., \(\sigma = 1 + \chi_{D_1} - \frac{1}{2} \chi_{D_2} \)

B. Harrach: Inverse coefficient problems and shape reconstruction
Monotonicity based shape reconstruction

Monotonicity based reconstruction
- is intuitive, yet rigorous
- is stable (no infinity or range tests)
- works for pcw. anal. conductivities (no definiteness conditions)
- requires only the reference solution

Approach is closely related to (and heavily inspired by)
- Factorization Method of Kirsch and Hanke
 \((in\ EIT: \text{Brühl, Hakula, H.}, \text{Hyvönen, Lechleiter, Nachman, Päivärinta, Pursiainen, Schappel, Schmitt, Seo, Teirilä, Woo, \ldots })\)
- Ikehata’s Enclosure Method and probing with Sylvester-Uhlmann-CGOs \((\text{Ide, Isozaki, Nakata, Siltanen, Wang, \ldots })\)
- Classic inclusion detection results \((\text{Friedmann, Isakov, \ldots })\)
Realistic data & Uncertainties

- Finite number of electrodes, CEM, noisy data $\Lambda^\delta(\sigma)$
- Unknown background, e.g., $1 - \epsilon \leq \sigma_0(x) \leq 1 + \epsilon$
- Anomaly with some minimal contrast to background, e.g.,
 $$\sigma(x) = \sigma_0(x) + \kappa(x) \chi_D, \quad \kappa(x) \geq 1$$
- Can we rigorously guarantee to find inclusion D?

H./Ullrich: Monotonicity-based
Rigorous Resolution Guarantee

- If $D = \emptyset$, methods return \emptyset.
- If $D \supset \omega_i$ then it is detected.

(Here: 32 electrodes, $\epsilon = 1\%$, $\delta = 1.4\%$)
Conclusions

Using monotonicity and localized potentials we showed that

- Uniqueness results for piecewise smooth parameters may significantly differ from that for globally smooth ones.
- In shape reconstruction problems we can avoid non-linearity.
- Resolution guarantees for locating anomalies in unknown backgrounds with realistic finite precision data are possible.

Major limitations / open problems for our approach

- Piecewise analyticity required to prevent infinite oscillations.
- Voltage has to be measured on current-driven electrodes.