ERRATUM: MONOTONICITY IN INVERSE MEDIUM SCATTERING ON UNBOUNDED DOMAINS
ROLAND GRIESMAIER* AND BASTIAN HARRACH†

Abstract. We correct a mistake in the proof of Theorem 5.3 in [R. Griesmaier and B. Harrach.

Key words. Inverse scattering, Helmholtz equation, monotonicity, far field operator, inhomogeneous medium

AMS subject classifications. 35R30, 65N21

1. An error in the proof of Theorem 5.3 in [3]. At the end of the proof of Theorem 5.3 in [3] “Applying Theorem 4.5 with
$D = B_R(0) \setminus \overline{D}$, $q_1 = 0$, and $q_2 = q \ldots$” is not possible, because the assumption of Theorem 4.5 in [3] that
$q_1(x) = q_2(x)$ for a.e. $x \in \mathbb{R}^d \setminus \overline{D}$ is not satisfied for this choice of D, q_1 and q_2.

To fix this issue we will extend the results on localized wave functions from Section 4 of [3] in Section 2 below. Then, in Section 3 we will reformulate Theorem 5.3 of [3], making stronger assumptions on the domains and on the index of refraction, and we will correct the final argument in the original proof in [3].

2. Simultaneously localized wave functions. We establish the existence of simultaneously localized wave functions that have arbitrarily large norm on some prescribed region $E \subseteq \mathbb{R}^d$ while at the same time having arbitrarily small norm in a different region $M \subseteq \mathbb{R}^d$, assuming among others that $\mathbb{R}^d \setminus (E \cup M)$ is connected. The result generalizes Theorem 4.1 in [3] in the sense that we not only control the total field but also the incident field. Similar results have recently been established for the Schrödinger equation in [4, Thm. 3.11] and for the Helmholtz obstacle scattering problem in [1, Thm. 4.5].

Theorem 2.1. Suppose that $q \in L^\infty_{0,+}(\mathbb{R}^d)$, and let $E, M \subseteq \mathbb{R}^d$ be open and Lipschitz bounded such that $\text{supp}(q) \subseteq \overline{E \cup M}$, $\mathbb{R}^d \setminus (E \cup M)$ is connected, and $E \cap M = \emptyset$. Assume furthermore that there is a connected subset $\Gamma \subseteq \partial E \setminus \overline{M}$ that is relatively open and $C^{1,1}$ smooth.

Then for any finite dimensional subspace $V \subseteq L^2(S^{d-1})$ there exists a sequence $(g_m)_{m \in \mathbb{N}} \subseteq V^\perp$ such that

$$
\int_E |u_{q,g_m}|^2 \, dx \to \infty \quad \text{and} \quad \int_M \left(|u_{q,g_m}|^2 + |u_{1,g_m}|^2 \right) \, dx \to 0 \quad \text{as } m \to \infty ,
$$

where $u_{1,g_m}, u_{q,g_m} \in H^1_{\text{loc}}(\mathbb{R}^d)$ are given by (2.8a)–(2.8b) in [3] with $g = g_m$.

The proof of Theorem 2.1 relies on the following three lemmas.

Lemma 2.2. Suppose that $q \in L^\infty_{0,+}(\mathbb{R}^d)$, let $n^2 = 1 + q$, and assume that $D \subseteq \mathbb{R}^d$
is open and bounded. We define

\[L_{q,D} : L^2(S^{d-1}) \rightarrow H^1(D), \quad g \mapsto u_{q,g}|_D, \]

where \(u_{q,g} \in H^1_{\text{loc}}(\mathbb{R}^d) \) is given by (2.8b) in [3]. Then \(L_{q,D} \) is a linear operator and its adjoint is given by

\[L^*_{q,D} : H^1(D)^* \rightarrow L^2(S^{d-1}), \quad f \mapsto S^*_q w^\infty, \]

where \(H^1(D)^* \) is the dual of \(H^1(D) \), \(S^*_q \) denotes the adjoint of the scattering operator from (2.7) in [3], and \(w^\infty \in L^2(S^{d-1}) \) is the far field pattern of the radiating solution \(w \in H^1_{\text{loc}}(\mathbb{R}^d) \) to

\[\Delta w + k^2 n^2 w = -f \quad \text{in } \mathbb{R}^d. \]

Proof. This follows from the same arguments that have been used in the proof of Lemma 2.2 in [3]. \(\square \)

Lemma 2.3. Suppose that \(q \in L^\infty_0(\mathbb{R}^d) \), and let \(E, M \subseteq \mathbb{R}^d \) be open and Lipschitz bounded such that \(\text{supp}(q) \subseteq E \cup M, \mathbb{R}^d \setminus (E \cup M) \) is connected, and \(E \cap M = \emptyset \). Assume furthermore that there is a connected subset \(\Gamma \subseteq \partial E \setminus M \) that is relatively open and \(C^{1,1} \) smooth. Then,

\[R(L^*_{q,E}) \subsetneq R((L^*_{q,M} L^*_{0,M})) \]

and there exists an infinite dimensional subspace \(Z \subseteq R(L^*_{q,E}) \) such that

\[Z \cap R((L^*_{q,M} L^*_{0,M})) = \{0\}. \]

Proof. Let \(h \in R(L^*_{q,E}) \cap R((L^*_{q,M} L^*_{0,M})) \). Then Lemma 2.2 shows that there exist \(f_{q,E} \in H^1(E)^* \) and \(f_{q,M}, f_{0,M} \in H^1(M)^* \) such that the far field patterns \(w^\infty_{q,E}, w^\infty_{q,M}, w^\infty_{0,M} \) of the radiating solutions \(w_{q,E}, w_{q,M}, w_{0,M} \in H^1_{\text{loc}}(\mathbb{R}^d) \) to

\[
\begin{align*}
\Delta w_{q,E} + k^2 (1 + q) w_{q,E} &= -f_{q,E} & \text{in } \mathbb{R}^d, \\
\Delta w_{q,M} + k^2 (1 + q) w_{q,M} &= -f_{q,M} & \text{in } \mathbb{R}^d, \\
\Delta w_{0,M} + k^2 w_{0,M} &= -f_{0,M} & \text{in } \mathbb{R}^d,
\end{align*}
\]

satisfy

\[h = S^*_q w^\infty_{q,E} = w^\infty_{0,M} + S^*_q w^\infty_{q,M}. \]

Here we used that \(S_0 \) is the identity operator. Accordingly, using the definition of the scattering operator in (2.7) of [3], we find that

\[
\begin{align*}
0 &= w^\infty_{q,E} - w^\infty_{q,M} - S_q w^\infty_{0,M} \\
&= w^\infty_{q,E} - w^\infty_{q,M} - w^\infty_{0,M} - 2ik|C|d^2 F_q w^\infty_{0,M} \\
&= w^\infty_{q,E} - (w^\infty_{q,M} + w^\infty_{0,M} + v^\infty_q),
\end{align*}
\]

where \(v^\infty_q \) is the far field of a radiating solution \(v_q \in H^1_{\text{loc}}(\mathbb{R}^d) \) to

\[\Delta v_q + k^2 (1 + q) v_q = 0 \quad \text{in } \mathbb{R}^d. \]
Since $\text{supp}(q) \subseteq E \cup M$ and $\mathbb{R}^d \setminus (E \cup M)$ is connected, Rellich’s lemma and unique continuation guarantee that
\[(2.2) \quad w_{q,E} - (w_{q,M} + w_{0,M} + v_q) = 0 \quad \text{in } \mathbb{R}^d \setminus (E \cup M)\]
(cf., e.g., [2, Thm. 2.14]).

Next we discuss the regularity of the traces of $w_{q,E}$ and $w_{q,M} + w_{0,M} + v_q$ at the boundary segment $\Gamma \subseteq \partial E \setminus M$. W.l.o.g, we may assume that Γ is bounded away from M. Since $\text{supp}(f_{q,M} + f_{0,M}) \subseteq M$, interior regularity results (see, e.g., [7, Thm. 4.18]) show that $(w_{q,M} + w_{0,M} + v_q)\big|_\Gamma \in H^{1/2}(\Gamma)$. Thus (2.2) implies that $w_{q,E}\big|_\Gamma^+ \in H^{1/2}(\Gamma)$ as well.

On the other hand, let $\tilde{H}^{1/2}(\Gamma)$ be the closure of $\mathcal{D}(\Gamma)$ in $H^{1/2}(\Gamma)$ (see, e.g., [7, p. 99]). We will construct sources $f \in H^1(\Gamma)^*$ such that $L_{q,E}^* f \notin \mathcal{R}(\langle L_{q,M}^*, L_{0,M}^* \rangle)$. Given any $g \in \tilde{H}^{1/2}(\Gamma)$, we denote by $\tilde{g} \in H^{1/2}(\partial E)$ its extension to ∂E by zero. Accordingly, let $u^+ \in H^1_{\text{loc}}(\mathbb{R}^d \setminus E)$ be the radiating solution to the exterior Dirichlet problem
\[(2.3) \quad \Delta u^+ + k^2 n_2^2 u^+ = 0 \quad \text{in } \mathbb{R}^d \setminus E, \quad u^+ = \tilde{g} \quad \text{on } \partial E.\]

Similarly, we define $u^- \in H^1(\Gamma)$ as the solution to the interior Dirichlet problem
\[
\Delta u^- = 0 \quad \text{in } E, \quad u^- = \tilde{g} \quad \text{on } \partial E.
\]

Therewith we introduce $u \in L^2_{\text{loc}}(\mathbb{R}^d)$ by
\[
u := \begin{cases} u^- \quad \text{in } E, \\ u^+ \quad \text{in } \mathbb{R}^d \setminus E, \end{cases}
\]
and $f \in H^1(\Gamma)^*$ by
\[
f := -k^2 n_2^2 u^- - \gamma^* \left(\frac{\partial u}{\partial \nu} \bigg|^{+}_{\partial E} - \frac{\partial u}{\partial \nu} \bigg|^{-}_{\partial E} \right),
\]
where $\gamma^* : H^{-1/2}(\partial E) \to H^1(\Gamma)^*$ denotes the adjoint of the interior trace operator $\gamma : H^1(\Gamma) \to H^{1/2}(\partial E)$. Then $u \in H^1_{\text{loc}}(\mathbb{R}^d)$ (see, e.g., [8, Lmm. 5.3]), and
\[
\Delta u + k^2 n_2^2 u = -f \quad \text{in } \mathbb{R}^d.
\]
(see, e.g., [7, Lmm. 6.9]). Accordingly, $L_{q,E}^* f = S_q u^\infty$, where $u^\infty \in L^2(S^{d-1})$ coincides with the far field of the radiating solution u^+. To the exterior Dirichlet problem (2.3). If $\tilde{g} \notin H^{1/2}(\partial E)$, then our regularity considerations above show that $L_{q,E}^* f \notin \mathcal{R}(\langle L_{q,M}^*, L_{0,M}^* \rangle)$.

Now let $X \subseteq \tilde{H}^{1/2}(\Gamma)$ be an infinite dimensional subspace of $\tilde{H}^{1/2}(\Gamma)$ such that $X \cap H^{1/2}(\Gamma) = \{0\}$ (e.g., the subspace of piecewise linear functions on Γ that vanish on ∂E as considered in the proof of Lemma 4.6 in [1]). Let $G_E : H^{1/2}(\Gamma) \to L^2(S^{d-1})$ be the operator that maps $g \in H^{1/2}(\Gamma)$ to the far field pattern of the radiating solution u^+ of (2.3), where $\tilde{g} \in H^{1/2}(\partial E)$ is again the extension of g to ∂E by zero. Then G_E is one-to-one (see, e.g., [1, Thm. 3.2]), and thus $Z := S_q G_E(X)$ is infinite dimensional. Furthermore, we have just shown that
\[
Z \subseteq \mathcal{R}(L_{q,E}^*) \quad \text{and} \quad Z \cap \mathcal{R}(\langle L_{q,M}^*, L_{0,M}^* \rangle) = \{0\}.
\]
In the next lemma we quote a special case of Lemma 2.5 in [6].

Lemma 2.4. Let \(X, Y \) and \(Z \) be Hilbert spaces, and let \(A : X \to Y \) and \(B : X \to Z \) be bounded linear operators. Then,

\[
\exists C > 0 : \|Ax\| \leq C\|Bx\| \quad \forall x \in X \quad \text{if and only if} \quad \mathcal{R}(A^*) \subseteq \mathcal{R}(B^*).
\]

Now we give the proof of Theorem 2.1.

Proof of Theorem 2.1. Let \(V \subseteq L^2(S^{d-1}) \) be a finite dimensional subspace. We denote by \(P_V : L^2(S^{d-1}) \to L^2(S^{d-1}) \) the orthogonal projection on \(V \). Combining Lemma 2.3 with a simple dimensionality argument (see [5, Lem. 4.7]) shows that

\[
Z \not\subseteq \mathcal{R} ((L^*_{q,M} L^*_{0,M})) + V = \mathcal{R} ((L^*_{q,M} L^*_{0,M} P_V)),
\]

where \(Z \subseteq \mathcal{R}(L^*_{q,E}) \) denotes the subspace in Lemma 2.3. Thus,

\[
\mathcal{R}(L^*_{q,E}) \not\subseteq \mathcal{R} ((L^*_{q,M} L^*_{0,M})) + V = \mathcal{R} ((L^*_{q,M} L^*_{0,M} P_V)),
\]

and accordingly Lemma 2.4 implies that there is no constant \(C > 0 \) such that

\[
\|L_{q,E}g\|_{L^2(E)}^2 \leq C^2 \left(\begin{array}{c}
L_{q,M}, L_{0,M} \\
L_{0,M} \end{array} \right) g \|_{L^2(M) \times L^2(M) \times L^2(S^{d-1})}^2
\]

\[
= C^2 (\|L_{q,M}g\|_{L^2(M)}^2 + \|L_{0,M}g\|_{L^2(M)}^2 + \|P_Vg\|_{L^2(S^{d-1})}^2)
\]

for all \(g \in L^2(S^{d-1}) \). Hence, there exists as sequence \((g_m)_{m \in \mathbb{N}} \subseteq L^2(S^{d-1})\) such that

\[
\|L_{q,E}g_m\|_{L^2(E)} \to \infty,
\]

\[
\|L_{q,M}g_m\|_{L^2(M)} + \|L_{0,M}g_m\|_{L^2(M)} + \|P_Vg_m\|_{L^2(S^{d-1})} \to 0 \quad \text{as} \quad m \to \infty.
\]

Setting \(g_m := g_m - P_Vg_m \in V^\perp \subseteq L^2(S^{d-1}) \) for any \(m \in \mathbb{N} \), we finally obtain

\[
\|L_{q,E}g_m\|_{L^2(E)} \geq \|L_{q,E}g_m\|_{L^2(E)} - \|L_{q,E}P_Vg_m\|_{L^2(S^{d-1})} \to \infty \quad \text{as} \quad m \to \infty,
\]

and

\[
\|L_{q,M}g_m\|_{L^2(M)} + \|L_{0,M}g_m\|_{L^2(M)} \leq \|L_{q,M}g_m\|_{L^2(M)} + \|L_{0,M}g_m\|_{L^2(M)} + \|P_Vg_m\|_{L^2(S^{d-1})} \to 0 \quad \text{as} \quad m \to \infty.
\]

Since \(L_{q,E}g_m = u_{q,g_m}|_E, L_{q,M}g_m = u_{q,g_m}|_M, \) and \(L_{0,M}g_m = u_{g_m}|_M \), this ends the proof. \(\square \)

3. Correction of the statement and of the proof of Theorem 5.3 in [3].

Theorem 3.1. Let \(B, D \subseteq \mathbb{R}^d \) be open and Lipschitz bounded such that \(\partial D \) is piecewise \(C^{1,1} \) smooth, and \(\mathbb{R}^d \setminus \overline{B} \) as well as \(\mathbb{R}^d \setminus \overline{D} \) are connected. Let \(q \in L^\infty_0(\mathbb{R}^d) \) with \(\text{supp}(q) = \overline{D} \), and suppose that \(-1 < q_{\min} \leq q \leq q_{\max} < \infty \) a.e. on \(D \) for some constants \(q_{\min}, q_{\max} \in \mathbb{R} \).

Furthermore, we assume that for any point \(x \in \partial D \) on the boundary of \(D \), there exists a connected unbounded neighborhood \(O \subseteq \mathbb{R}^d \) of \(x \) such that, for \(E := O \cap D \),

\[
q|_E \geq q_{\min,E} > 0 \quad \text{or} \quad q|_E \leq q_{\max,E} < 0
\]

for some constants \(q_{\min,E}, q_{\max,E} \in \mathbb{R} \).
(a) If \(D \subseteq B \), then there exists a constant \(C > 0 \) such that
\[
\alpha T_B \leq_{\text{fin}} \Re(F_g) \leq_{\text{fin}} \beta T_B \quad \text{for all } \alpha \leq \min\{0, q_{\text{min}}\}, \beta \geq \max\{0, C q_{\text{max}}\}.
\]
(b) If \(D \nsubseteq B \), then
\[
\alpha T_B \leq_{\text{fin}} \Re(F_g) \quad \text{for any } \alpha \in \mathbb{R} \quad \text{or} \quad \Re(F_g) \leq_{\text{fin}} \beta T_B \quad \text{for any } \beta \in \mathbb{R}.
\]

Remark 3.2. The assumptions on \(B \) and \(D \) as well as the local definiteness assumption (3.1) in Theorem 3.1 are stronger than in the original version of Theorem 5.3 in [3].

Proof of Theorem 3.1. If \(D \subseteq B \), then Corollary 3.4 and Theorem 4.5 in [3] with \(q_1 = 0 \) and \(q_2 = q \) show that there exists a constant \(C > 0 \) and a finite dimensional subspace \(V \subseteq L^2(S^{d-1}) \) such that, for all \(g \in V^\perp \) and any \(\beta \geq \max\{0, C q_{\text{max}}\} \),
\[
\Re\left(\int_{S^{d-1}} g \overline{F_g g} \, ds \right) \leq k^2 \int_D g|u_{q,g}|^2 \, dx \leq k^2 q_{\text{max}} \int_D |u_{q,g}|^2 \, dx
\]
\[
\leq k^2 C q_{\text{max}} \int_D |u_{g}^i|^2 \, dx \leq k^2 \beta \int_B |u_{g}^i|^2 \, dx.
\]

Similarly, Theorem 3.2 in [3] with \(q_1 = 0 \) and \(q_2 = q \) shows that there exists a finite dimensional subspace \(V \subseteq L^2(S^{d-1}) \) such that, for all \(g \in V^\perp \) and any \(\alpha \leq \min\{0, q_{\text{min}}\} \),
\[
\Re\left(\int_{S^{d-1}} g \overline{F_g g} \, ds \right) \geq k^2 \int_D g|u_g^i|^2 \, dx \geq k^2 q_{\text{min}} \int_D |u_g^i|^2 \, dx \geq k^2 \alpha \int_B |u_g^i|^2 \, dx,
\]
and part (a) is proven.

We prove part (b) by contradiction. Since \(D \nsubseteq B \), \(U := D \setminus B \) is not empty, and there exists \(x \in \overline{U} \cap \partial D \) as well as a connected unbounded open neighborhood \(O \subseteq \mathbb{R}^d \) of \(x \) with \(O \cap D \subseteq U \) and \(O \cap B = \emptyset \), such that (3.1) is satisfied with \(E := O \cap D \). Furthermore, let \(R > 0 \) be large enough such that \(B, D \subseteq B_R(0) \). Without loss of generality we assume that \(O \cap B_R(0) \), and \(B_R(0) \setminus \overline{O} \) are connected.

We first assume that \(q|_E \geq q_{\text{min},E} > 0 \), and that \(\Re(F_g) \leq_{\text{fin}} \beta T_B \) for some \(\beta \in \mathbb{R} \). Using the monotonicity relation (3.1) in Theorem 3.2 of [3] with \(q_1 = 0 \) and \(q_2 = q \), we find that there exists a finite dimensional subspace \(V \subseteq L^2(S^{d-1}) \) such that, for any \(g \in V^\perp \),
\[
0 \geq \int_{S^{d-1}} g\overline{(\Re(F_g g) - \beta T_B g)} \, ds \geq k^2 \int_{B_R(0)} (q - \beta \chi_B) |u_g^i|^2 \, dx
\]
\[
= k^2 \int_{B_R(0) \setminus \overline{O}} (q - \beta \chi_B) |u_g^i|^2 \, dx + k^2 \int_{B_R(0) \cap O} (q - \beta \chi_B) |u_g^i|^2 \, dx
\]
\[
\geq -k^2 (||q||_{L^\infty(\mathbb{R}^d)} + |\beta|) \int_{B_R(0) \setminus \overline{O}} |u_g^i|^2 \, dx + k^2 q_{\text{min},E} \int_E |u_g^i|^2 \, dx.
\]

However, this contradicts Theorem 4.1 in [3] with \(B = E, D = B_R(0) \setminus \overline{O} \), and \(q = 0 \), which guarantees the existence of a sequence \((g_m)_{m \in \mathbb{N}} \subseteq V^\perp \) with
\[
\int_E |u_{g_m}^i|^2 \, dx \to \infty \quad \text{and} \quad \int_{B_R(0) \setminus \overline{O}} |u_{g_m}^i|^2 \, dx \to 0 \quad \text{as } m \to \infty.
\]
Consequently, \(\text{Re}(F_q) \leq_{\text{fin}} \beta T_B \) for all \(\beta \in \mathbb{R} \).

On the other hand, if \(|q|_E \leq q_{\text{max},E} < 0 \), and if \(\alpha T_B \leq_{\text{fin}} \text{Re}(F_q) \) for some \(\alpha \in \mathbb{R} \), then the monotonicity relation (3.3) in Corollary 3.4 of [3] with \(q_1 = 0 \) and \(q_2 = q \) shows that there exists a finite dimensional subspace \(V \subseteq L^2(S^{d-1}) \) such that, for any \(g \in V^\perp \),

\[
0 \leq \int_{S^{d-1}} g (\text{Re}(F_q) g - \alpha T_B g) \, ds \leq k^2 \int_{B_R(0)} (q |u_{q,g}|^2 - \alpha \chi_B |u_g|^2) \, dx
\]

\[
= k^2 \int_{B_R(0) \setminus \mathcal{O}} (q |u_{q,g}|^2 - \alpha \chi_B |u_g|^2) \, dx + k^2 \int_{B_R(0) \cap \mathcal{O}} (q |u_{q,g}|^2 - \alpha \chi_B |u_g|^2) \, dx
\]

\[
\leq k^2 q_{\text{max}} \int_{B_R(0) \setminus \mathcal{O}} |u_{q,g}|^2 \, dx + k^2 |\alpha| \int_{B_R(0) \setminus \mathcal{O}} |u_g|^2 \, dx + k^2 q_{\text{max},E} \int_{E} |u_{q,g}|^2 \, dx.
\]

Let \(M := B_R(0) \setminus \mathcal{O} \). Since \(\partial D \) is piecewise \(C^{1,1} \) smooth, there is a connected subset \(\Gamma \subseteq \partial E \setminus \mathcal{O} \) that is relatively open and \(C^{1,1} \) smooth. Applying Theorem 2.1 we find that there exists a sequence \((g_m)_{m \in \mathbb{N}} \subseteq V^\perp \) such that

\[
\int_{E} |u_{q,g_m}|^2 \, dx \to \infty \quad \text{and} \quad \int_{B_R(0) \setminus \mathcal{O}} |u_{q,g_m}|^2 + |u_g|^2 \, dx \to 0 \quad \text{as} \ m \to \infty.
\]

However, since \(q_{\text{max},E} < 0 \), this gives a contradiction. Consequently, \(\alpha T_B \leq_{\text{fin}} \text{Re}(F_q) \) for all \(\alpha \in \mathbb{R} \), which ends the proof of part (b).

REFERENCES

