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Introduction by the Organisers

This workshop Inverse Problems for Partial Differential Equations, organized by
Martin Hanke-Bourgeois (Mainz), Andreas Kirsch (Karlsruhe), William Rundell
(College Station), and Matti Lassas (Helsinki) was held February 19th to Febru-
ary 25th, 2012. The participants consisted of 23 mathematicians, a nice mixture
of researchers with various backgrounds. The participants were the usual inter-
national blend and a stimulating mixture of well-established mathematicians and
junior scientists. For many in the group this was their first visit to Oberwolfach
and, in some cases, their first time to meet each other.

Since the workshop was only a “half workshop” the organizers decided to con-
centrate on mainly analytical methods where questions of uniqueness and (if ap-
propriate) existence were at the forefront. Although reconstructive methods were
not in the center of our focus – also because there will be an Oberwolfach work-
shop with this particular emphasis later this year – most of the talks did show
some illustrative reconstructions. With the smaller number of participants it was
possible to have a relaxed schedule and yet allow the most of them to give a talk.



2 Oberwolfach Report 11/2012

In 18 talks a wide range of aspects was covered in the study of inverse problems
for partial differential equations, in particular for the wave equations in the time
and frequency domain with their stationary and quasi-stationary approximations,
equations from elasticity, and Maxwell’s equations.

Three of the submitted talks were chosen on the spot to be highlighted as ”ex-
pository presentations”, which meant that the authors were given up to 90 minutes
to present their paper within a broader context and a more detailed introduction
to that area. The chosen topics included the celebrated cloaking problem, the
various possibilities to use coupled physics imaging techniques, and the inverse
helioseismology problem. All participants appreciated this kind of format as a
wonderful opportunity to learn more about fascinating applications that have not
yet been in the focus of their own specialized research.

All other talks were scheduled for a maximum of 50 minutes to allow for com-
ments and discussions (and frequently the additional post-talk questions and com-
ments took us up to the next speaker). Almost all participants attended all the
lectures. A reason for the high attendance was the excellent overall quality of the
talks; it is clear that all of the speakers had taken great care over the preparation
and there was considerable confidence that talks were modified as the conference
progressed in order to present a fresh set of ideas to the audience.

As usual, the service provided by the staff was exemplary. This plays an enor-
mous part in the “Oberwolfach experience” and allows the participants to concen-
trate on the research projects only.
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Abstracts

Electromagnetic Cloaking by Mapping of all Frequencies

Michael Vogelius

The problem: “how may one create a subset in space such that arbitrary objects
placed inside that subset are rendered invisible (cloaked) to electromagnetic prob-
ing” has recently received quite a bit of attention in the mathematical as well as
the applied physics /engineering literature. In this talk I will present some results
about a popular scheme of approximate cloaking (approximate cloaking by map-
ping). In particular I will provide very precise estimates for the degree of cloaking
in the context of the Helmholtz equation (at all frequencies) and the scalar wave
equation. These estimates are in terms of the degree of anisotropy and the singu-
larity of the “meta materials” used to produce the cloak. In the “extreme limits”
they assert that the cloak becomes perfect.

Sampling Methods for Inverse Scattering Problems in the Time

Domain

Armin Lechleiter

(joint work with Qiang Chen, Houssem Haddar, Simon Marmorat, Peter Monk)

Inverse scattering problems for waves in the frequency domain enjoy continuous
interest in the applied mathematics community since more than 30 years (the
monograph [7] is a standard reference). In several applications one is however able
to measure wave fields in the time domain. Of course, such measurements can in
principle be transformed into multi-frequency data, and one might then choose a
suitable frequency for inversion using a frequency-domain algorithm. However, this
possibly implies that one looses a significant amount of information contained in
the time domain data, and the choice of the optimal frequency is far from trivial.
To this end, several recent works consider inversion algorithms that work with
multi-frequency data [10, 11, 15], or directly on the time domain data [3, 1, 6, 16].
Some of the underlying ideas come from methods in the frequency domain, whereas
others are based on time reversibility [8].

In this talk, we consider two sampling methods for time domain inverse scatter-
ing, the linear sampling method [5] and the factorization method [14]. It is worth
to note that both methods require measurements for all times, in contrast to some
of the above-mentioned techniques. The trade-off is that algorithms working with
finite time data cannot yield more information than, roughly speaking, slightly
more than the convex hull of the scatterer. (This is essentially due to the finite
speed of propagation.) For numerics this means that both methods considered
here require to measure scattered fields until most of the wave energy has passed
the receivers.

The first version of the linear sampling method in the time domain allows to find
the geometry of a (possibly disconnected) scatterer with connect complement from
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measurements of causal scattered waves on some measurement surface, see [6]. As
in the frequency version of the method, the criterion to decide whether a point
is inside or outside the scatterer relies on the approximate solution of a linear
integral equation (in time and space) for many right-hand sides. These right-hand
sides are time domain point sources at the sampling points. The analysis of the
algorithm is based on retarded potentials in exponentially weighted spaces that
arise naturally via Laplace transforms. Recent results in [12] extend the method
to obstacles with mixed boundary conditions and incident waves that are caused
by smooth pulses.

Despite the linear sampling method is a numerically attractive tool for domain
reconstruction, its theoretical justification remains limited and does for instance
not allow to give a rigorous characterization of the scatterer’s shape. In the fre-
quency domain it is well known that the factorization method provides a theo-
retically sound algorithm for shape reconstruction. Recently, in [13], we showed
that the same phenomenon arises in the time domain when one considers far-field
measurements. In this case, the time domain far-field operator F possesses a fac-
torization where the outer operators are adjoint to each other. Unfortunately, the
middle operator (the inverse to the retarded single-layer operator) is not positive,
which implies that the standard theory of the factorization method cannot directly
be applied. However, it turns out that the time derivative of the middle operator
is positive (this goes back to [2]), and that the time derivative commutes with
the outer (Herglotz-like) convolution operator. Thus, the right framework for the
method relies on the time derivative ∂tF of the far-field operator. The question of
suitable function spaces for this factorization is relatively involved, since the above
mentioned exponentially weighted spaces are not sufficient. We choose polynomi-
ally weighted spaces that allow to use Fourier transformation arguments in time
(in the sense of S ′). The theoretical statement of the method is that the time
domain far-field of a point source with source point inside the scatterer belongs to
the range of a “square root” of ∂tF . For points outside the closure of the scatterer
such far-fields do not belong to the range of this square root. The proof does not
allow a statement concerning boundary points, which is related to the fact that
the middle operator is positive, but not coercive, compare [9].
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Multilevel Bayesian reconstruction in impedance tomography

Martin Simon

(joint work with Martin Hanke and Petteri Piiroinen)

We consider the conductivity equation

∇ · (κ∇u) = 0

posed on a bounded, simply connected domain D ⊂ Rd, d = 2, 3, with smooth
boundary ∂D. The (possibly anisotropic) conductivity is modeled by a measurable,
symmetric matrix-valued function κ : D → Rd×d such that for all indices i, j ≤ d,
i 6= j, supp(κij) and supp(κii − 1) are compact subsets of D and κ is uniformly
elliptic, that is we have

C−1||ξ||2 ≤ ξ · κ(x)ξ ≤ C||ξ||2, for ξ ∈ R
d, a.e. x ∈ D

and some constant C > 0. We study discrete voltage-to-current measurements
performed using N electrodes El, l = 1, ..., N on the boundary ∂D based on the
complete electrode model. In this model the electric potential u satisfies the Robin
boundary condition

∂νu+ fu|∂D = g,

where ν denotes the outer unit normal on ∂D and f, g : ∂D → R are given by

f(x) := z−1
N∑

l=1

χEl
(x), g(x) := z−1

N∑

l=1

UlχEl
(x).

Here, z ∈ R+ is the so-called contact impedance, χEl
is the indicator function of

the l-th electrode and U = (U1, ..., UN)T denotes the prescribed voltage pattern.
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The voltage-to-current map is given by the linear self-adjoint operator mapping
voltage patterns to current vectors J = (J1, ..., JN )T ,

Jl =

∫

El

∂νudσ(x), l = 1, ..., N,

where σ is the Lebesgue surface measure on ∂D.
The inverse problem of impedance tomography is to recover κ from the voltage-

to-current map. A numerical solution to this problem may be computed using
the framework of Bayesian inversion, see e.g. [8]. The basic idea is to consider a
discrete measurement model of the form

y = F (θ) + e,

where θ ∈ RM denotes the vector of unknown parameters, i.e. the parameterized
conductivity and y the measured data, that is the vector of electrode currents
F (θ) computed by the forward solver F plus an additive measurement error e. By
Bayes’ theorem, the posterior probability density of the unknown θ satisfies

π(θ|y) ∝ π(y|θ)π(θ).
In this talk we are interested in approximating the conditional mean estimate∫

RM

θπ(θ|y)dθ,

which is usually done using Markov chain Monte Carlo. A major drawback, how-
ever, is the high computational time due to numerous forward solves for exploration
of the posterior density. In practice the computational cost is sometimes reduced
by using a first-order Taylor series approximation to yield a linearization of the
problem around a feasible solution guess. However, due to the ill-posedness of the
inverse problem the error in the forward model F should be negligible compared
to the measurement error but there is no information available on the probability
distribution of the perturbation resulting from linearization.

We propose an alternative forward model based on a Feynman-Kac-type formula
for the voltage-to-current map which yields a hierarchy of approximations, each
computable in a parallel manner and endowed with a probabilistic error estimate.

It is well-known that symmetric Markov processes can be associated with self-
adjoint operators via Dirichlet form theory, see [4]. If κ has components that
are sufficiently smooth, say in C1,1(D), then it is a classical result that there is
a continuous strong Markov process (Ω,F ,Ft, X, P

x, x ∈ D) associated with the
operator ∇· (κ∇·) defined on an appropriate domain, which is called the reflecting
diffusion process on D. X has the following Skorohod decomposition:

(1) Xt = x+

∫ t

0

a(Xs)ds+

∫ t

0

B(Xs)dWs −
∫ t

0

ν(Xs)dLs

where a = (a1, ..., ad)
T , ai =

∑d
j=1 ∂jκij , i = 1, ..., d, B : D → Rd×d denotes the

diffusion matrix satisfying κ = 1
2BB

T , W is a standard d-dimensional Brownian
motion and L is a positive continuous additive functional of X corresponding to
the Lebesgue surface measure on ∂D via the Revuz correspondence. For general
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κ with merely measurable components, an associated continuous strong Markov
process, which we denote by (Ω,F ,Ft, X, P

x, x ∈ D) as well, can be constructed
analytically by proving a strong Feller property of the resolvent, see [5].

In [7] a generalized Feynman-Kac-type representation formula for the electrode
currents is established, namely if (u, J) ∈ H1(D) ⊕ RN is the solution to the
forward problem for voltage pattern U ∈ RN , then

(2) Jl =

〈
E
x

[
z−1

(
Ul −

∫ τ

0

g(Xt)dLt

)]〉

x

,

where

τ = inf

{
t :

∫ t

0

f(Xs)dLs > Z

}
, Z ∼ Exp(1)

and Z is independent of X . The notation 〈·〉x in (2) denotes the expectation with
respect to the uniform initial distribution x ∼ U(El).

As an application of this formula we study the computation of the conditional
mean estimate. For this purpose we introduce a probabilistic forward solver that
combines time discretization of the stochastic differential equation (1) with the
half-space approximation developed in [6] and simulation of L exploiting a result
from [9]. For generating pseudorandom numbers we use the NAG implementation
of L’Ecuyer’s MRG32k3a generator, see [2]. The resulting forward solver turns
out to be highly efficient on parallel GPUs, as the runtime scales linearly with the
number of kernels.

Finally we discuss a multilevel hybrid probabilistic deterministic Metropolis
Hastings algorithm, that takes advantage of the probabilistic forward solver. The
basic idea is to use a hierarchy of probabilistic low-resolution forward models to
approximate draws from a posterior distribution that is based on a high-resolution
forward model with discretization error negligible compared to the measurement
error. For the low-resolution forward models, computational efficiency is achieved
through parallel simulation of merely a small number of sample paths of X . The
acceptance probability is estimated using statistics from the probabilistic forward
solver and an approximate confidence interval for the true acceptance probability,
cf. [1]. That is, a proposal is only accepted if this can be done with a certain
confidence, otherwise either the level is increased or, if the confidence on the
initial level is below some given bound, a deterministic forward solver based on
finite elements is employed right away. Numerical experiments for d = 3 show
both, better reconstructions compared to sampling with a linearized forward map
and a significant speed up compared to the two-level algorithm from [3] using a
high-resolution finite element based forward solver.

We should emphasize, however, that our probabilistic forward solver is only
applicable for κ with components in C1,1(D). While the representation (2) remains
true, the process X has no need to be a semimartingale in general. The question
how to simulate such processes for the special case of piecewise constant κ is
subject of ongoing research.
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Fractional Brownian motion and asymptotic Bayesian estimation

Petteri Piiroinen

(joint work with Lassi Päivärinta)

We study the problem of estimating the Hurst parameter from a finite and discrete
sample of single realisation of fractional Brownian motion. This presentation is
based on [4].

The fractional Brownian motion ZH is a one parameter generalization of the
standard Brownian motion B introduced in [3]. The generalization corresponds
to changing the variance function VBt = |t| to the variance function VZt = |t|2H
where the Hurst parameter H ∈ (0, 1). It can be shown that with this choice the
fractional Brownian motion exists as a stochastically continuous Gaussian pro-
cess with stationary increments. These increments are not, however, independent
unless H = 1

2 which corresponds to the Brownian motion case. This makes the
analysis of these processes more involved.

The inverse problem we have in mind is the usual parameter estimation problem.

We sample a given signal XĤ at equidistant time instances tj = j/n for every

j = 0, 1, . . . , n. From this data we form the increments Y Ĥ
j := XĤ(tj)−XĤ(tj−1).

The reason for using the increments is motivated by the stationarity.
We formulate the parameter estimation problem as the Bayesian estimation

problem:

Determine the conditional probability distribution of H given the

sample (Y Ĥ
1 , . . . , Y Ĥ

n ). From the conditional probability distribu-

tion construct estimators for the true parameter Ĥ.
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We solve this using the standard Bayesian methods with the assumption that the
prior is noninformative. This leads to the solution of form

P(H ∈ U | ξĤ,n) = Cn(ξĤ,n)

∫

U

nnu

√
|Tn(fu)|

e−
1
2n

2(u−Ĥ)Qn(ξĤ,n
,u)du

where Tn(f) is the n× n Toeplitz matrix corresponding to the symbol f , the | · |
stands for the determinant and where Qn is the quadratic form

Qn(y, u) = 〈y, Tn(fu)−1y〉.
The data ξĤ,n we use in the posteriori solution is the rescaled increments ξ̂,n :=

nĤ(Y Ĥ
1 , . . . , Y Ĥ

n ). The symbol fu corresponds to the covariance operator of the
increments of fractional Brownian motion Zu sampled at integer points.

This solution leads immediately to a numerical reconstruction method. How-
ever, the computational cost of numerically calculating the quadratic form Qn is
both expensive and quite unstable. Moreover, the computation of the Toeplitz
determinant is likewise rather expensive and unstable. Therefore, only relatively
small values of n can be used in numerical analysis and for small n the reconstruc-
tion from a simulated data does not appear to be very consistent with the true
parameter value.

The question we wanted to analyse is how these distributions behave asymptot-
ically as the number n of samples tends to infinity. The first time the problem was
studied by d’Ambrogi–Ola [1]. In [1] the inverse matrix Tn(fu)

−1 was replaced
by a well-motivated approximation. This led to an approximate solution of the
inverse problem and in [1] the corresponding approximate maximum aposteriori

(MAP) estimate was shown to converge to Ĥ provided that Ĥ > 1
2 .

In this presentation we tackle the original problem without using approxima-
tions. We show as a corollary that the posteriori distribution converge weakly to

point mass on top of Ĥ almost surely. This follows from the characterization result
for the asymptotic conditional distribution. More precisely, we show in [4] that

with probability one the conditional distribution of H̃n is asymptotically standard

normal with mean αn where the random variable H̃n is a rescaled version of the
random variable H . As a part of this result we deduce that the asymptotic vari-
ance of H around the mean αn is of order n−1(log n)−2. Furthermore, we show

that the means αn converge to Ĥ as n→ ∞ with a rate of order (logn)−2.
From this asymptotic normality we can read that the usual estimators like

conditional mean and the MAP estimates are biased for large n but they are
asymptotically unbiased and asymptotically exact. The rates of convergences of
the means and the variances in particular imply that for large n the reconstructions
would be very peak like but the peak is likely to close to the true value but at
incorrect place.

In the proof of the asymptotic parameter estimation result we use the asymp-
totics for Toeplitz determinants with one Fisher–Hartwig singularity [2]. In order
to handle the randomness coming from the random quadratic form, we prove the
Strong Law of Large Numbers (SLLN) for the quadratic form Qn appearing in the
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posteriori distribution. This SLLN is the most involved part of [4] and proving it
requires different techniques from probability theory, some ideas from the theory
of Toeplitz operators and asymptotics for the inverse Toeplitz matrices [5, 6].
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Electrical impedance tomography with two electrodes

Nuutti Hyvönen

(joint work with Otto Seiskari)

Electrical impedance tomography (EIT) is an imaging technique for recovering in-
formation about the conductivity distribution inside a physical body from bound-
ary measurements of current and voltage. It has applications, e.g., in medical
imaging, process tomography and nondestructive testing of materials; see the re-
view articles [2, 10] and the references therein. In this work we consider EIT in
the special case that the boundary measurements are performed with only two
electrodes, one of which can be moved along the object boundary.

The conductivity distribution inside the two-dimensional, smooth, bounded and
simply connected object of interest D ⊂ R2 is assumed to be of the form

(1) σ(x) =

{
κj if x ∈ Ωj , j = 1, . . . ,m,

1 otherwise,

where κ1, . . . , κm > 0 are constant conductivity levels and the inclusions Ω1, . . . ,Ωm

are bounded Lipschitz domains with connected complements, such that

Ωi ∩ Ωj = ∅ for all i 6= j and Ω :=
m⋃

j=1

Ωj ⊂⊂ D.

We consider the elliptic boundary value problem

(2) ∇ · (σ∇u) = 0 in D,
∂u

∂ν
= f on ∂D,

where ν is the exterior unit normal field of ∂D. For a current density f in

(3) Hs
⋄(∂D) = {g ∈ Hs(∂D) | 〈g, 1〉∂D = 0}, s ∈ R,
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the problem (2) has a unique solution uσ in Hmin{1,s+3/2}(D)/C; cf., e.g., [7].
Moreover, the Neumann-to-Dirichlet map

Λ : f 7→ uσ|∂D, Hs
⋄(∂D) → Hs+1(∂D)/C,

is well defined and bounded for every s ∈ R [7], and the same is also true for the
reference map

Λ1 : f 7→ u1|∂D, Hs
⋄(∂D) → Hs+1(∂D)/C,

where u1 ∈ Hs+3/2(D)/C is the unique solution of (3) when σ ≡ 1. Because σ
of (1) is assumed to be identically 1 in some interior neighborhood of ∂D, it follows
that the difference Neumann-to-Dirichlet map

(4) Λ− Λ0 : H−s
⋄ (∂D) → Hs(∂D)/C

is bounded for any s ∈ R [7].
Let us consider a specific localized current pattern, namely f = δz − δz0 ∈

H
−1/2−ǫ
⋄ (∂D), ǫ > 0, with z, z0 ∈ ∂D and δy denoting the delta distribution

located at y on ∂D. Due to the boundedness of the boundary operator (4), the
quantity

ςσ(z) = 〈(δz − δz0), (Λ − Λ1)(δz − δz0)〉∂D
is well defined. The function ςσ : ∂D → R is called the sweep data of EIT [4],
and it can be approximated in practice as follows [6]: Unit current is maintained
between two small electrodes at z0 and z while the latter is moved along ∂D in a
sweeping motion. The corresponding potential difference between the electrodes
is recorded as a function of z, and the actual sweep data is finally obtained by
subtracting the corresponding measurement in the case that σ ≡ 1. According
to [4], ς is the trace of a holomorphic function defined in D \ Ω.

In [8] a holomorphic asymptotic expansion is derived for the (extended) sweep
data with respect to the size of the inclusions in (1). This is a generalization to a
less regular framework of an analogous result in [5]. The leading order term in the
asymptotic expansion of the sweep data turns out to be a complex rational func-
tion that has poles only inside the inclusions. This observation makes it possible to
adopt from [5] an idea for locating several small inclusions: certain Laurent–Padé
approximants [1] are computed for the sweep data and the corresponding poles
are considered as estimates for the positions of the inhomogeneities. The paper [8]
also introduces a novel method for estimating the strengths of the inclusions by
manipulating the residues of the Laurent–Padé approximants. The algorithm gen-
eralizes straightforwardly to any bounded, smooth and simply connected planar
domain with the help of conformal mappings.

The functionality of the reconstruction method is demonstrated by numerical
experiments based on simulated and real-life data. In addition to testing the
algorithm with two-dimensional domains and point electrodes, three-dimensional
cylindrical objects and electrodes of realistic size are considered in the framework
of the complete electrode model [3, 9].
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Photoacoustic and Coupled Physics Imaging

Otmar Scherzer

(joint work with Peter Elbau, Andreas Kirsch, Rainer Schulze)

There exist various reconstruction formulas and back-projection algorithms for
photoacoustic imaging (see the survey [4] and the references therein). Also differ-
ent measurement devices for the ultrasound pressure have been suggested. Most
common are small detectors based on materials, which exhibit a strong piezoelec-
tric effect and can be immersed safely in water (i.e. polymers such as PVDF).
In analytical reconstruction formulas, they are considered point detectors. Other
experimental setups have been realized with line and area detectors, which collect
averaged pressure (see [9] for a survey).

Here, we consider the problem of photoacoustic sectional imaging. Opposed to
standard photoacoustic imaging, where the detectors record sets of two-dimensional
projection images from which the three-dimensional imaging data can be recon-
structed, single slice imaging reconstructs a set of two-dimensional slices, each by
a single scan procedure. The advantages of the latter approach are a considerable
increase in measurement speed and the possibility to do selective plane imaging. In
general, this can only be obtained by the cost of decreased out-of-plane resolution.
The difference in this model to previously studied models is that the wave propa-
gation is considered fully three-dimensional, the initialization and measurements
are fully two-dimensional due to the selective plane illumination and detection.
Therefore, such setups require novel reconstruction formulas, which have been
explained in this talk. After the introduction of the universal back-projection
algorithm introduced in [11] this goal seems superfluous. However, it has been
shown recently by Natterer [6] that universal back-projection is only exact for
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special sampling geometries. Here, for sliced imaging and certain sampling setups,
we can indeed find mathematically exact universal reconstruction algorithms for
arbitrary strictly convex sampling domains Ω.

We model the sectional photoacoustic imaging by assuming that the initial
pressure distribution f : R3 → R is perfectly focused in the illumination plane
{x ∈ R3 | x3 = 0}:
(1) f(ξ, z) = f̂(ξ)δ(z), ξ ∈ R

2, z ∈ R,

for some smooth function f̂ : R2 → R. The resulting pressure wave p : R3 ×
[0,∞) → R, we assume to be the solution of the linear three-dimensional wave
equation

(2)

∂ttp(ξ, z; t) = ∆ξ,zp(ξ, z; t),

∂tp(ξ, z; 0) = 0,

p(ξ, z; 0) = f(ξ, z) = f̂(ξ)δ(z)

for all ξ ∈ R2, z ∈ R, and t > 0. Here,

∆ξ,z = ∂ξ1ξ1 + ∂ξ2ξ2 + ∂zz

denotes the three-dimensional Laplacian in Euclidean coordinates.

The goal of sectional imaging is to recover the function f̂ , describing the initial
pressure distribution, from certain measurements of the pressure wave p. The
position of the detectors performing these measurements shall be given by the
boundary ∂Ω of a convex domain Ω ⊂ R2 in the illumination plane, where we

additionally assume that f̂ has compact support in Ω.
Sectional imaging has become experimentally tractable [5, 10, 2, 3]. The follow-

ing mathematical work also shows that it can be used to determine other imaging
modalities, such as the wave speed variations by photoacoustic measurements, by
using backprojection formulas. Opposed to sectional 3D photoacoustic imaging,
where stacks of complementary two-dimensional projection images are produced,
the proposed approach for simultaneous imaging consists in performing overlap-
ping sliced imaging by rotation and translation of the specimen. This also gen-
erates enough data for reconstructing the two independent parameter functions,
speed of sound and absorption density. Exact reconstruction formulas for the
wave speed function in ultrasound reflectivity tomography are based on the Born
approximation to the wave equation, which is valid for moderately varying speed
of sound. Reconstruction formulas for ultrasound reflectivity tomography have
already been derived by Norton & Linzer [7, 8] and are also based on inversion
formulas for the spherical mean operator. The possibility of exact inversion in
both fields supports to derive exact inversion formulas for both parameters, which
is outlined in this talk.

The reconstruction formulas for simultaneous imaging utilize techniques from
reflectivity imaging and photoacoustic imaging. In the current state of research
we can provide exact reconstruction formulas, but use way too much data. The
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practical criticism with our approach is that, due to physical constraints, sectional
imaging is applicable to elongated objects. Current sectional photoacoustic imag-
ing experiments, which, however, do not perform wave speed estimation, sample
along a cylinder and do not require to steer the sections in all angular directions. In
this case, however, currently, there do not exist analytical back-projection formulas
for both parameters, the absorption density and wave speed function. Numerical
reconstruction methods based on regularization, similar as proposed in [13, 12],
have to be implemented. For practical applications we are thinking of an inter-
mediate model, where a cylinder containing the specimen is slightly tilted. This
experimental suggestion does not contradict with the assumptions of sectional
imaging. In fact these experiments could also be used in combination with a pho-
toacoustic spiral tomograph approach (see [1], which however did not elaborate on
simultaneous identification of the wave speed and absorption density, but only on
the later). This paper serves as a case study for deriving more complex reconstruc-
tion formulas for advanced sampling geometries. We intend to report on numerical
studies in a follow up paper. Finally we mention that P. Elbau (RICAM, Linz,
Austria) has recently discovered that one measurement in time for each section is
sufficient to reconstruct both parameters - in his approach, although using signifi-
cantly less data, the complex steering of the experiment is still required, only the
time measurements can be performed shorter.
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Inverse scattering problem for an obstacle with impedance boundary

Jijun Liu

(joint work with Mourad Sini and Haibing Wang)

The inverse scattering problems for acoustic waves or electromagnetic waves are
of great importance both in mathematical theory and in engineering areas. For
given incident wave and an obstacle, there will be scattered wave outside of the ob-
stacle due to the reflection of obstacle boundary. The inverse scattering problems
aim to detect the properties of the obstacle boundary, say, geometric shape and
physical parameters on the boundary, from the information about the scattered
waves. Mathematically, these problems can be described by corresponding inverse
problems for Helmholtz equation or Maxwell equations under some assumptions.

The acoustic wave scattering by an impenetrable cylinder with infinite length
in R3 can be governed by the following 2-dimensional exterior problem for the
Helmholtz equation:





∆u+ k2u = 0 in R2 \D,
u = 0 on ∂DD,
∂u
∂ν + ikλu = 0 on ∂DI ,

lim
r→∞

r
1
2

(
∂us

∂r − ikus
)
= 0,

(1)

where D ⊂ R2 with boundary ∂D = ∂DD

⋃
∂DI is the 2-dimensional cross of the

cylinder, u = ui + us is the total wave outside of D corresponding to the incident
plane wave ui(x) = eikx·d with wave number k and incident direction d. The last
condition is the so-called Sommerfeld radiation condition, which guarantees the
outgoing wave at infinite place.

It is well-known that the scattered wave has the following asymptotic

(2) us(x) =
eik|x|√

|x|

(
u∞(x̂) +O(

1

|x| )
)
, |x| → ∞

with x̂ = x
|x| , the unit vector in R2. The inverse scattering problem aims to identify

the obstacle boundary ∂DD and ∂DI as well as the boundary impedance λ(x) in
∂DI from the far field data u∞(x̂).

The first issue to the above inverse scattering problem is the uniqueness, i.e., can
u∞(x̂) determine (∂DD, ∂DI , λ(x))? This problem has been answered very well in
recent years for different configurations such as ∂DD = ∅ or ∂DI = ∅, see [3, 7, 8].
More precisely, if the far-field data u∞ are given at all measurement points x̂ for
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all incident directions d, then the boundary information (∂DD, ∂DI , λ(x)) can be
determined uniquely.

The second problem is how to extract the boundary information from the far-
field data, i.e., we need to construct the implementable reconstruction scheme from
finite number of measurement data, which are the main topic of our talk.

Roughly speaking, there are two different schemes to reconstruct the obstacle
boundary. The first kind of scheme is the approximate method for finite mea-
surement data which uses the optimization technique from which the solution is
defined as the minimizer of some cost functional, for example see [5]. The second
kind of scheme is the exact method for which the solution can be expressed exactly
from some indicator functions, see [1, 2, 6, 12].

Firstly, we introduce how to implement the probe method in the case of ∂DD =
∅, which belongs to the so-called ”exact method”. In the theoretical construction
of this scheme [7], the far-field data for the incident plane waves are firstly trans-
formed into the near fields and then these near fields are applied to construct the
scattered waves Φs(·, z) corresponding to the point sources. Using Φs(·, z), the
Dirichlet to Neumann (DtN) map can be determined from which the indicator for
the boundary shape is constructed. Hence the realization of DtN map is a key
step in the probe method.

For given Dirichlet data f , the Neumann data ∂w
∂ν

∣∣
∂Ω

:= Λ∂Df satisfies

(3)
1

2

∂w(y)

∂ν(y)
−
∫

∂Ω

∂G(x, y)

∂ν(y)

∂w(x)

∂ν(x)
ds(x) = − ∂

∂ν(y)

∫

∂Ω

f(x)
∂G(x, y)

∂ν(x)
ds(x)

with G(x, y) := Φ(x, y) + Φs(x, y), y ∈ ∂Ω. So the key part is to reconstruct the
derivatives of Φs(x, y) efficiently.

For this problem we have given a theoretical analysis on the error estimate for
the DtN map in terms of the error of far field data, which says that the stability

of DtN map is between δα and
(
ln 1

δ

)−m
for any α ∈ (0, 1] and positive integer m

[10]. For reconstruction scheme, we give an efficient realization of the derivative
of Φs(x, y) in terms of the reciprocity principle [11]. Once the obstacle shape is
determined, the surface impedance can be determined using moment method or
boundary integral equation method.

Secondly, we show how to identify the whole system (∂DD, ∂DI , λ(x)) from
far field data corresponding to all incident directions d. By constructing some
indicator functions in terms of far field and the approximations to dipole Φ(x, y)
and multipoles ∂x1Φ(x, y), ∂x1x2Φ(x, y) using the Herglotz wave functions, we have
proven that (∂DD, ∂DI , λ(x)) can be determined from far field and we also give
its numerical realizations, see [8, 9]. Compared with the probe method, this new
scheme constructs indicator functions from the far field directly, without the ne-
cessity of transforming far field into near field. Also, based on the high order
expansions of the indicators, more subtle information such as the curvature of the
obstacle boundary can be extracted. The indicator asymptotic behaviors depend
on the boundary curvature and the surface impedance, which provide a potential
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application to make the target visible or invisible by introducing suitable surface
impedance.

Finally, we introduce our recent work of reconstructing (∂DI , λ(x)) in the case
∂DD = ∅ from far field data using the method of fundamental solution (MFS).
This method is originally developed for solving direct problems for which the fun-
damental solution to the PDE can be expressed explicitly. Recently, this method is
also applied for solving inverse problems for example, see [4]. This scheme belongs
to the approximate method.

For inverse scattering problem, we firstly transform the far-field data into near
field on a known cycle ∂G = ∂B(0, R0) containing the unknown obstacle D. The
exact nonlocal DtN condition can be set up on ∂G. Thus the scattered wave
satisfies the following problem in a bounded domain:





∆us + k2us = 0, in G \ D̄,
∂us

∂ν + ikλ(x)us = −∂ui

∂ν − ikλ(x)ui, on ∂D,
∂us(x)

∂ν +
∫
∂G

K(x, y)us(y)ds(y) = 0, on ∂G

(4)

with kernel K defined by K(θ− θ′) := − k
π

∑∞
n=0

H(1)′

n (kR0)

H
(1)
n (kR0)

cosn(θ− θ′). Then the

inverse problem can be stated as: identify (∂D, λ(x)) using us(x)|∂G.
For this problem, we express the solution us(x) to PDE in terms of the combi-

nation of fundamental solution Φ(x, zj) with source points outside of the domain
G\ D̄. Both the combination coefficients and the locations of point sources as well
as (∂D, λ(x)) are considered as the unknowns. Then we construct a nonlinear cost
function in finite dimensional space with the discretization of (∂D, λ(x)) and some
regularizing terms. The approximation to (∂D, λ(x)) is defined as the minimizer
to the cost function. The existence and the convergence property of the minimizer
are proven. Numerical tests have shown that this method is valid.
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Inverse Eddy Current Problems

Bastian Harrach

(joint work with Lilian Arnold)

Transient excitation currents generate electromagnetic fields which, in turn, induce
electric currents in proximal conductors. For slowly varying fields, this can be
described by the eddy current equations, which are obtained by neglecting the
dielectric displacement currents in Maxwell’s equations (cf. [1])

(1) ∂t(σE) + curl

(
1

µ
curlE

)
= −∂tJ in R

3×]0, T [.

The eddy current equations are of parabolic-elliptic type. In insulating regions
(σ(x) = 0), the field instantaneously adapts to the excitation (quasistationary
elliptic behaviour), while in conducting regions (σ > 0), this adaptation takes
some time due to the induced eddy currents (parabolic behaviour).

The direct problem. The eddy current equations are often treated by sep-
arating the elliptic and the parabolic part. However, in view of studying inverse
eddy current problems, it is desirable to formulate them in a unified way. In such
a unified formulation σ should merely be a parameter, and it should be possible
to differentiate solutions with respect to this parameter. In other words, a uni-
fied formulation should allow to characterize, e.g., how the solution of an elliptic
equation changes if the equation becomes a little bit parabolic.

Let µ ∈ L∞
+ (R3) and let σ ∈ L∞(R3) be nonnegative and have bounded sup-

port Ω. Let Jt ∈ L2(0, T,W (curl,R3)′) be divergence free. The natural unified
variational formulation of the eddy current equation is the following.

Natural variational formulation: Find E ∈ L2(0, T,W (curl)) that solves

∫ T

0

∫

R3

(
σE · ∂tΦ− 1

µ
curlE · curl Φ

)
=

∫ T

0

∫

R3

Jt · Φ.

for all smooth Φ with Φ(·, T ) = 0.
It can be shown that this formulation is indeed equivalent to solving (1) with

zero initial conditions. The formulation can also easily be extended to include
non-zero initial conditions on the support of σ, cf. [2]. This natural variational
formulation is, however, not coercive with respect to the norm || · ||L2(0,T,W (curl)).
It is tempting to consider the following gauged formulation instead.
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Gauged variational formulation: Find a divergence-free E ∈ L2(0, T,W (curl))
that solves

∫ T

0

∫

R3

(
σE · ∂tΦ− 1

µ
curlE · curl Φ

)
=

∫ T

0

∫

R3

Jt · Φ.

for all smooth and divergence-free Φ with Φ(·, T ) = 0.
This gauged formulation is coercive and thus solvable using the Lions-Lax-

Milgram Theorem. However, the solution of this gauged formuation will, in gen-
eral, not solve the original eddy current equation (1), not even after regauging it
with a gradient field.

In [2], we propose a new, uniquely solvable and uniformly coercive variational
formulation that determines the solution of the eddy current equation (1) up to
the addition of a gradient field. Similarly to classical (A,ϕ)-formulations, we write

E = A+∇ϕ
with a divergence free field A and a gradient field ∇ϕ. The crucial point is to
consider ∇ϕ = ∇ϕA as function of A by solving

div σ∇ϕA = − div σA.

To ensure the solvability of this equation we require that σ|Ω ∈ L∞
+ (Ω) where

Ω := suppσ ⊃ BR(0) is a disjoint union of finitely many Lipschitz domains with
connected complements. It is an open problem whether the mapping A 7→ ϕA can
be defined for general non-negative σ ∈ L∞(R3).

Unified variational formulation: Find a divergence-free A ∈ L2(0, T,W (curl))
that solves

∫ T

0

∫

R3

(
σ(A+∇ϕA) · ∂tΦ− 1

µ
curlA · curl Φ

)
=

∫ T

0

∫

R3

Jt · Φ.

for all smooth divergence-free Φ with Φ(·, T ) = 0.

Theorem 1 (Thm. 3.2 in [2]). The unified variational formulation is uniformly
coercive with respect to σ. There exists a unique divergence-free solution A ∈
L2(0, T,W (curl)). A + ∇ϕA is one solution of the eddy-current equation and
every other solution E of the eddy current equation fulfills

curlE = curlA and
√
σE =

√
σ(A+∇ϕ).

Also, the unified formulation allows us to rigorously linearize E w.r.t. σ around
σ0 = 0, see again [2].

The inverse problem. Let us now turn to the inverse problem of determining
Ω = suppσ from electromagnetic measurements. A natural model for idealistic
measurements (see, e.g., [4]) is the operator

Λσ : L2(0, T, TL2
⋄(S)) → L2(0, T, TL2

⋄(S)
′
), Jt 7→ γτE,

where E solves the homogeneous eddy current equation with [ν × curlE]S = Jt
on some smooth two-dimensional measurement surface S. Note that TL2

⋄(S)
′ ∼=

TL2(S)/TL2
⋄(S)

⊥
, so that Λσ is well-defined even though E is not unique.
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We aim to apply linear sampling and factorization methods to the inverse prob-
lem of determining Ω = suppσ from Λσ. To this end we introduce

• The difference to reference measurements Λ := Λσ − Λ0 where Λ0 : Jt 7→
γτE0, and E0 solves the conductivity-free magnetostatic equation

curl curlE0 = −Jt in R
3×]0, T [.

• The time-integration operator I : E(·, ·) 7→
∫ T

0
E(·, t)dt.

• Singular test functions

Gz,d(x) := curl
d

4π|x− z| , x ∈ R
3 \ {z}

Proceeding similarly to [3] we can prove the following results:

Theorem 2 (Linear sampling method for inverse eddy current problems). For
every point z below S and every direction d ∈ R3

γτGz,d ∈ R(IΛ) =⇒ z ∈ Ω

Theorem 3 (Factorization method for inverse eddy current problems). For every
point z below S and every direction d ∈ R3

γτGz,d ∈ R(I(Λ + Λ′)1/2) ⇐= z ∈ Ω

We also have a preliminary proof for the implication ”=⇒” in theorem 3 but
this has yet to be checked rigorously. The results show that the measurement Λσ

determine the conductor Ω = suppσ and allow a fast numerical implementation.
Beyond sampling and factorization methods (joint work with M. Ullrich).

Linear sampling and factorization methods require the numerical implementation
of a range test. For this task, no convergent regularization strategies in the sense
that

Rδ(Λ̃σ) → χΩ for ||Λ̃σ − Λσ|| < δ → 0

have been found yet (though [7] gives a first step in this direction).
For the related problem of electrical impedance tomography (EIT) this problem

can be overcome by using monotony methods. Let Λσ denote the Neumann-to-
Dirichlet-operator in EIT for the conductivity σ = 1 + χD with an unknown
inclusion D. Under some assumptions we can show that (see [6] for a preliminary
version of this result)

D =
⋃

{B : Λ1+χB
≥ Λσ} =

⋃{
B : 1

2Λ
′(1)χB ≥ Λσ − Λ1

}

where the second equality is based on the fact that linearizing the inverse EIT
problem does not lead to shape errors (see [5]).

This shows that unknown inclusions can be found by monotony tests for which
convergent implementations seem straight-forward. However, extensions of this
results beyond the setting of EIT have yet to be done.
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Inverse scattering of elastic waves by diffraction gratings

Johannes Elschner

(joint work with Guanghui Hu)

Diffraction phenomena for elastic waves propagating in unbounded periodic and
non-periodic structures have many applications in geophysics and seismology. The
talk presents recent work on the scattering of time-harmonic plane elastic waves
by two-dimensional diffraction gratings with Lipschitz grating profiles. The first
part gives an overview on existence and uniqueness results for the direct scattering
problems, using a variational approach on a bounded periodic cell that involves
the Dirichlet-to-Neumann map on the artificial boundary [4]. The approach can
be extended to elastic scattering by rough surfaces [5] and biperiodic diffraction
gratings in 3D [6]. Earlier solvability results for smooth profiles have been obtained
in [1], [2], using integral equation methods.

Then the problem of recovering a two-dimensional elastic diffraction grating
from measurements on a horizontal line above the structure is considered. We
present global uniqueness results within the class of polygonal grating profiles by a
minimal number of incident pressure or shear waves under the boundary conditions
of the third and fourth kind [7]. In particular, using a reflection principle for
the Navier equation, all unidentifiable polygonal grating profiles that correspond
to only one given incident elastic field can be completely classified. The case
of the first kind boundary conditions (Dirichlet problem) remains open because
of the lack of a corresponding reflection principle. Generalizations to biperiodic
polyhedral diffraction gratings are also mentioned [8].

The last part of the talk is devoted to a reconstruction method applied to the
inverse Dirichlet problem for the two-dimensional quasi-periodic Navier equation.
To reconstruct the profile curve of an elastic diffraction grating from near and far
field data, this highly ill-posed problem is reformulated as a nonlinear optimization
problem, following an approach first developed by Kirsch and Kress in the case of
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inverse acoustic obstacle scattering; see [3]. The optimization method combined
with Tikhonov regularization is applied to smooth and piecewise linear gratings,
leading to satisfactory numerical reconstructions from exact and noisy data [9].
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An Inverse Problem for a Waveguide

Peter Monk

(joint work with Virginia Selgas)

We suggest the use of the Gap Reciprocity Method (RGM) of Colton and Haddar
[2] to detect partial blockages in a waveguide using multistatic acoustic scattering
measurements at a single frequency. Our intended application is to the remote
inspection of buried pipes such as sewers. The waveguide is modeled as an infinite
cylinder with sound hard boundary conditions, and sound propagation is governed
by the Helmholtz equation. This work relies heavily on [1], but unlike [1] where
the scatterer is sound soft and away from the walls of the waveguide, we consider
a partial blockage represented by a penetrable scatter that can touch the walls.

The analysis of the RGM rests on understanding a novel interior transmission
problem (ITP) featuring mixed boundary conditions (Neumann on part of the
boundary of the scatterer and of interior transmission type on the remainder). In
particular we need to know that this problem is well posed for almost all wave
numbers. Following the ideas of [4], we can approach the analysis by writing the
ITP as a fourth order problem and recognizing that a natural boundary condition
completes the description of the mixed ITP. We prove in particular that, if they
arise, interior transmission eigenvalues form at most a discrete set.

0We thank Prof. Simon Chandler-Wilde, Reading UK, for bringing this problem to our
attention.



Inverse Problems for Partial Differential Equations 25

Using a single layer representation in the RGM we show that the method is a
generalized Linear Sampling Method (LSM) [3] in which measurement and source
points are on disjoint sets, and hence that the usual theorems concerning the
blowup of solutions of the RGM equation can be proved. Thus we expect that
the boundary of a partial blockage can detected by the blowup of the the RGM
indicator function. Note that the RGM is to be preferred over the standard LSM
in this case because the RGM allows us to isolate the part of the waveguide under
study from the rest of the pipe (which might also include a manhole where the
measuring instruments are deployed and that would need modeling in the LSM).

To test this theory we generate synthetic scattering data for several partial
obstacles in a circular cylinder (both penetrable and sound hard - although the
sound hard case is not covered by our theory). In each case the RGM is seen to
detect the obstacles, and to provided rough images of the blockages, using data
measured at a distance of approximately 30 pipe diameters from the blockage.

We have also tested one case in which the algorithm failed (a case not covered
by our theory). We attempted to detect the sound hard end of a semi-infinite
wave-guide using distant measurements. The RGM completely failed to detect
the end of the fully blocked pipe. Using near field measurements the RGM did
detect the blockage indicating that evanescent modes are needed in this case.

In future work we plan to investigate, and if possible characterize, the scatterers
that cannot be detected by the method, and hope to find ways to detect these
anomalous cases from the same data by other means.

The research of PM is supported in part by a grant the US AFOSR.
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Transmission Eigenvalues in One Dimension

John Sylvester

The scattering operator for the tome harmonic Helmholtz equation maps the asym-
potics of incident waves (Herglotz wavefunctions) v0 to the asymptotics of (out-
going) scattered waves u+ . The scatterer means the domain D, together with an
index of refraction n(x) supported in D.

(
∆+ k2n2

)
u+ = (1− n2)k2v0(

∆+ k2
)
v0 = 0
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If the scattering operator has a zero eigenvalue, we say that k2 is a transmission
eigenvalue. It follows form Rellich’s theorem and unique continuation that the
scattered wave u+ is identically zero outside D, and therefore that k2 is an interior
transmission eigenvalue for the pair (D,m), i.e.

(
∆+ k2n2

)
u = (1 − n2)k2v

(
∆+ k2

)
v = 0

u
∣∣∣
∂D

= 0 ∂u
∂ν

∣∣∣
∂D

The analogous interior problem for obstacle scattering is the Dirichlet problem,
and the Dirichlet eigenvalues are fairly well understood. In particular, the Dirichlet

eigenvalues of a one dimensional interval of length L are exactly n2π2

L2 . The one
dimensional interior transmission eigenvalue problem, even for a constant index of
refraction, is not as simple. In one dimension, the interior transmission equations
become

u′′ + k2σ2u = k2σ2v

v′′ + k2v = 0

u(−L
2 ) = u(L2 ) = 0 u′(−L

2 ) = u′(L2 ) = 0

The (odd/even) solutions to this pair of constant coefficient ODE’s correspond
to the complex numbers k that solve the equations:

sin kL(σ+1)
2

σ + 1
= ± sin kL(σ−1)

2

σ − 1

and the two theorems below describe those k’s .

Theorem 4. If k is an interior transmission eigenvalue

Im(k) ≤ 1

2L
log

3σ + 1

σ − 1

Theorem 5. Suppose that σ > 1, let M = σ+1
σ−1 , and let j ∈ Z

(1) If j
M 6∈ Z and j+1

M 6∈ Z, there are exactly two simple roots in the strip

2jπ

(σ + 1)L
< Re(k) <

2(j + 1)π

(σ + 1)L

(a) If ⌊ j
M ⌋ 6= ⌊ j+1

M ⌋, both roots are real

(b) ElseIf ⌊ j
M ⌋ = ⌊ j+1

M ⌋ the roots are non-real complex conjugates

(2) If j
M ∈ Z, there is a quadruple root at k = j

M and no other roots in the
strip

2(j − 1)π

(σ + 1)L
< Re(k) <

2(j + 1)π

(σ + 1)L
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The transmission eigenvalues for two σ’s, with L = 2, are plotted below. The
vertical blue lines indicate the sets Re(k) = 2jπ

(σ+1)L . The roots that fall on these

lines are quadruple.
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[4] L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal., 40(2)
(2008), pp. 738–753.
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Solving an inverse scattering problem in the time domain by using the

iterative time-reversal control method

Lauri Oksanen

The inverse problem of reconstructing an obstacle from measurements of acous-
tic waves in the time domain has attracted recent interest [5, 6, 7, 9, 10]. Here we
consider a solution approach based on the boundary control (BC) method [8].

By using the BC method, a smooth wave speed can be fully reconstructed from
the Neumann-to-Dirichlet operator. This uniqueness result is by Belishev [1], see
also [2] for the anisotropic case. However, the BC method in its original form is
unstable and seems to be hard to regularize. To remedy this, a computationally
more feasible version of the BC method called the iterative time-reversal control
(ITRC) method was introduced in [3].

In [11] we introduced a modification of the ITRC method and showed that it can
reconstruct a convex penetrable obstacle in dimension two. Here we consider the
case of a sound hard obstacle in arbitrary dimension and present some numerical
simulations.
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Our method locates the obstacle by computing the travel time distance to it
from each point on the measurement boundary. Let us next describe this in detail.
Let M ⊂ Rn be a compact domain with smooth boundary ∂M and let c be a
smooth function onM that is bounded and bounded away from zero. Let Σ ⊂M int

be a compact set with nonempty interior and smooth boundary. Moreover, let
Γ ⊂ ∂M be open and T > 0. We model the measurements by the Neumann-to-
Dirichlet operator,

Λ2T,Γ : f 7→ uf |(0,2T )×Γ, f ∈ C∞
0 ((0, T )× Γ),

where u = uf is the solution of the wave equation,

∂2t u(t, x)− c(x)2∆u(t, x) = 0, (t, x) ∈ (0,∞)× (M \ Σ),
∂νu(t, x) = f(t, x), (t, x) ∈ (0,∞)× ∂M,

∂νu(t, x) = 0, (t, x) ∈ (0,∞)× ∂Σ,

u|t=0(x) = 0, ∂tu|t=0(x) = 0, x ∈M \ Σ.
We consider the inverse obstacle problem to obtain information on Σ given the

measurements Λ2T,Γ. For x, y ∈ M , we define the travel time distance d(x, y) as
the Riemannian distance with respect to the metric tensor c(x)−2dx2. Our method
can reconstruct the distance d(y,Σ) for y ∈ Γ if d(y,Σ) < T . The method is based
on the following two observations:

1. For a function τ ∈ C(Γ) satisfying 0 ≤ τ ≤ T pointwise, the volume
V (MΣ(τ)) of the domain of influence on (M \ Σ, g),
MΣ(τ) := {x ∈M \ Σ; there is y ∈ Γ s.t. dM\Σ(x, y) ≤ τ(y)},

can be computed from Λ2T,Γ by solving a sequence of linear equations on
L2((0, 2T )× ∂M).

2. For a function τ ∈ C(Γ), we have M(τ)int ∩ Σint 6= ∅ if and only if

V (MΣ(τ)) < V (M(τ)),

where M(τ) is a domain of influence on (M, g), that is,

M(τ) := {x ∈M ; there is y ∈ Γ s.t. d(x, y) ≤ τ(y)}.
The volume V above refers to the Riemannian volume on (M, g) and dM\Σ

denotes the Riemannian distance on (M \ Σ, g). See [12] for a proof of 1 and [13]
for a proof of 2.

If the background wave speed c is known and T > 0 is large enough, then we can
determine the distances d(y,Σ), y ∈ Γ, by comparing the reconstructed volumes
V (MΣ(τr,y)) with the background volumes V (M(τr,y)) where

τr,y(y
′) ≈

{
r, y′ = y,

0, otherwise,
r > 0, y ∈ Γ.

Thus we can visualize the set,

M \
⋃

y∈Γ

{x ∈M ; d(y, x) < d(y,Σ)},
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containing Σ. If c = 1 identically and Γ = ∂M then this set is contained in the
convex hull of Σ. In [11] we give also a uniqueness result without assuming that
the background wave speed c is known.

We will next describe numerical simulations in the case that M is the unit
square in R2, c = 1 identically and Σ is the disk with with radius 0.3 and center
coinciding with the center of the unit square. In particular, we consider the case
that T ≥ 1/2 and Γ is the left edge of M , and define

τr(y) =

{
r, y ∈ Γ,

0, otherwise,
r ∈ [0, 1/2].

We compute an approximation of the volume V (MΣ(τr)) by constructing a wave
source f ∈ L2((T − r, T )× Γ) such that the corresponding solution uf satisfies

∥∥uf (T )
∥∥2
L2(M ;dV )

≈
∥∥1MΣ(τr)

∥∥2
L2(M ;dV )

= V (MΣ(τr)).

The norm of uf(T ) can be computed from the boundary data ΛΓ,2T by using
Blagoveščenskĭı’s identity [4]. Moreover, the source f can be obtained from ΛΓ,2T

by solving a linear equation on L2((T − r, T )× Γ), see [12, Th. 2.1].
We discretize the problem by considering piecewise constant sources f that can

be represented as a linear combination of the functions

fj(t, x) := 1[0,h](t)1Γj
(x), j = 1, . . . , N,

and their time translations by an integer multiple of h. Here h > 0 is fixed and the
sets Γj form a uniform partition of Γ. This corresponds to measuring the echoes
of N square pulses on Γ. The small parameter h models the time resolution of the
measurements. In Figure 1 we show numerical results with N = 20 and h = 0.002.
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Figure 1. On left. The solution uf (T ) ≈ 1MΣ(τr) constructed
using only ΛΓ,2T . Here r = 0.4. On right. Reconstruction from
noisy ΛΓ,2T . Signal-to-noise ratio is 7 dB. The approximated
difference in the volumes,

∥∥uf (T )
∥∥ − V (M(r)), as a function of

r (blue) and the true difference V (MΣ(τr)) − V (M(r)) (dashed
red). An approximation for the distance miny∈Γ d(y,Σ) = 0.2 is
obtained by looking when the blue curve drops below zero.
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Inverse source problems for the Helmholtz equation and the windowed

Fourier transform

Roland Griesmaier

(joint work with Martin Hanke and Thorsten Raasch)

We consider the following inverse source problem for acoustic or electromagnetic
wave propagation at a fixed frequency:

Given the radiated far field pattern of a solution to the Helmholtz
equation corresponding to a compactly supported source, recover
information on the support of the source.

This problem has been widely studied and is well-known to be ill-posed, see, e.g.,
Isakov [5]; without additional assumptions on the source it does not even have a
unique solution. For this reason Kusiak and Sylvester [6, 9] recently introduced
generalized notions of solution, such as the so-called convex scattering support.
This is the smallest convex set C such that for every neighborhood of C there
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exists a source supported in this neighborhood that radiates the given far field.
The convex scattering support is uniquely determined by the far field.

We present a new numerical reconstruction method for this inverse problem
that not only gives a reasonable approximation of the convex scattering support
but also seems to provide information about the number and the relative locations
of individual sources. This method relies on a local analysis of the far field by
means of the windowed Fourier transform combined with the classical filtered
backprojection algorithm (see, e.g., Natterer [7]). Earlier works with related view
points are, e.g., [1, 3].

To be more specific, let f ∈ E ′(R2) be a compactly supported source such
that supp f ⊂BR(0)

1, R > 0, and consider a fixed wave number κ > 0. The
corresponding field radiated by f is the solution of the Helmholtz equation

−∆u− κ2u = f in R
2

together with the Sommerfeld radiation condition at infinity (see, e.g., Colton
and Kress [2]). Writing u in terms of the fundamental solution to the Helmholtz
equation it follows immediately that the radiated field has the asymptotic behavior

u(x) =
eiπ/4√
8π

eiκ|x|√
κ|x|

u∞(x̂) + O(|x|−3/2) for |x| → ∞ ,

where x̂ := x/|x| ∈ S1. The far field u∞ radiated by f is given by u∞(x̂) = f̂(κx̂),
x̂ ∈ S1, i.e., it coincides with the Fourier transform of f evaluated on κS1.

Now let ε > 0 and

χε(t) =
1√
2πε

e−
1
2 t

2/ε2 , t ∈ R ,

be a one-dimensional Gaussian window function with standard deviation ε. Using
polar coordinates for θ = (cosϑ, sinϑ) ∈ S1 and x̂t = (cos t, sin t) ∈ S1 with
ϑ, t ∈ R, the windowed Fourier transform of the far field u∞ is defined to be

(Sεu
∞)(θ, ω) :=

∫ ∞

−∞

e−iωtχε(t)u
∞(x̂ϑ+t) dt

for θ ∈ S1 and ω ∈ R.
Assuming that the source f is a distribution of order zero, and denoting by

|f |TV its total variation in terms of measures, it has been observed in [4] that the
windowed Fourier transform of the far field radiated by f satisfies

(1)
(
Sεu

∞
)
(θ, ω) =

(
Tiκ(gε ∗ f)

)(
θ⊥,−ω

κ

)
+ O

(
κRε2|f |TV

)
.

Here

gε(x) :=
εκ√
2π
e1/(2ε

2)e−
1
2 |x|

2ε2κ2

, x ∈ R
2 ,

1Here BR(0) denotes the ball of radius R around the origin.
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is a rescaled two-dimensional Gaussian with standard deviation 1/(εκ), and Tiκ de-
notes the exponential Radon transform with purely imaginary exponent iκ, which
is defined to be

(
Tiκh

)
(φ, s) :=

∫

x·φ=s

eiκx·φ
⊥

h(x) dx =

∫ ∞

−∞

eiκth(sφ+ tφ⊥) dt ,

cf., e.g., [7, p. 47]. So, assuming ε > 0 is sufficiently small, the windowed Fourier
transform of the far field can be considered as an approximation of the exponential
Radon transform of a smooth mollification of the source.

This suggests a means to deduce information about the unknown source from
the given far field: First, one computes the windowed Fourier transform of the far
field choosing ε sufficiently small, then rescales the result according to the right
hand side of (1), and finally inverts the exponential radon transform Tiκ to obtain a
mollified version of f . However, although there do exist explicit inversion formulas
for Tiκ, see, e.g., You [10], its inversion is severely ill-posed, cf. Natterer [8].

Therefore we follow a different approach by observing that for a single point
source f = δz located in z = r(cosϕ, sinϕ) ∈ R2 the exponential Radon transform
of this source is given by

(
Tiκδz

)
(θ, s) = eiκz·θ

⊥

δ(s− z · θ) ,

i.e., its support is the graph of the function θ 7→ s = z · θ = r cos(ϑ− ϕ). Accord-
ingly, the windowed Fourier transform of its far field satisfies

(
Sεu

∞
)
(−θ⊥,−sκ) ≈ eiκz·θ

⊥

e−
1
2 ε

2κ2(s−z·θ)2 ,

and thus

(2)
∣∣(Sεu

∞
)
(−θ⊥,−sκ)

∣∣ ≈
(
R(gε ∗ f)

)
(θ, s) ,

where the right-hand side denotes the classical Radon transform of gε ∗ f . As a
consequence, we can compute a mollified approximation gε ∗ f of the point source
by applying the inverse Radon transform to the left-hand side of (2). Numerically
this procedure not only works for single point scatterers but also for superpositions
of sources.

To illustrate our findings we consider a collection of four point sources f =
c1δz1 + c2δz2 + c3δz3 + c4δz4 located at z1 = (4, 4), z2 = (−2, 8), z3 = (4,−8) and
z4 = (−2,−1) with “strengths” c1 = 1 − i, c2 = 1, c3 = −1 and c4 = 1 + i. We
choose κ = 10 and use ε = π/18 in the windowed Fourier transform. The left
hand side of Figure 1 shows absolute values of the windowed Fourier transform
|(Sεu

∞)(−θ⊥,−sκ)| as a color coded plot, where the polar angle ϑ of θ ∈ S1 varies
along the horizontal axis and s along the vertical axis. The right-hand side is the
result of the filtered backprojection algorithm with these data, which looks like
three slightly distorted Gaussians centered at the sources z1, z2, z3 and z4.

A complete derivation of these results including more numerical reconstructions
can be found in [4].
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Figure 1. Left: Approximation of the Radon transform. Right:
Reconstruction with filtered backprojection
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Inverse Problems in Local Helioseismology

Thorsten Hohage

(joint work with Laurent Gizon)

The aim of local helioseismology is to compute three-dimensional reconstruc-
tions of flow velocities and other physical quantities in the Solar interior from high
resolution Doppler-shift data of the line-of-sight velocities

φ(r, t) := l̂ · v(r, t)
on the Sun’s surface. Here l̂ denotes the line of sight unit vector, and v(r, t) the
velocity at position r and time t. Such data have been collected since 1995 by the
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ground based Global Oscillations NetworkGroup (GONG) and by the Michelson
Doppler Imager (MDI) on board of the Solar and Heliospheric Observatory
(SOHO) launched 1995. In February 2010 the Solar Dynamics Observatory (SDO)
has been launched which collects more than 1TB of Doppler-shift data of the Sun’s
surface velocity each day.

Duvall et al. [1] proposed to determine background flow velocities v0 in the
convection zone of the Sun by shifts of travel times of acoustic waves with respect
to the standard Solar model. They suggested to determine such travel time shifts
using correlations of the form

C(r1, r2, t) :=

∫ T

0

φ(r1, t̃)φ(r2, t̃+ t) dt̃ .

The derivation of the corresponding forward problem can be summarized as follows
(see [2]): The displacements ξ(r, t) of solar waves satisfy a wave equation L[v0]ξ =
S in which the unknown background velocities v0 appear as parameters. The
sources S, which are caused by turbulent convection, are modeled as a random

process. If (Oξ)(r, t) := l̂ · ∂tξ(r, z, t) is defined such that φ = OL[v0]−1S, then
the covariance operators of S and φ are related by

Covφ[v0] = OL[v0]
−1CovSL[v0]

−∗O∗ .

The covariance operator Covφ[v0] can be estimated by the integral operator
(
Ĉovφ[v0]w

)
(r1, t) :=

∫ ∫
C(r1, r2, t2 − t1)w(r2) dr2 dt2 .

Usually the signal-to-noise ratio of the point-to-point correlations C(r1, r2, t) is
too small. In principle, the signal-to-noise ratio can be made arbitrarily large by
increasing the averaging time T , however T cannot be chosen too large to avoid
motion blur. To improve the signal-to-noise ratio and to reduce the length of the
right hand side vector of the inverse problem, certain space-time averages of the
form

τ̂α(r1) =
(

̂Covφ[v0]wα(· − r1)
)
(r1, 0) =

∫ ∫
C(r1, r1 + r2, t)wα(r2, t) dr2 dt

are computed. The weights wα are chosen such that τα(r1) indicates some travel
time of a wave starting at r1, e.g. an average point-to-annulus travel time.

We approximate Covφ[v0] ≈ Covφ[0] + Cov′
φ[0]v0 by its first order Taylor

approximation. On an approximately planar patch of the Sun’s surface there are
sensitivity kernels Kα,β such that

(
(Cov′

φ[0]v0)wα(· − r1)
)
(r1, 0) =

∑

β

∫ ∫ 0

−z0

Kαβ(r1 − r2, z)v0,β(r2, z) dr2 dz .

Then the estimated travel time shifts δτ̂α := τ̂α − Covφ[v0]wα(·, 0) satisfy the
equation

(1) (δτ̂α)(r1) =

∫ ∫ 0

−z0

∑

β

Kαβ(r1 − r2, z)v0,β(r2, z) dr2 dz + nα(r1) .
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The covariance kernel

Λαα′(r2) := E [nα(r1)nα′(r1 + r2)]

of the noise can be estimated from the case v0 = 0 (see [3]).

The system of equations (1) is a linear statistical inverse problem

δτ = Kv0 + n

of a very nice structure: After discretization of the z variable, it has the form
of a system of convolution equations where K is a matrix of two-dimensional
convolution operators with the sensitivity kernelsKα,β as convolution kernels. The
covariance matrix of n is a full matrix, but it is invariant with respect to horizontal
translations, and a good estimate is known. A typical size of the problem is a
240 × 267 system of convolution operators on a grid of 4002 points resulting in
about 4 · 107 unknowns.

Due to the assumed horizontal invariance, it is possible to compute a complete
singular value decomposition (SVD) of the forward operator since it separates
into a system of small SVDs for each spatial frequency. We show how the physical
side constraint div (ρv0) = 0 with the density ρ = ρ(z) can be incorporated in
the inversion procedure. The special structure of the problem allows the use of
Pinsker-type estimators, which are known to be optimal for statistical inverse
problems among all linear estimators.

We show some results for real data and compare our method to the method
of Subtractive Optimally Localized Averaging (SOLA), which can be seen as a
version of the method of approximate inverse .
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Conformal mapping and inverse scattring

Rainer Kress

(joint work with Houssem Haddar)

The mathematical modelling of electrostatic imaging methods in non-destructive
testing leads to inverse boundary value problems for the Laplace equation. In
principle, in these applications an unknown inclusion within a conducting host
medium with constant conductivity is assessed from Cauchy data on the accessible
exterior boundary of the medium. For simplicity, we assume that D0 and D1
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are two simply connected bounded domains in R2 with C2 smooth boundaries
Γ0 := ∂D0 and Γ1 := ∂D1 such that D0 ⊂ D1 and denote by D the doubly
connected domain D := D1 \ D0. The determination of the unknown shape Γ0

of a perfectly conducting inclusion D0 is modelled by a homogeneous Dirichlet
condition on Γ0. Electrical impedance tomography for an inclusion D0 with a
constant conductivity leads to an inverse transmission problem.

For the solution of this type of inverse boundary value problems a new conformal
mapping technique was developed over the last decade in a series of papers by
Akduman, Haddar and Kress. We briefly describe the simplest case, i.e., the
following Dirichlet boundary condition. Given a function f ∈ H1/2(Γ1) we seek a
harmonic function u ∈ H1(D) satisfying

(1) u = f on Γ1 and u = 0 on Γ0.

The inverse problem we are concerned with is: Given the Dirichlet data f on Γ1

(with f 6= 0) and the Neumann data

(2) g :=
∂u

∂ν
on Γ1,

determine the interior boundary Γ0. We assume the unit normal ν to Γ1 to be
directed into the exterior of D.

The main idea of the inverse method is to employ a conformal mapping between
the unknown domain D and the annulus B bounded by two concentric circles C0

with radius ρ and C1 with radius one centered at the origin. By the conformal
mapping theorem for doubly connected domains there exists a uniquely determined
radius ρ and a holomorphic function Ψ that maps B bijectively onto D such that
the boundaries C0 and C1 are mapped onto Γ0 and Γ1, respectively. The function
Ψ is unique up to a rotation of the annulus B. In the sequel we will identify R2

and C.
We parameterize the exterior boundary Γ0 = {γ(t) : t ∈ [0, 2π)} by a twice

continuously differentiable 2π periodic function γ : R → C with the property that
γ|[0,2π) is injective. The freedom in rotating B we fix by prescribing Ψ(1) = γ(0)
and define a boundary correspondence function ϕ : [0, 2π] → [0, 2π] by setting

(3) ϕ(t) := γ−1(Ψ(eit)), t ∈ [0, 2π].

The boundary values ϕ uniquely determine Ψ as the solution to the Cauchy prob-
lem with Ψ|C1 given by Ψ(eit) = γ(ϕ(t)). Hence, the linear operator Nρ : ϕ 7→ χ
where χ(t) := Ψ(ρeit) for t ∈ [0, 2π] is well defined. The function χ : [0, 2π] → C

parameterizes the interior boundary curve Γ0 and therefore determining χ solves
the inverse problem. The ill-posedness of the inverse boundary value problem is
reflected by the ill-posedness of the Cauchy problem, i.e., the operator Nρ requires
stabilization, for example, by Tikhonov regularization.

We now proceed with describing a nonlinear and nonlocal ordinary differential
equation for the boundary correspondence function ϕ. To this end, we denote
by Aρ : H1/2[0, 2π] → H−1/2[0, 2π] the Dirichlet-to-Neumann operator for the
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annulus B that maps the function F onto the normal derivative

(Aρ(F )) (t) :=
∂v

∂ν
(eit), t ∈ [0, 2π],

of the harmonic function v ∈ H1(B) with boundary values on C1 and C0 given by

v(eit) = F (t) and v(ρeit) = 0 for t ∈ [0, 2π].

Via v := u◦Ψ we associate the harmonic function u in D with a harmonic function
v in B. Then, from the Cauchy–Riemann equations for u and v and its conjugate
harmonics the differential equation

(4) ϕ′ =
Aρ(f ◦ γ ◦ ϕ)

|γ′ ◦ ϕ| g ◦ γ ◦ ϕ
for the boundary correspondence function ϕ can be concluded as the central piece
of the inverse algorithm. The differential equation must be complemented by the
boundary conditions ϕ(0) = 0 and ϕ(2π) = π. Applying Green’s second integral
theorem to v and x 7→ ln |x| leads to the equation

(5) ρ = exp


−

∫ 2π

0

f(γ(ϕ(t))) dt
∫

Γ1

g ds




for the radius ρ. Akduman and Kress [1] and Haddar and Kress [2] have established
that the two nonlinear equations (4) and (5) (and modifications thereof) can be
solved by successive iterations.

The main advantage of this inverse algorithm is that it completely decouples
the nonlinearity and the ill-posedness of the inverse boundary value problem. In
the first step the boundary correspondence map ϕ and the radius ρ are determined
iteratively from the well-posed nonlinear equations (4) and (5). Then in the second
step the linear ill-posed Cauchy problem for determining Ψ from its boundary trace
Ψ|C1 has to be solved (in the annulus B with known radius ρ). In particular, this
makes the method very fast. Unfortunately, the decoupling property is lost for the
extension of the method to a Robin type boundary condition and to the inverse
transmission problem [3, 4, 6].

The decoupling property is also lost for a very recent application of the above
method in inverse scattering, i.e., for corresponding inverse boundary value prob-
lems for the Helmholtz equation. In addition to the Dirichlet problem (1) for the
Laplace equation we consider the Dirichlet problem for a solution uk ∈ H1(D)
of the Helmholtz equation ∆uk + k2uk = 0 with positive wave number k > 0
satisfying

(6) uk = f on Γ1 and uk = 0 on Γ0

and the corresponding inverse problem to recover Γ0 from f and the Neumann
data

(7) gk :=
∂uk
∂ν

on Γ1.
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Denote the nonlinear operators that map the interior boundary Γ0 onto the normal
derivative of the solution to (1) and (6) by B and Bk, respectively. Then clearly
we have that

(8) g = gk +B(Γ0)−Bk(Γ0).

The above inverse algorithm for the Laplace equation defines a solution operator S
that maps the Neumann data for the Laplace case to the interior boundary curve
Γ0. This operator is composed by the solution operator R for the two equations
(4) and (5) that maps g onto the pair (ϕ, ρ) and the solution operator Nρ for the
Cauchy problem via S = Nρ ◦ R. Inserting this operator into (8) we obtain the
fixed point equation

(9) g = gk +B(S(g))−Bk(S(g))

which can be used to iteratively compute the Neumann data g for the Laplace
equation from the given Neumann data gk for the Helmholtz equation. The latter
then allows to retrieve Γ0 = S(g), or in practice approximations Γ0 ≈ S(gn) within
the successive approximation sequence

(10) gn+1 = gk +B(S(gn))−Bk(S(g
n)), n = 0, 1, 2, . . . ,

starting with g0 = gk. Convergence has been shown for small wave numbers
k provided the operator Nρ occurring in S is regularized. Numerical examples
exhibit reasonably fast convergence.

It is an open problem to extend the convergence analysis to the modification of
(10) where S is replaced by Sn := Nρ,αn

◦R with a Tikhonov regularization Nρ,αn

of the Cauchy operator Nρ with a null sequence of regularization parameters αn.
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The factorization method for reconstructing a penetrable obstacle

with unknown buried objects

Bo Zhang

(joint work with J. Yang, H. Zhang)

This talk considers the problem of scattering of time-harmonic acoustic plane
waves by an inhomogeneous penetrable obstacle with buried objects inside. This
type of problems occurs in various areas of applications such as radar, remote
sensing, geophysics, and nondestructive testing. Let D0 denote an impenetrable
obstacle which is embedded in a penetrable obstacle D, that is, D0 ⊂ D. Assume
that D1 := D \D0 is filled with an inhomogeneous material characterized by the
refractive index n ∈ L∞(D1) with Re[n(x)] > 0 and ℑ[n(x)] ≥ 0 for almost all
x ∈ D1 and D2 := R3 \D is filled with a homogeneous material with the constant
refractive index 1. Then the scattering of time-harmonic acoustic waves by D and
D0 can be modeled by the Helmholtz equation with boundary conditions on the
interface ∂D and boundary ∂D0:

∆u+ k2u = 0 in R
3 \D(1)

∆v + k2nv = 0 in D \D0(2)

us − v = f1,
∂us

∂ν
− λ

∂v

∂ν
= f2 on ∂D(3)

Bv = 0 on ∂D0(4)

lim
r→∞

r
(∂us
∂r

− ikus
)
= 0 r = |x|,(5)

where ν is the unit outward normal to the interface ∂D and boundary ∂D0, λ is
a positive constant. Here, the total field u = us + ui is given as the sum of the
unknown scattered wave us which is required to satisfy the Sommerfeld radiation
condition (5) and the incident plane wave ui = eikx·d, where d is the incident
direction and k is the positive wave number given by k = ω/c in terms of the
frequency ω and the sound speed c in the region D2. On the interface ∂D, the
so-called ”transmission condition” (3) is imposed, which represents the continuity
of the medium and equilibrium of the forces acting on it, where the boundary data
f1 = −ui, f2 = −∂ui/∂ν. The boundary condition B(v) = 0 on ∂D0 represents
a Dirichlet, Neumann, impedance or mixed-type boundary condition depending
on the physical property of the obstacle D0. For simplicity we only consider the
three-dimensional case and the case when D0 is an open bounded region with a
C2 boundary ∂D0. However, our analysis extends to the two-dimensional case and
the case when D0 is an inhomogeneous penetrable obstacle, a crack or a union of
cracks and obstacles.

By the variational method it can be easily shown that the scattering problem
(1)-(5) has a unique weak solution (u, v) ∈ H1

loc(D2) × H1(D1) (see, e.g. [1] for
the case when n is a constant). In addition, the Sommerfeld radiation condition
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(5) implies an asymptotic behavior for the scattered field us of the form

us(x; d) =
eik|x|

|x|

{
u∞(x̂; d) +O

( 1

|x|
)}

, |x| −→ ∞(6)

uniformly with respect to all directions x̂ = x/|x|. The function u∞ is known as
the far field pattern of the scattered field us and is an analytic function of x̂ on
the unit sphere Ω. The inverse scattering problem that we are concerned with is
to determine the shape and location of both the penetrable obstacle D and the
buried impenetrable obstacle D0 from a knowledge of the far field pattern u∞ for
incident plane waves. The uniqueness result has been established for this inverse
problem in [2] for the case when n is a known constant and in [3, 4, 5] for the case
when D0 = ∅.

Many reconstruction algorithms have been developed for solving the above in-
verse problem in the case when D0 = ∅ (see, e.g., the iteration methods in [6, 7]
and the singular sources method in [8] for the case when n is a known constant,
the linear sampling method in [9] and the factorization method in [10, 11] for
the case when λ = 1). Recently, for the case when D0 6= ∅, Cakoni et al. [12]
introduced a multistep reciprocity gap functional method for reconstructing the
interface ∂D and the buried obstacle D0 from near field data, whilst in [13] we
proposed a Newton iteration method to simultaneously reconstruct the interface
∂D and the buried obstacle D0 from far field data.

In this talk we will prove that the factorization method can be applied to recon-
struct the interface ∂D with unknown buried objects. We are motivated by [14],
where the factorization method is applied to recover a penetrable obstacle without
buried objects inside in inverse elastic transmission scattering. The factorization
method was first suggested by Kirsch [15] for inverse obstacle scattering problems
and has been extended and improved continuously since then (see the monograph
[16]). Precisely, defining the far field operator F : L2(Ω) 7→ L2(Ω) by

(Fg)(x̂) =

∫

Ω

u∞(x̂; d)g(d)ds(d), x̂ ∈ Ω,

we will prove the following characterization of the penetrable obstacle D (see [17]).

Theorem 1. Assume that λ > 0 (λ 6= 1) or λ = 1/n with n ≡ n0 (some constant
with ℑ(n0) > 0 satisfying that ℜ(n0) > |n0|2 or that 1 < ℜ(n0) < |n0|2).

For z ∈ R3 define φz ∈ L2(Ω) by φz(x̂) = e−ikx̂·z, x̂ ∈ Ω.
Then z ∈ D if and only if φz ∈ R(G). Further, z ∈ D if and only if

∞∑

j=1

|(φz , ψj)L2(Ω)|2
λj

<∞,

or equivalently,

W (z) :=




∞∑

j=1

|(φz , ψj)L2(Ω)|2
λj




−1

> 0,
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where {λj , ψj}j∈N is an eigen-system of F# := |Re(F )|+ ℑ(F ).
In Theorem 1 we have to assume that k is not an eigenvalue of the interior

transmission problem: find u ∈ H1(D), v ∈ H1(D \D0) such that ∆u + k2u = 0
in D, ∆v+ k2nv = 0 in D \D0, u = v, ∂u/∂ν = λ∂v/∂ν on ∂D, Bv = 0 on ∂D0.

Note that if λ, n and B satisfy one of the three conditions: (1) λ > 0, n > 0
a.e. in D \D0 and ∂v/∂ν + iρv = 0 on part of ∂D0, (2) λ > 0, ℑ(n) > 0 a.e. in

D̃ ⊂ D \D0 with D̃ 6= ∅, and Bv = 0, and (3) λ = 1/n with n ≡ n1 (a constant
with ℑ(n1) > 0) and Bv = 0, then there are no transmission eigenvalues.

Numerical examples are provided to illustrate the inversion algorithm.
We remark that our method does not work for the case when Re(λ) = 1.
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Transmission Eigenvalues in Inverse Scattering Theory

Fioralba Cakoni

(joint work with David Colton and Houssem Haddar)

The interior transmission problem arises in inverse scattering theory for inhomoge-
neous media. It is a boundary value problem for a coupled set of equations defined
on the support of the scattering object and was first introduced by Colton and
Monk [7] and Kirsch [10]. Of particular interest is the eigenvalue problem associ-
ated with this boundary value problem, referred to as the transmission eigenvalue
problem and, more specifically, the corresponding eigenvalues which are called
transmission eigenvalues. The transmission eigenvalue problem is a nonlinear and
non-selfadjoint eigenvalue problem that is not covered by the standard theory of
eigenvalue problems for elliptic equations. For a long time research on the trans-
mission eigenvalue problem mainly focussed on showing that transmission eigen-
values form at most a discrete set and we refer the reader to the survey paper [8]
for the state of the art on this question up to 2007. From a practical point of view
the question of discreteness was important to answer, since sampling methods for
reconstructing the support of an inhomogeneous medium fail if the interrogating
frequency corresponds to a transmission eigenvalue. On the other hand, due to
the non-selfadjointness of the transmission eigenvalue problem, the existence of
transmission eigenvalues for non-spherically stratified media remained open for
more than 20 years until Sylvester and Päivärinta [11] showed the existence of at
least one transmission eigenvalue provided that the contrast in the medium is large
enough. The story of the existence of transmission eigenvalues was completed by
Cakoni, Gintides and Haddar [5] where the existence of an infinite set of trans-
mission eigenvalue was proven only under the assumption that the contrast in the
medium does not change sign and is bounded away from zero. In addition, esti-
mates on the first transmission eigenvalue were provided. It was then showed by
Cakoni, Colton and Haddar [3] that transmission eigenvalues could be determined
from the scattering data and since they provide information about material prop-
erties of the scattering object can play an important role in a variety of problems
in target identification.

The transmission eigenvalue problem is related to non-scattering incident fields.
Indeed, if ui is such that us = 0 then w := u|D and v := ui|D satisfy the following
homogenous problem

∇ ·A(x)∇w + k2nw = 0 in D(1)

∆v + k2v = 0 in D(2)

w = v on ∂D(3)

ν ·A(x)∇w = ν · ∇v on ∂D.(4)

Conversely, if (1)-(4) has a nontrivial solution w and v and v can be extended
outside D as a solution to the Helmholtz equation, then if this extended v is con-
sidered as the incident field the corresponding scattered field is us = 0. As will be
seen later in this paper, there are values of k for which under some assumptions
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on A and n, the homogeneous problem (1)-(4) has non-trivial solutions. The ho-
mogeneous problem (1)-(4) is referred to as the transmission eigenvalue problem,
whereas the values of k for which the transmission eigenvalue problem has non-
trivial solutions are called transmission eigenvalues. It is known, under further
assumptions on the functions A and n, (1)-(4) satisfies the Fredholm property
for w ∈ H1(D), v ∈ H1(D) if A 6= I and for w ∈ L2(D), v ∈ L2(D) such that
w − v ∈ H2(D) if A = I. Even at a transmission eigenvalue, it is not possible in
general to construct an incident wave that does not scatter. This is because, in
general it is not possible to extend v outside D in such away that the extended
v satisfies the Helmholtz equation in all of Rd. Nevertheless, it is already known
that solutions to the Helmholtz equation in D can be approximated by entire so-
lutions in appropriate norms. In particular let X (D) := H1(D) if A 6= I and
X (D) := L2(D) if A = I. Then if vg is a Herglotz wave function defined by

(5) vg(x) :=

∫

Ω

g(d)eikx·d ds(d), g ∈ L2(Ω), x ∈ R
d, d = 2, 3

where Ω is the unit (d− 1)-sphere Ω := {x ∈ Rd : |x| = 1} and k is a transmission
eigenvalue with the corresponding nontrivial solution v, w, then for a given ǫ > 0,
there is a vgǫ that approximates v with discrepancy ǫ in the X (D)-norm and
the scattered field corresponding to this vgǫ as incident field is roughly speaking
ǫ-small.

There two important issues concerning the transmission eigenvalues: 1) Real
transmission eigenvalues can be determined from the scattered data and 2) trans-
mission eigenvalues carry information about material properties. Therefore, trans-
mission eigenvalues can be used to quantify the presence of abnormalities inside
homogeneous media and use this information to test the integrity of materials.
Next we show that it is possible to determine the real transmission eigenvalues
from the scattering data. We can define the far field operator Fk : L2(Ω) → L2(Ω)
by

(6) (Fkg)(x̂) :=

∫

Ω

u∞(x̂, d, k)g(d) ds(d)

and consider introduce the far field equation

(7) (Fkg)(x̂) = Φ∞(x̂, z)

where Φ∞(x̂, z) is the far field pattern of the fundamental solution Φ(x, z) of the
Helmholz equation. It is known that if k is not a transmission eigenvalue, for z ∈ D
the far field equation has an approximate solution such that the corresponding
Herglotz function converges in the appropriate norm. On the other hand let k be
a transmission eigenvalue, ǫ > 0 and let gz,ǫ be such that

(8) ‖Fkgz,ǫ − Φ∞(·, z)‖2L2(Ω) ≤ ǫ

with vgz,ǫ the corresponding Herglotz wave function. Then, in [3] it is shown that
for all z ∈ D, except for a possibly nowhere dense subset, ‖vgz,ǫ‖X (D) can not
be bounded as ǫ → 0. Thus, transmission eigenvalues can be computed from far
field data by plotting the norm of the approximate (regularized) solution of the far
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field equation against frequencies and the picks in the graph indicate transmission
eigenvalues.

Nest we analyze the transmission eigenvalue problem associated with the scat-
tering problem problem for two types of inhomogeneities. First, we discuss the
interior transmission problem in the case when the inhomogeneous medium has
cavities, i.e. regions in which the index of refraction is the same as the host
medium. In this case we establish the Fredholm property for this problem and
show that transmission eigenvalues exist and form a discrete set. We also derive
Faber-Krahn type inequalities for the transmission eigenvalues (see [2], [9] and
[12]).

The second problem we consider is the study of the interior transmission prob-
lem corresponding to the inverse scattering by an inhomogeneous anisotropic media
in which an impenetrable obstacle with Dirichlet boundary conditions is embed-
ded. Our main focus is to understand the associated eigenvalue problem, more
specifically to prove that the transmission eigenvalues form a discrete set and
show that they exist. The presence of Dirichlet obstacle brings new difficulties to
already complicated situation dealing with a non-selfadjoint eigenvalue problem.
We employ a variety of variational techniques under various assumptions on the
index of refraction as well as the size of the Dirichlet obstacle (see[1], [4] and [6]
for more details).
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[11] L.Päivärinta and J. Sylvester. Transmission eigenvalues. SIAM J. Math. Anal, 40:738–753,
2008.

[12] J. Sylvester. Discreteness of transmission eigenvalues via upper triangular compact opera-
tors. SIAM J. Math. Anal. (to appear).



Inverse Problems for Partial Differential Equations 45

Electrical impedance imaging using nonlinear Fourier transform

Samuli Siltanen

(joint work with Kim Knudsen, Matti Lassas and Jennifer L. Mueller)

Electrical impedance tomography (EIT) is an emerging medical imaging technique.
In EIT, one attaches electrodes on the skin of a patient, applies voltages on the
electrodes and measures the resulting electric currents. The goal of EIT is to
produce an image of the internal electric conductivity. Since different tissues have
different conductivities, doctors can use EIT images for detecting breast cancer or
for monitoring the heart and lung function of unconscious patients. See [3].

Mathematically, EIT can be modelled by the inverse conductivity problem of
Calderón [2]. Let us describe the problem in a two-dimensional setting. Let Ω ⊂ R2

be the unit disc and let conductivity σ : Ω → R satisfy 0 < M−1 ≤ σ(z) ≤ M.
Applying voltage f at the boundary ∂Ω leads to the elliptic PDE

{
∇ · σ∇u = 0 in Ω,

u|∂Ω = f.

Boundary measurements are modelled by the Dirichlet-to-Neumann map

Λσ : f 7→ σ
∂u

∂~n
|∂Ω.

Calderón’s problem is to recover σ from the knowledge of Λσ. In practice we do
not have available the infinite-precision measurement Λσ, but instead have to work
with a noisy measurement Λδ

σ satisfying ‖Λδ
σ − Λσ‖ < δ with a known δ > 0.

EIT is an ill-posed inverse problem: the nonlinear forward map F : σ 7→ Λσ

does not have a continuous inverse. Therefore, a nonlinear regularization strategy
needs to be constructed, as shown in Figure 1. For this we must define a model
spaceX for conductivities, a data space Y for noisy measurements, and the domain
D(F ) ⊂ X for the forward map. Most importantly, we need to design a family of
continuous mappings Rα : Y → X parameterized by 0 < α < ∞ and satisfying
the following conditions [4, 6]. First of all, for each fixed σ ∈ D(F ) we should get
a perfect reconstruction from infinite-precision data when α tends to zero:

(1) lim
α→0

‖Rα(Λσ)− σ‖L∞(Ω) = 0.

For dealing with noisy data we need to describe a choice α = α(δ) of regularization
parameter as function of noise level such as α(δ) → 0 as δ → 0. Furthermore, Rα

should be so constructed that the worst-case reconstruction error

(2) sup
Λδ

σ∈Y

{
‖Rα(δ)(Λ

δ
σ)− σ‖L∞(Ω) : ‖Λδ

σ − Λσ‖Y ≤ δ
}

tends to zero asymptotically as δ → 0.
The traditional approach would be to define the regularized solution as the

minimizer of a Tikhonov type functional, such as ‖F (σ) − Λδ
σ‖2Y + α‖σ‖2X , and

compute the reconstruction iteratively. This approach has been studied for F not
too nonlinear [5]. However, for strongly nonlinear problems, such as EIT, the
iteration is prone to get stuck to local minima.
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It is also possible to design a tailored non-iterative regularization strategy for
EIT, taking into account the specific type of nonlinearity. We show how this can
be done using a nonlinear low-pass filter.

Take X = L∞(Ω). Let M > 0 and 0 < ρ < 1 and take the domain D(F ) to be
the set of functions σ : Ω → R satisfying σ(z) ≡ 1 for ρ < |z| < 1, ‖σ‖C2(Ω) ≤ M

and σ(z) ≥ M−1. The data space Y consists of bounded linear operators Λ :
H1/2(∂Ω) → H−1/2(∂Ω) satisfying

∫
∂Ω

Λ(f) ds = 0 for every f ∈ H1/2(∂Ω) and
Λ(1) = 0. The constants M and ρ are a priori knowledge about the unknown
conductivity. We know from [1] that the map F : X ⊃ D(F ) → Y is one-to-one.

The regularization strategy is defined as follows. Solve the boundary integral
equation ψδ( · , k)|∂Ω = eikz−Sk(Λ

δ
σ−Λ1)ψ

δ for all |k| < R = R(δ). Here Sk is the
single-layer operator with the exponentially behaving Faddeev Green’s function as
kernel. Then evaluate the truncated nonlinear Fourier transform by

(3) tδR(k) =





∫
∂Ω e

ik̄z̄(Λδ
σ − Λ1)ψ

δ(·, k) ds for |k| < R(δ),

0 for |k| ≥ R(δ).

The step (3) can be understood as a nonlinear low-pass filtering. Here the trun-
cation radius is defined by R(δ) = − 1

10 log δ, and the regularization parameter is
given by α(δ) = 1/R(δ).

Next, for each reconstruction point z ∈ Ω, solve the D-bar equation

∂

∂k
µδ
R(z, k) =

tδR(k)

4πk
e−i(kz+kz)µδ

R(z, k)

with asymptotic condition µδ
R(z, · )− 1 ∈ Lr ∩ L∞(C). Finally, set Rα(δ)(Λ

δ
σ) :=

(µδ
R(z, 0))

2.
The above regularized EIT method is based on the constructive uniqueness

proof [8], which was first implemented numerically in [9]. Rigorous proof for the
fact that the approach really gievs a regularization strategy is given in [7].
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Figure 1. Schematic illustration of nonlinear regularization of
the eit problem. Here Rα : Y → X must be continuous.

Figure 2. Reconstruction of a conductivity using the regularized
D-bar method. Left: original conductivity. Right: reconstruction.
Here δ = 10−6 and R = 6.7.
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