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On the geometric André–Oort conjecture for
variations of Hodge structures

By Jiaming Chen at Paris

Abstract. Let V be a polarized variation of integral Hodge structure on a smooth com-
plex quasi-projective variety S . In this paper, we show that the union of the non-factor special
subvarieties for .S;V /, which are of Shimura type with dominant period maps, is a finite union
of special subvarieties of S . This generalizes previous results of Clozel and Ullmo (2005) and
Ullmo (2007) on the distribution of the non-factor (in particular, strongly) special subvarieties
in a Shimura variety to the non-classical setting and also answers positively the geometric part
of a conjecture of Klingler on the André–Oort conjecture for variations of Hodge structures.

1. Introduction

1.1. Motivation. The classical André–Oort conjecture, which describes the distribu-
tion of CM points (points with complex multiplication) on a Shimura variety, asserts that the
Zariski closure of a subset of CM points in a Shimura variety is special (namely, an irreducible
component of a Hecke translate of a Shimura subvariety). It is the analog in a Hodge-theoretic
context of the Manin–Mumford conjecture (a theorem of Raynaud [25] stating that an irreduc-
ible subvariety of a complex abelian variety containing a Zariski-dense set of torsion points is
the torsion translate of an abelian subvariety. It has recently been proved for the Shimura variety
Ag moduli space of principally polarized complex abelian varieties of dimension g (and more
generally for mixed Shimura varieties whose pure part are of abelian type) following a strat-
egy proposed by Pila and Zannier, through the work of many authors [2, 10, 16, 22, 27, 30].
Recently, Klingler [14] formulated a generalization of the André–Oort conjecture (in fact, of
the more general Zilber–Pink’s conjecture on atypical intersections in Shimura varieties) for
any admissible variation of mixed Hodge structures on a smooth quasi-projective variety.

This paper studies a particular case of Klingler’s generalized André–Oort conjecture for
pure variations of integral Hodge structures.

1.2. Hodge locus. Let V ! S an be a polarized1) variation of integral Hodge structure
(usually abbreviated Z-VHS) of weight p 2 Z on a smooth irreducible complex quasi-projec-
tive variety S . Thus V is a triple .VZ; F

�; '/, where VZ is a local system of finite free Z-mod-

1) We only consider polarizable variations of Hodge structures throughout the paper.
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ules on the complex manifold S an – the analytification of S , F � is a decreasing filtration by
holomorphic subbundles on the holomorphic bundle .V an WD VZ ˝ZSan OS an ;ran/ satisfying
Griffiths’ transversality condition

(1.1) r
anF � � �1S an ˝OSan F

��1

and ' W VZ ˝ VZ ! ZS an.�p/ is a bilinear pairing of local systems, such that .VZ;s; F
�

s ; 's/

is a polarized Z-Hodge structure of weight p for all s 2 S an. This definition is an abstraction
of the geometric case corresponding to VZ D .R

pf�ZXan/prim=torsion (for p � 0), the prim-
itive part of the local system of the p-th integral cohomologies modulo torsion of the fibers
of a smooth projective morphism f W X ! S and .V an;ran/ the Gauss–Manin connection.
Following Griffiths (cf. [26, Theorem (4.13)]) the holomorphic bundle V an admits a unique
algebraic structure V such that the holomorphic connection ran is the analytification of an
algebraic connection r on V which is regular, and the filtration F �V an is the analytification
of an algebraic filtration F �V . Thus from now on we will omit an from the notations and the
meaning will be clear from the context.

Inspired by the rational Hodge conjecture, one would like to know how the Hodge locus
HL.S;V˝/ � S is distributed in S . Here HL.S;V˝/ is by definition the subset of points s
of S for which exceptional Hodge classes2) do occur in Vm

Q;s ˝ .V
_
Q;s/

n for somem; n 2 Z>0,
where V_Q;s denotes the Q-Hodge structure dual to VQ;s .

The Tannakian formalism available for Hodge structures gives us a particularly useful
group-theoretic description of the Hodge locus HL.S;V˝/. Recall that for every s 2 S , the
Mumford–Tate group G s of the Hodge structure VQ;s is the Tannakian group of the Tannakian
subcategory hV˝Q;si of pure polarized Hodge structures tensorially generated by VQ;s and V_Q;s .
Equivalently, the group G s is the stabilizer of the Hodge classes in the rational Hodge structures
tensorially generated by VQ;s and its dual. The group G s is a connected reductive algebraic
Q-group, canonically endowed with a morphism of real algebraic groups

hs W S WD ResC=R Gm ! G s;R:

Let Z � S be an irreducible algebraic subvariety of S . A point s in the smooth locus Zsm

of Z is said to be Hodge generic for the restriction V jZsm if G s is maximal when s ranges
through Zsm. Since Z is irreducible, two Hodge generic points of the locus Zsm have the same
Mumford–Tate group, called the generic Mumford–Tate group GZ of .Z;V jZsm/. Then the
Hodge locus HL.S;V˝/ is also the subset of points of S which are not Hodge generic.

A fundamental result of Cattani, Deligne and Kaplan [5] states that HL.S;V˝/ is a count-
able union of closed irreducible strict algebraic subvarieties of S .

Definition 1.1. Let V be a Z-VHS on a smooth irreducible complex quasi-projective
variety S .

A closed irreducible algebraic subvariety Z of S is called special for V if it is maximal
among the closed irreducible algebraic subvarieties of S with the same generic Mumford–Tate
group as Z.

Special subvarieties of dimension zero are called special points for .S;V /.
A special point s 2 S whose Mumford–Tate group G s is commutative is called a CM

point for .S;V /.

2) In this paper, by a Hodge class, we will always mean a Hodge class of type .0; 0/.
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So by definition, if Z � S is a special subvariety for .S;V /, then Z is either contained
in HL.S;V˝/ (in which case we call Z strict), or Z D S .

Choose s 2 Zsm and let DZ be the GZ.R/-conjugacy class of hs . The pair .GZ ;DZ/

is called the generic Hodge datum for .Z;V jZsm/.

Definition 1.2. Let Z � S be a special subvariety for V . Then Z is called of Shimura
type if the generic Hodge datum .GZ ;DZ/ for .Z;V jZsm/ is a Shimura datum (see [18, Sec-
tion 5] for the definition of a Shimura datum). Notice that CM points for .S;V / are of Shimura
type.

The problem we are interested in can be phrased vaguely as follows:

Question 1.3. Given a Z-VHS on a smooth irreducible complex quasi-projective vari-
ety, can we describe the distribution of its CM points, or more generally of its special subvari-
eties of Shimura type?

1.3. André–Oort conjecture for variations of Hodge structures.

1.3.1. Variations of Hodge structures of Shimura type and of general Hodge type.
We keep the same notations as in the previous section. The Griffiths’ transversality condition
(1.1) establishes a fundamental dichotomy between Z-VHS of Shimura type (called classical
in [11]) for which the generic Hodge datum .G ;D/ is a Shimura datum and Z-VHS of general
Hodge type (called non-classical in [11]). Roughly speaking, a Z-VHS is of Shimura type if it
is an element of some hV˝Q i, for V an effective Z-VHS of weight p D 1 (i.e., a family of abel-
ian varieties), or weight p D 2 and very restricted Hodge type (like family of K3-surfaces).
It is the Hodge-theoretic incarnation of a family of abelian motives. On the other hand, vari-
ations of integral Hodge structures of general Hodge type form the vast majority of Z-VHS,
incarnating families of non-abelian motives.

For a Z-VHS of Shimura type, the Hodge filtration is so short that the Griffiths’ transver-
sality condition is automatically satisfied. As a result, classifying spaces do exist for Z-VHS
of Shimura type: these are exactly the Shimura varieties ShK.G ;D/ (see [18, Section 5] for
the definition of a Shimura datum), which are algebraic varieties (canonically defined over
a number field) generalizing the moduli space Ag of principally polarized abelian varieties
of dimension g. Given V a Z-VHS of Shimura type on S , there exists an algebraic classify-
ing map  W S ! ShK.G ;D/ and an algebraic representation � of G such that V D  �V�.
Here V� is the standard Z-VHS on ShK.G ;D/ associated to �. Moreover, the Hodge locus
HL.S;V˝/ coincides with  �1. .S/ \ HL.ShK.G ;D//, where the Hodge locus

HL.ShK.G ;D// WD HL.ShK.G ;D/;V˝� /

is in fact independent of the choice of the faithful representation � of G and each special sub-
variety of ShK.G ;D/ can be geometrically described as an irreducible component of a Hecke
translate of a Shimura subvariety of ShK.G ;D/.

1.3.2. The conjectures. The following conjecture of Klingler proposes a characteriza-
tion of the Z-VHS with many CM points.
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Conjecture 1.4 (Klingler [14, Conjecture 5.3]). Let V be a Z-VHS on a smooth irre-
ducible complex quasi-projective variety S with generic Hodge datum .G ;D/. Suppose that
the set of CM points for .S;V / is Zariski-dense in S . Then .G ;D/ is a Shimura datum and we
have a Cartesian diagram

V D  �V� V�

S ShK.G ;D/,
 

where  is a dominant morphism to a connected component ShıK.G ;D/ of a Shimura vari-
ety ShK.G ;D/, � W G ! GL.V / is an algebraic representation and V� ! ShK.G ;D/ is the
associated standard Z-VHS on ShK.G ;D/.

It follows readily from these considerations that the restriction of Conjecture 1.4 to the
class of Z-VHS of Shimura type is equivalent to the classical André–Oort conjecture, while the
full Conjecture 1.4 is equivalent to both the classical André–Oort conjecture and the following
Conjecture 1.5:

Conjecture 1.5. Let V be a Z-VHS on a smooth irreducible complex quasi-projective
variety S . Suppose that the set of CM points for .S;V / is Zariski-dense in S . Then .S;V / is
of Shimura type.

Many works have been devoted to the classical André–Oort conjecture, culminating to its
proof when a Shimura variety ShK.G ; X/ is of abelian type (see for example [17] for a survey).
The proof of the classical André–Oort conjecture relies on two completely different ingredi-
ents: on the one hand a precise arithmetic analysis of the Galois orbits of CM points (lower
bound and heights); on the other hand, a geometric analysis of the distribution in ShK.G ; X/
of positive-dimensional special subvarieties.

In this paper we will concentrate on the geometric part of Conjecture 1.5, namely:

Conjecture 1.6 (Geometric André–Oort for Z-VHS, Klingler [14, Conjecture 5.7]). Let
V be a Z-VHS on a smooth irreducible complex quasi-projective variety S . Suppose that the
set of positive-dimensional special subvarieties for .S;V /, which are of Shimura type with
dominant period maps, is Zariski-dense in S . Then .S;V / is of Shimura type with dominant
period map.

1.4. Statements of the main results. The main result we obtain in the direction of
Conjecture 1.6 is the following:

Theorem 1.7. Let V be a Z-VHS on a smooth irreducible complex quasi-projective
variety S . Then the union of the non-factor special subvarieties for .S;V /, which are of
Shimura type with dominant period maps, is a finite union of special subvarieties of S .

As a corollary, we have:

Corollary 1.8. Let V be a Z-VHS on a smooth irreducible complex quasi-projective
variety S . If S contains a Zariski-dense subset of non-factor special subvarieties, which are
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of Shimura type with dominant period maps, then .S;V / is of Shimura type with dominant
period map.

Remark 1.9. The notion of non-factor special subvarieties was introduced by Ullmo
in [28] for Shimura varieties, as a generalization of the strongly special subvarieties defined by
Clozel and Ullmo in [7]. The precise definition is given in Section 4. The restriction to non-
factor special subvarieties avoids in particular the appearance of the special points. We have no
tools to deal with special points in the non-classical setting at the moment.

Remark 1.10. Recent work of Klingler and Otwinowska [15] shows that if the adjoint
group G ad of the generic Mumford–Tate group G of .S;V / is simple, then the union of positive
special subvarieties in HL.S;V˝/ is either an algebraic subvariety of S or is Zariski-dense
in S . Here we say an irreducible algebraic subvariety Z of S is positive if the local system V jZ
is not constant.

Theorem 1.7 is a consequence of the following equidistribution result of non-factor
Shimura-type special subvarieties in any connected Hodge variety, which is a generalization
to the non-classical setting of Clozel and Ullmo’s [7] and Ullmo’s [28] result on the equidistri-
bution of positive-dimensional special subvarieties in a Shimura variety.

Theorem 1.11. Let V be a Z-VHS on a smooth irreducible complex quasi-projective
variety S with generic Hodge datum .G ;D/. Let  W S ! Hod�.S;V / WD �nD be the asso-
ciated period map, where � � G .Q/ is an arithmetic lattice.

Let .Zn/ be a sequence of non-factor special subvariety of S which are of Shimura
type with dominant period maps and let .Wn/ be the corresponding sequence of non-factor
Shimura-type special subvarieties in Hod�.S;V /. Let �Wn be the canonical Borel proba-
bility measure on Hod�.S;V / with support Wn. Then there exists a special subvariety W1
of Hod�.S;V /, which is non-factor and of Shimura type, and a subsequence .�Wnk / of .�Wn/
such that �Wnk is weakly convergent to �W1 . Moreover, Wnk � W1 for k � 0, and the
irreducible component Z1 of  �1.W1/ containing Znk , k � 0, is a non-factor special
subvariety of Shimura type of S and  -dominant over W1.

1.5. Strategy of the proof. The method we use to prove Theorem 1.11 is from ergodic
theory, due to Ratner [23, 24] Mozes and Shah [21] and Dani and Margulis [8]. We deduce
Theorem 1.7 from Theorem 1.11 and the definability of period maps. More precisely:

(1) Assuming the Hodge variety Hod�.S;V / contains one non-factor Shimura-type special
subvariety, then these non-factor Shimura-type special subvarieties will equidistribute in
Hod�.S;V /. We will follow the strategies used by Clozel and Ullmo in [7] and Ullmo
in [28]. But there are two main differences that we want to address:

(a) For a non-factor special subvariety W of Hod�.S;V / associated to a Hodge sub-
datum .H ;DH / of .G ;D/ with G semisimple of adjoint type, we need to show
that the centralizer ZG .H

der/.R/ of H der in G is contained inMh, the isotropy sub-
group in G .R/ of a Hodge generic point h 2 DH . Ullmo’s method does not apply
here since the Hodge datum .G ;D/ is in general not a Shimura datum. We give
a Hodge-theoretic proof of this result (Proposition 4.4), which works in all cases.
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(b) We need to show the limit of a sequence of non-factor Shimura-type special subvari-
eties is again of Shimura type. This is quite easy in the classical case as .G ;D/ is
itself of Shimura type.

(2) We need to know that there are only finitely many components in the preimage  �1.W /
of a special subvariety W of Hod�.S;V / under the period map. This follows from the
recent result of Bakker, Klingler and Tsimerman [3] on the definability of period map  .

As for the organization of the paper, in Section 2 we provide a recollection of the ergodic
results that we need. In Section 3 we recall the general definitions of a Hodge datum and of
a Hodge variety and review the definability of the period map. In Section 4, we discuss the equi-
distribution of non-factor special subvarieties. In Sections 5 and 6 we prove the main results.

Notations. An algebraic group will be denoted by boldface (or blackboard bold) letters
(e.g., S;G ;H ; : : :) and a Lie group will be denoted by usual letters (e.g., G;H; : : :).

Let H be an algebraic group.
� The adjoint group and derived subgroup of H are denoted by H ad and H der, respectively;

the centralizer (respectively, normalizer) of a subgroup H in an algebraic group G is
denoted by ZG .H / (respectively, NG .H /).

� If H is defined over R, we denote H .R/C the identity component of H .R/ for the
real topology and H .R/C the preimage of H ad.R/C under the adjoint homomorphism
ad W H ! H ad.

� If H is connected semisimple and defined over a filed k, then H is the almost direct prod-
uct of its minimal non-finite normal k-subgroups H 1; : : : ;H r (cf. [19, Theorem 21.51]).
If H is adjoint or simply connected, the product is direct. By abuse of language, the
subgroups H i are called k-simple factors of H .

Acknowledgement. I would like to express my deep gratitude to my supervisor Bruno
Klingler, who introduced me to the study of the distribution of Hodge locus and suggested
that it might be possible to apply the equidistribution methods to it. I very much thank him
for his meticulous proofreading and corrections on an early draft of this paper. I want to thank
Patrick Brosnan, Carlos Simpson and Emmanuel Ullmo, for their very careful reading of this
manuscript and the suggestions for improvements. This work is part of the author’s PhD thesis
at the Université de Paris, and part of it were written while visiting Humboldt-Universität zu
Berlin. The author wants to thank these institutions for their support and hospitality.

2. Some ergodic results à la Ratner, Mozes and Shah

In this section, we will review some results form ergodic theory [21, 23, 24] that will be
used later. We follow the same terminologies as defined in [6, 7, 28].

2.1. Algebraic groups of type K and Lie subgroups of type H .

Definition 2.1. A connected linear Q-algebraic group H is said to be of type K if
its radical is unipotent, and H ss

WD H =Ru.H / is of non-compact type: that is, none of its
Q-simple factors are R-anisotropic. Here Ru.H / denotes the unipotent radical of H .
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Let G be a connected semisimple Q-algebraic group and let G D G .R/C be the associ-
ated connected Lie group. Let � be an arithmetic lattice of G and let � be the homogeneous
space �nG on whichG acts by right translations. Let P.�/ denote the set of Borel probability
measures on � equipped with the weak-� topology.

Definition 2.2 (cf. [7, Section 2]). Let H be a connected closed Lie subgroup of G.
Then H is said to be of type H if

(i) H \ � is a lattice of H . In particular, the orbit �n�H of �e 2 � under H is closed
in � (see [23, Proposition 1.4]). We denote by �H 2P.�/ the unique H -invariant
Borel probability measure supported on �n�H .

(ii) The subgroup L.H/ � H generated by the one-parameter unipotent subgroups of G
contained in H acts ergodically on �n�H with respect to the measure �H .

Note that the definition of an algebraic group being type K is intrinsic, while the notion of
type H is for a subgroup of a given group. The relation between type K algebraic subgroups
of G and type H closed Lie subgroups of G is given by the following lemma, proven in
[7, Lemmas 2.1, 2.2 and 2.3].

Lemma 2.3. Let G be a connected semisimple Q-algebraic subgroup of type K .

(1) If H is a connected semisimple Q-subgroup of G of type K , then H WD H .R/C is
a closed Lie subgroup of G of type H .

(2) If H is a connected Lie subgroup of G of type H , there exists a connected Q-algebraic
subgroup H of G of type K such that H WD H .R/C.

Remark 2.4. The Q-algebraic subgroup H in part (2) of Lemma 2.3 is constructed as
the Q-Zariski closure of H in G .

2.2. A theorem of Mozes and Shah. Let Q.�/ be the subset of P.�/ consisting of
all the H -invariant Borel probability measures �H associated to type H closed connected Lie
subgroups H of G.

Theorem 2.5 (Mozes and Shah [21, Theorem 1.1 and Corollary 1.4]). The following
statements hold.

(1) Q.�/ is a compact subset of P.�/.

(2) If .�n/ is a sequence in Q.�/ that weakly converges to � 2 Q.�/, then the supports
supp.�n/ are contained in supp.�/ for n big enough.

3. Hodge varieties and definability of period maps

In this section we recall the definition of special subvarieties of a Hodge variety and give
a brief review of the definability of period maps. The main references for this section are [11],
[4], [14] and [3].
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3.1. Hodge data and Hodge varieties. Let S WD ResC=R Gm;C denote the Deligne
torus. It is the Tannaka dual group of the category of real Hodge structures. The inclusion
R� ,! C� corresponds to an inclusion of real algebraic groups w W Gm;R ,! S.

Definition 3.1. We make the following definitions.

(i) A Hodge datum is a pair .G ;D/ consisting of a connected Q-reductive group and
a G .R/-conjugacy class D of some homomorphism h 2 Hom.S;GR/ satisfying the
following conditions:

(HD 0) the weight homomorphism wh WD h ı w W Gm;R ! GR is a cocharacter of the
center of GR and is defined over Q,

(HD 1) the involution Int.h.
p
�1// is a Cartan involution of the adjoint group G ad

R .

(ii) Let .G ;D/ be a Hodge datum and let DC be a connected component of D . The pair
.G ;DC/ is then called a connected Hodge datum.

(iii) A (connected) Hodge datum .G ;D/ (resp. .G ;DC/) is said to be of Shimura type if it
satisfies two more conditions:

(HD 2) the Hodge structure induced on the Lie algebra Lie.GR/ by Ad ı h is of type
¹.�1; 1/; .0; 0/; .1;�1/º,

(HD 3) G ad has no Q-factor on which the projection of h is trivial. By the presence of
axioms (HD 1) and (HD 2), this is equivalent to say that G ad is of non-compact
type.

Remark 3.2. We make the following observations.

(1) For .G ;D/ a Hodge datum, there exists a unique structure of complex manifold on D

such that for some (any) faithful (finite-dimensional, algebraic) representation of G ,
the associated family of Hodge structures on D varies holomorphically (cf. [18, Theo-
rem 2.14]).

(2) Any discrete subgroup � of G .Q/C WD G .Q/ \G .R/C acts properly discontinuously
on DC, so that �nDC is a complex analytic space with at most finite quotient singulari-
ties (cf. [4, Section 16.3]).3)

Definition 3.3. We make the following definitions.

(i) Let .G ;D/ be a Hodge datum and let K be a compact open subgroup of G .Af /, where
Af is the ring of finite adèles of Q. The Hodge variety is defined as

HodK.G ;D/ WD G .Q/nD �G .Af /=K;

where G .Q/ acts diagonally on D and G .Af / on the left and K acts on G .Af / on
the right.

(ii) Let .G ;DC/ be a connected Hodge datum. A connected Hodge variety associated to
.G ;DC/ is defined as the quotient �nDC for an arithmetic subgroup � of G .Q/C.

3) Recall that G .R/C is the stabilizer of DC in G .R/:
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Remark 3.4. We make the following observations.

(1) As in the case of Shimura varieties, every connected Hodge variety is a connected com-
ponent of a Hodge variety and vice versa (cf. [4, Lemma 16.3.8]). IfK (resp. �) is chosen
sufficiently small, then HodK.G ;D/ (resp. �nDC) is a complex manifold and the map
D ! HodK.G ;D/ (resp. DC ! �nDC/ is unramified.

(2) In general, the Hodge variety HodK.G ;D/ (resp. connected Hodge variety �nDC) does
not admit any algebraic structure (see [12, Theorem 1.4]).

We will only consider connected Hodge data and connected Hodge varieties in this paper.

Definition 3.5. A Hodge morphism of connected Hodge data .G ;DC/! .G 0;D 0C/

is a homomorphism of Q-algebraic groups ' W G ! G 0 which induces a map DC ! D 0C,
h 7! 'ıh. A Hodge morphism of connected Hodge varieties is a morphism of varieties induced
by a morphism of connected Hodge data.

Remark 3.6. Let h 2 DC and let Dad;C be the G ad.R/C-conjugacy class of the com-
position

had
W S! GR ! G ad

R :

Then DC Š Dad;C and we have a morphism of connected Hodge data

.G ;DC/! .G ad;Dad;C/:

3.2. Special subvarieties of a connected Hodge variety. Let .G ;DC/ be a connected
Hodge datum and let Y be a connected Hodge variety associated to .G ;DC/.

Definition 3.7. The image of any Hodge morphismW ! Y between connected Hodge
varieties is called a special subvariety of Y . It is said to be of Shimura type if the connected
Hodge datum corresponds to W is a Shimura datum.

For any special subvariety of Y , the Hodge morphism in Definition 3.7 can be chosen
such that the underlying homomorphism of algebraic groups is injective. Hence any special
subvariety of Y can be regarded as given by a Hodge subdatum.

3.3. Special subvarieties associated to a Z-VHS. Let V be a Z-VHS on a smooth
irreducible complex quasi-projective variety S . Let G be its generic Mumford–Tate group.
Fix a Hodge generic point o 2 S . The Hodge structure on the fiber VQ;o Š V induces a mor-
phism of R-algebraic groups ho W S! GR.4) Let D be the G .R/-conjugacy class of ho and
let DC be the connected component of D containing ho. Then we get a connected Hodge
datum .G ;DC/.

Let � be a neat arithmetic lattice of G .R/C, the stabilizer of DC in G .R/. After pass-
ing to a finite étale covering of S , we may assume that � contains the monodromy group,
namely, the image of �1.S/ in GL.VZ;o/. We denote by Hodı�.S;V / the connected Hodge

4) The pullback of the local system VQ to the topological universal cover OS of S is constant, hence isomor-
phic to OS � V for some finite-dimensional Q-vector space V .
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variety �nDC associated to .S;V /. This is an arithmetic quotient �nG .R/C=Mo in the sense
of [3]. HereMo is the intersection of the isotropy subgroup of ho in G .R/ with G .R/C, whose
image in G ad.R/C turns out to be compact. We have the period map

 W S ! Hodı�.S;V /;

which is holomorphic, locally liftable and all the local liftings are horizontal.
Let K D ZG.R/.ho.

p
�1// \G .R/C. Then Mo � K. We have a canonical projection

! W DC D G .R/C=Mo ! G .R/C=K:

Let g WD Lie.GR/; k WD Lie.K/, and m WD Lie.Mo/. Then g carries a weight 0 Hodge struc-
ture

gC D
M

g�j;j

polarized by minus the Killing form of g. By axiom (HD 1), we have a Cartan decomposition

g D k ˚ p:

Let T! (resp. T?! ) be the subbundle of the tangent bundle TDC of DC associated to the adjoint
representation of Mo on k=m (resp. p). We then have a canonical splitting

TDC D T! ˚ T
?
! :

The subbundle T! is holomorphic as the fibers of ! are complex submanifolds of DC, while
T?! in general admits no complex structure. However, there is a holomorphic subbundle T h

DC

contained in the complexification T?! ˝C, namely, the subbundle associated to the adjoint
representation of Mo on g�1;1, called the holomorphic horizontal tangent bundle. When we
say the period map  is horizontal, we mean

d O .T OS / �
O �T h

DC
;

where OS is the topological universal cover of S and O is the lifting of  to OS .
Given an irreducible algebraic subvariety Z of S , let QZ ! Z be its normalization and

QZsm be the smooth locus of QZ. Let u W QZsm ,! QZ ! Z ,! S be the composition. Then the
local system u�V on QZsm is a Z-VHS, and we denote its generic Mumford–Tate group by GZ .
Let

Q Z W QZ
sm
! Hodı�Z .

QZsm; u�V / D �ZnD
C

Z

be the associated period map, where �Z D � \GZ.Q/, we then have a commutative diagram

QZsm Hodı�Z .
QZsm; u�V /

S Hodı�.S;V /.

u

Q Z

�Z

 

Notice that the restriction of the period map  to the smooth locus of Z factors through
the special subvariety Im.�Z/ of Hodı�.S;V / and every complex analytic irreducible compo-
nent of the preimage  �1.Im.�Z// is a special subvariety of S for V . Conversely, if Z is
a special subvariety for .S;V /, then it follows readily from Definition 1.1 that Z is a complex
analytic irreducible component of the preimage  �1.Im.�Z//. We thus prove the following
lemma (the last assertion is obvious).
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Lemma 3.8. The special subvarieties for .S;V / are precisely the preimages of the spe-
cial subvarieties for Hodı�.S;V /. Moreover, the preimages of special points5) in Hodı�.S;V /
are CM points for .S;V /.

Remark 3.9. It can be shown that the set of CM points is dense in Hodı�.S;V / (cf.
[4, Corollary 17.1.5]). However, there is no guarantee for the image of the period map  .S/ to
contain even one CM point.

Definition 3.10. Let Z be an irreducible algebraic subvariety of S . The algebraic mon-
odromy group HZ ofZ for V is defined to be the Zariski closure in GL.V / of the monodromy
group of the local system u�VZ on QZsm.

3.4. Definability of period maps and algebraicity of special subvarieties. Although
the period map  is transcendental, Bakker, Klingler and Tsimerman [3] showed that it has
moderate geometry in the sense of tame topology. For a reference to the notions of tame
topology and definability in some o-minimal structure (for instance Ralg;Ran;Ran;exp; : : :),
see [29].

Theorem 3.11 (Bakker, Klingler and Tsimerman [3]). The following statements hold.

(1) There exists a natural Ralg-definable manifold structure on the connected Hodge vari-
ety Hodı�.S;V /.

(2) With respect to the Ran;exp-definable manifold structure extending the Ralg-definable
manifold structure on S (resp. on Hodı�.S;V /) coming from its complex algebraic struc-
ture (resp. defined in part (1)), the period map W S ! Hodı�.S;V / is Ran;exp-definable.

(3) For any special subvariety Y of Hodı�.S;V /, the preimage  �1.Y / is an algebraic
subvariety of S . In particular,  �1.Y / has only finitely many irreducible components.

Proof. Part (1) is [3, Theorem 1.1 (1)], part (2) is [3, Theorem 1.3] and part (3) is
[3, Theorem 1.6].

3.5. The structure theorem for period maps. For later use, we need a structure theo-
rem for period maps.

Let H be the algebraic monodromy group of S for V . It follows from [1, Theorem 5.1]
that H is a normal subgroup of derived subgroup G der of the generic Mumford–Tate group G .
As G der is semisimple, there exists a normal subgroup F of G der such that G der is an almost
direct product of H and F . Let H nc and let H c be the non-compact and compact part of H ,
respectively. Then we will have an isogeny of Q-reductive groups

H nc
�H c

� F ! G der;

which induces a surjective holomorphic map with finite fibers between Mumford–Tate domains

DC
H nc �DC

H c �DC
F
! DC:

5) Zero-dimensional special subvarieties (namely, special points) for a Hodge variety are precisely the CM
points (cf. [4, Examples 16.3.7]).
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Here for a Q-algebraic subgroup G 0 of G , we write DG 0 for the G 0.R/-orbit in D of a fixed
lifting in D of the image  .o/ 2 Hodı�.S;V / and DC

G 0
the connected component of DG 0

containing the lifting.

Theorem 3.12. Let V be a Z-VHS on a smooth irreducible complex quasi-projective
variety S . Then its associated period map  W S ! Hodı�.S;V / factors as

 D . nc;  c;  f / W S ! �nc
nDC

H nc � �
c
nDC

H c �DC
F
;

where �nc WD � \H nc.Q/ and �c WD � \H c.Q/. Moreover:

(1) The component  f is constant; correspondingly, the Z-VHS V is a direct sum of a sub-
VHS whose generic Mumford–Tate group is the whole group G and a(n) (iso-)trivial one.
Let e3 be image of S under  f .

(2) For any point x 2 DC
H c � DC, we have

T
D
C

Hc ;x
� T!;x :

As a consequence, for any e1 2  nc.S/, the image  .S/ intersects e1 � �cnDC
H c � e3

in finitely many point.

(3) The number of points of the intersections of  .S/ with e1 � �cnDC
H c � e3 is uniformly

bounded as e1 varies in  nc.S/.

Proof. For the proof of (1) and (2), see [4, Chapter 15]. Let us prove (3). Since �cnDC
H c

is compact, the projection

�nc
nDC

H nc � �
c
nDC

H c ! �nc
nDC

H nc

is Ran-definable. Since the period map  is Ran;exp-definable by Theorem 3.11, the map

 .S/!  nc.S/

is Ran;exp-definable. Since each fiber of this map is finite by (2), the uniformly boundedness
then follows from the finiteness lemma ([29, Lemma 1.7 in Chapter 3, Section 1]).

4. Non-factor special subvarieties

4.1. Group-theoretic characterization. In this section, we introduce the notion of
non-factor special subvarieties (Definition 4.1). This is a natural definition from the equidis-
tribution point of view: as explained in [28], for a sequence .Yn/ of special subvarieties of
Hodı�.S;V /, we cannot expect in general that the associated sequence of Borel probability
measures �n D �Yn on Hodı�.S;V / with support Yn weakly converges. For example, if .Yn/
is a sequence of special points in Hodı�.S;V /, then �n is just the Dirac measure supported at
the point Yn. Such a sequence can converge to a non-special point or may tend to 1. Even
for positive-dimensional special subvarieties the same problem may occur. Start with a special
subvariety of Hodı�.S;V / of the form Y � Y 0 for two special subvarieties Y and Y 0. Let .yn/
be a sequence of special point of Y 0 and Yn D Y � ¹ynº; then there is no hope of proving the
weak convergence of �n.
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Definition 4.1 (cf. [28]). We make the following definitions.

(i) Let Y be a connected Hodge variety. A special subvariety W of Y is called non-factor if
there exists no finite morphism of connected Hodge varieties

W1 �W2 ! Y

with W2 having positive dimension, such that W is the image of W1 � ¹xº in Y for any
(necessary special) point x of W2.

(ii) Let V be a Z-VHS on a smooth irreducible complex quasi-projective variety S and
let Hodı�.S;V / be the associated connected Hodge variety. A special subvariety Z for
.S;V / is called non-factor if �ZnDCZ is a non-factor special subvariety of Hodı�.S;V /.

Remark 4.2. Note that any Hodge variety Y itself is non-factor. Assume that Y is of
positive dimension. For a special point x 2 Y , the projection

¹xº � Y ! Y

is a finite morphism. This shows that special points are not non-factor special subvarieties of
connected Hodge variety.

Remark 4.3. A special subvariety which contains a non-factor special subvariety is
automatically non-factor. And W is a non-factor special subvariety of Y if and only if W ad is
a non-factor special subvariety of Y ad.

There is a useful group-theoretic characterization of non-factor special subvarieties for
a variation of Hodge structure.

Let V be a Z-VHS on a smooth irreducible complex quasi-projective variety S with
associated Hodge datum .G ;DC/. We assume that G is semisimple of adjoint type. Let Z
be a special subvariety for .S;V / with associated Hodge subdatum .GZ ;D

C

Z / ,! .G ;DC/.
Let h be a Hodge generic point in DCZ and denote its isotropy group in G .R/ byMh. Note that
Mh is a compact subgroup of G .R/.

Proposition 4.4. If Z is a non-factor special subvariety for .S;V /, then the centralizer
ZG .G

der
Z /.R/ is contained in Mh.

Proof. Let g WD Lie.G /; h WD Lie.G der
Z / and c WD Lie.ZG .G

der
Z //. Since G der

Z is semi-
simple, it follows that the Lie algebra g decomposes as a G der

Z -module as

(4.1) g D h˚ c˚ l;

where l is the orthogonal complement of h˚ c with respect to the Killing form of g.
Notice that g carries a natural weight 0 polarized rational Hodge structure and this defines

a variation of Hodge structure Vg on S . Let HZ be the algebraic monodromy group of Z
for V . It follows from [1, Theorem 5.1] that HZ is a normal subgroup of G der

Z . So the above
decomposition (4.1) of g induces a decomposition of the underlying local system Vg:

(4.2) Vg D Vh ˚ Vc ˚ Vl:
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Let G1 be the connected Q-algebraic subgroup of G with Lie algebra h˚ c. Then G1

is reductive. It can be seen easily that G1 is the connected Q-subgroup of G generated by GZ

and .ZG .G
der
Z //

ı. In fact, G1 is the identity component of the normalizer of G der
Z in G .

Let D1 � D be the G1.R/-orbit of h 2 DCZ . Then .G1;D1/ is a Hodge subdatum.
By (4.2), we have a decomposition of the connected Hodge subdatum .G1;D1;C/ and a finite
morphism

.G1;D1;C/ Š .GZ ;D
C

Z / � .ZG .G
der
Z //

ı;D2;C/! .G ;D/:

If ZG .G
der
Z /.R/ is not contained inMh, then D2;C is of positive dimension and �ZnDCZ

is the image of a �ZnDCZ � ¹x2º in Hodı�.S;V /. So Z is not non-factor, which is a contradic-
tion.

4.2. A description of special subvarieties. Note that any point h 2 DC induces a pro-
jection map

�h W � WD �nG .R/
C
! �nDC D Hodı�.S;V /; Œg� 7! Œgh�:

LetZ be a special subvariety of S . We denote by .GZ ;D
C

Z / the corresponding connected
Hodge subdatum andW the corresponding special subvariety of Hodı�.S;V /. For h 2 DCZ , let
Mh WD ZG.R/.h/ be the stabilizer of h in G .R/. Then Mh is a compact subgroup containing
the center of GZ.R/C. Hence we have the following description of W :

W D �n�GZ.R/Ch D �n�G der
Z .R/

Ch D �h.�n�G der
Z .R/

C/

Š �n�G der
Z .R/

CMh=Mh:

Suppose that �Z is the unique G der
Z .R/

C-invariant Borel probability measure supported
on �n�G der

Z .R/
C and �W WD .�h/��Z . As there is a canonical G der

Z .R/
C-invariant metric

on DCZ , the measure �W is the same as the normalized measure induced from the Hermitian
metric. In particular, the probability measure �M is independent of the choice of h 2 DCZ .

Let 
 2 � , GZ;
 D 
GZ

�1, h
 D 
 � h and let DZ;
 be the GZ;
 .R/-conjugacy class

of h
 . We also have
W D �h
 .�n�G der

Z;
 .R/
C/:

Fixing a fundamental domain F for the action of � on DC, we can thus choose h 2 F in the
description of W .

4.3. Non-factor special subvarieties and recurrence to compact sets. We keep the
same notations as in Sections 4.1 and 4.2. The following theorem is a corollary of a deep result
of Dani and Margulis on the quantitative recurrence to compact sets for unipotent flows on
� D �nG .R/C (see [8, Theorem 2]). It tells us that unipotent flows never send lattices off
to infinity, which (in principle) allows us to argue “as if” � was compact when considering
unipotent flows. This will be a key ingredient in our proof of the main theorem. It was used
by Clozel and Ullmo (cf. [7, Lemma 4.5]) and Ullmo [28] in their proof of equidistribution
of strongly (more generally, non-factor) special subvarieties in a Shimura variety and it is not
difficult to adapt their arguments to our situation.

Theorem 4.5. There exists a compact subset C of Hodı�.S;V / such that �ZnDCZ \ C
is non-empty for any non-factor special subvariety Z of Shimura type for .S;V /.
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Proof. It follows easily from [8, Theorem 2] that there exists a compact subset C 0 of �
such that for all unipotent one-parameter subgroup U � G .R/C and g 2 G .R/C, if

�n�gU \ C 0 D ¿;

then there exist a proper Q-parabolic subgroup P 0 of G such that

gUg�1 � P 0.R/:

Let V � G .R/C be a compact neighborhood of the identity element e 2 G .R/C. Then

C 00 WD C 0V D ¹cv W c 2 C; v 2 V º

is also a compact subset of �. Fix a point h0 2 DC and let C D �h0.C
00/. Then for any point

˛ 2 V , we have
�h˛ .C

0/ � C;

where h˛ D ˛ � h0.
For h 2 DCZ , since G .Q/C is dense in G .R/C, there exist ˛ 2 V and 
 2 G .Q/C such

that h D 
˛ � h0. We then have

�ZnD
C

Z D �n�G der
Z .R/C
˛ � h0

D �n�

�1G der
Z .R/

C
˛ � h0

D �h˛ .�n�
G der
Z;
 .R/

C/;

where GZ;
 WD 

�1GZ
 . If �ZnDCZ \ C D ¿, then a fortiori �ZnDCZ \ �h˛ .C

0/ D ¿ and
hence

�n�
G der
Z;
 .R/

C
\ C 0 D ¿:

Since Z is of Shimura type, it follows that G der
Z;
 is of type K , and hence G der

Z;
 .R/
C is of

type H . Then by [7, Lemma 4.4], there exist a proper Q-parabolic subgroup P of G such that

G der
Z;
 � P :

But by Proposition 4.4 and [9, Lemma 5.1], this cannot happen if Z is non-factor.

5. Proof of the main results

We now have all the necessary ingredients for the proof of Theorems 1.11 and 1.7.
Let V be a Z-VHS on a smooth irreducible complex quasi-projective variety S and let

.G ;DC/ be the associated connected Hodge datum. By part (1) of Theorem 3.12, we may and
will assume that V has no isotrivial factors.

5.1. Proof of Theorem 1.11. We remark first that we can reduce to the case where G

is of adjoint type: this results from Remarks 3.6 and 4.3, and the evident compatibility between
the canonical measures associated to non-factor special subvarieties of �nDC and �adnDad;C.
By the structure theorem of period maps (Theorem 3.12) we will assume that G is adjoint of
non-compact type. Let us fix a fundamental domain F of DC for the action of � .
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Step 1. Construction of the limit. Let .Zn/n2N be a sequence of non-factor spe-
cial subvarieties of S , which are of Shimura type with dominant period maps. We denote by
.Gn;D

C
n /n2N the corresponding sequence of Hodge subdata of .G ;DC/ and .Wn/n2N the

corresponding sequence of non-factor special subvariety of Hodı�.S;V /.
For each n 2 N, by the description in Section 4.2 of special subvarieties for a variation

of Hodge structure, we can write Wn as

Wn D �hn.�n�G der
n .R/

C/

for any hn 2 DCn \ F . By Theorem 4.5, there exists a compact subset C of F such that
C \DCn ¤ ¿. We can thus choose hn 2 C � F . Since by assumption .Gn;D

C
n / is a con-

nected Shimura datum, the G der
n is of type K and hence G der

n .R/
C is a type H connected

closed Lie subgroups of G .R/C by Lemma 2.3. Let .�n/n2N be the sequence in P.�/ of
the canonical Borel probability measures supported on �n�G der

n .R/
C. By Theorem 2.5, there

exists a connected Lie subgroup F of G .R/C of type H such that after possibly passing to
a subsequence

(a) .�n/n2N weakly converges to �F ,

(b) supp.�n/ D �n�G der
n .R/

C � �n�F , for n� 0,

(c) the sequence hn converges to h 2 C � F .

Let H be the smallest Q-algebraic subgroup of G such that F � H .R/. Then again by
Lemma 2.3, H is of type K and H .R/C D F . Property (b) implies that G der

n .R/
C � H .R/C,

for n� 0. Hence we deduce that G der
n � H , n� 0.

For n big enough, sinceZn is a non-factor special subvariety of S , by Proposition 4.4, the
centralizer ZG .G

der
n /.R/ is compact. In particular, the Q-subgroup ZG .G

der
n / is Q-anisotropic;

that is, it contains no non-trivial Q-split torus. Hence H is reductive by [9, Lemma 5.1]. Since
H is of type K , it follows that H is semisimple of non-compact type.

Let DC1 � DC be the H .R/C-conjugacy class of h, let W1 WD �h.�n�F / and let
�1 WD .�h/��F .

Lemma 5.1. The sequence of measures ..�hn/��n/n2N weakly converges to �1.

Proof. For any continuous function f on �nDC with compact support, we have

�hn��n.f / � �h��F .f / D �n.f�hn/ � �F .f�h/

D �n.f�hn/ � �n.f�h/C �n.f�h/ � �F .f�h/:

By property (a), we have �n.f�h/ � �F .f�h/! 0 as n!1. Since hn ! h as n!1 by
property (c), the sequence .�hn/n2N converges to �h and uniformly on all compact subsets.
Since �n are probability measures, we have �n.f�hn/ � �n.f�h/! 0 as n!1. Hence we
have the convergence.

Step 2. Show that DC
1 is “horizontal”. For this purpose, we recall a basic result of

Griffiths on the analyticity of period images.

Theorem 5.2 (Griffiths [13, Theorems 9.5 and 9.6]). Let NS be a smooth projective com-
pactification of S with NSnS normal crossing divisor. Let S 0 be the union of S with those points
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at infinity around which the monodromies are of finite order. Then the period map  extends
holomorphically to a proper map  0 W S 0 ! Hodı�.S;V / and the image  0.S 0/ contains  .S/
as the complement of an analytic subvariety.

Lemma 5.3. The set W1 is contained in  0.S 0/.

Proof. As the period map for each special subvariety Zn of Shimura type is dominant,
 .Zn/ will necessary be analytically dense in Wn. Since  0 is closed, we have Wn �  0.S 0/,
for all n 2 N.

Suppose that W1n 0.S 0/ ¤ ¿. Let x 2 W1n 0.S 0/ and let Ux be an open neighbor-
hood of x such that Ux \  0.S 0/ D ¿. By the definition of support of measure, �1.Ux/ > 0.
But �hn��n.Ux/ D 0 for any n 2 N, which contradicts to the convergence of the measures
(Lemma 5.1).

Step 3. Show that DC
1 admits a (unique) complex structure for which the canonical

family of Hodge structures (that is, the family associated to the adjoint representation
of H ad on the Lie algebra Lie.G/) varies holomorphically. Fix any big enough integer n
such that G der

n � H . Let Gn D T nG der
n be the almost direct product decomposition of Gn,

where T n is the connected center of Gn.

Proposition 5.4. The connected center T n normalizes H .

The proof of Proposition 5.4 follows the same strategy as the proof of [28, Theorem 3.15]
in the Shimura variety case. It contains some differences since we are working in the non-
classical setting. We shall provide all the details in the next section.

Let us proceed to finish Step 3.
Let H n be the algebraic subgroup of G generated by T n and H . Then H n is a reductive

Q-group. LetXn be the H n.R/-conjugacy class of hn and letXCn be the connected component
of Xn containing hn. Then we have

hn W S! Gn;R ! H n;R ! GR:

Let C D hn.
p
�1/. It is easy to see that the Killing form is a C -polarization for the

faithful adjoint representation of H ad
n;R on the Lie algebra Lie.G /R. So .H n; Xn/ is a Hodge

subdatum of .G ;D/. In particular, the component XCn admits a unique complex structure
for which the canonical family of Hodge structures varies holomorphically and this complex
structure on XCn is compatible with complex structure on DC.

By Step 2, the holomorphic tangent bundle of XCn is contained in the holomorphic hor-
izontal tangent bundle of DC, i.e., the canonical holomorphic family of Hodge structures
on XCn is a variation of Hodge structure; that is, satisfying Griffiths transversality condition

F�1 Lie.H n/C D Lie.H n/C:

Since the Hodge structure Lie.H n/ is of weight 0, it must be of type ¹.�1; 1/; .0; 0/; .1;�1/º.
Hence the subvarieties Sn D �hn.�n�H / Š .� \H n.R/C/nX

C
n are special subvarieties of

Hod�.S;V / of Shimura type, which are also of non-factor type as each of them contains a non-
factor special subvariety Wn for n� 0, respectively.
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We thus obtained a sequence of probability measures .�hn/��F with support Sn, which
obviously converges to �1 D .�h/��F .

Lemma 5.5. The sequence .Sn/ stabilizes as n tends to 1. In particular, we have
W1 D Sn for any big enough n.

Proof. Note that for n� 0, we have

Sn Š � \H .R/CnH .R/C=H .R/C \Mn;

where Mn is the stabilizer of hn in G .R/. Let Kn be the unique maximal compact subgroup
of G .R/ containing Mn. Since Sn are horizontal, we have

H .R/C \Mn D H .R/C \Kn:

Since Sn are locally symmetric spaces, the intersections Kn \H .R/C are maximal
compact subgroups of H .R/C. In particular, they all conjugate to each other by elements
of H .R/C. Fix n0 � 0. For any n � n0, there exists a gn 2 G .R/ such that

�gnhn0
.�n�H .R/C/ D �hn.�n�H .R/C/:

Hence there exists a vn 2 H .R/C such that

gn.Kn0/g
�1
n \H .R/C D v�1n .H .R/C \Kn0/vn:

So vngn normalizes Kn0 and hence are in Kn0 . Write gn D v�1n x for some x 2 Kn0 , we have

(5.1) Sn D �n�H .R/Cv�1n xhn0 D �n�H .R/Cxhn0 D Sn0 :

The last equality of equation (5.1) is because H .R/C \ xMn0x
�1 is a maximal compact sub-

group of H .R/C and

H .R/C \ xMn0x
�1
� H .R/C \ xKn0x

�1
D H .R/C \Kn0 D H .R/C \Mn0 :

The last statement of Theorem 1.11 is then clear.

5.2. Proof of Theorem 1.7. We argue by contradiction. To this end, suppose that S
contains infinitely many distinct non-factor special subvarieties that are of Shimura type with
dominant period maps and all are maximal among such kind of special subvarieties. Choose
any sequence .Zn/n2N in the set of such kind of special subvarieties. Let .Wn/n2N be the cor-
responding sequence of non-factor special subvariety of Hodı�.S;V / and let�Wn be the canon-
ical Borel probability measure on Hodı�.S;V / with supp.�Wn/ D Wn. By possibly passing to
a subsequence, Theorem 1.11 tells us that �Wn is weakly convergent to �1 and Wn � W1,
n� 0, for a non-factor special subvariety W1 of Hodı�.S;V / of Shimura type. Hence Zn is
contained in some positive irreducible component of  �1.W1/ for k � 0. Since  �1.W1/
has only finitely many irreducible components by Theorem 3.11 and the irreducible compo-
nents containing someZn are non-factor special subvarieties S of Shimura type, by maximality
ofZn, we deduce that the there are only finitely many possibilities forZn when n is big enough,
which is a contradiction.
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6. Proof of Proposition 5.4

Fix an arbitrary n� 0 and write E WD G der
n , T WD T n. We assume that E is strictly

contained in H , otherwise there is nothing to show.

Lemma 6.1. For any Q-simple factor B of H , there exists a noncompact R-simple
factor LR of BR which is normalized by ˛.U1/, where ˛ 2 DCn is a Hodge generic point and
U1 is the circle subgroup of S. If B is a Q-simple factor of H such that the projections of ER

to all noncompact R-simple factors of BR are surjective, then ˛.U1/ normalizes BR.

Proof. For the first statement, it suffices to find an element u 2 U1 of infinite order
such that ˛.u/ normalizes an R-simple factor LR of BR. Let u be any element of U1 of
infinite order and we construct a decreasing sequence .Bn/n2N of R-algebraic subgroups of H

inductively as follows:

B0 D H R;

Bn D .Bn�1 \ ˛.u/Bn�1˛.u/
�1/ı for n � 1:

Note that ER � Bn for any n � 0. So the sequence Bn must be stable by dimension rea-
son. We denote the limit by B1. By construction, the limit is normalized by ˛.u/ hence also
normalized by ˛.U1/.

Let B be a Q-simple factor of H . Since B is R-isotropic and ZG .E/.R/ is compact, the
projection of E to B is nontrivial. Let A be a Q-simple factor of E such that the projection
of A to B is nontrivial. Let F R be a noncompact R- simple factor of AR. Then there exists
a noncompact R-simple factor LR of BR such that the projection of F R to LR is nontrivial.
Since ˛.U1/ normalizes F R, the image of the projection is contained in LR \B1 which is
thus noncompact. By the following Sublemma 6.2, we conclude the first statement.

Sublemma 6.2. We have LR \B1 D LR.

Proof. Since Int.˛.
p
�1/ is a Cartan involution of GR and fixes ER and B1, we have

Cartan decompositions

G .R/ D PK;(6.1)

E.R/ D .P \E.R//.K \E.R//;

B1.R/ D .P \B1.R//.K \B1.R//;

where K D ZG.R/.˛.
p
�1//. Let M be the stabilizer of ˛ in G .R/. Then we have

ZG .E/.R/ �M � K:

By a result of Mostow [20] on self-adjoint groups, for the inclusion of subgroups

ER � H R � GR

there exists an element g 2 G .R/ such that we have Cartan decompositions

E.R/ D .gPg�1 \E.R//.gKg�1 \E.R//;(6.2)

H .R/ D .gPg�1 \H .R//.gKg�1 \H .R//:
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As E.R/ admits two Cartan decompositions (6.1) and (6.2), they are related by an inner
automorphism of E.R/, i.e., there exists t 2 E.R/ such that

gPg�1 \E.R/ D t .P \E.R//t�1;

gKg�1 \E.R/ D t .K \E.R//t�1:

Let 
 WD t�1g. Then we have


P
�1 \E.R/ D P \E.R/;


K
�1 \E.R/ D K \E.R/:

Write 
 D pk with p 2 P and k 2 K. For any p1 2 P \E.R/, there exists a p2 2 P
such that p2 D 
�1p1
 . So p�1p1p D kp1k�1 2 P , which implies that p2p1 D p1p2, i.e.

p2 2 ZG.R/.P \E.R//:

Similarly, we can show that
p2 2 ZG.R/.K \E.R//:

So p2 2 ZG.R/.E.R// � K which implies p D 1 and 
 2 K. Hence we have

gKg�1 \H .R/ D tKt�1 \H .R/ D t .K \H .R//t�1:

Thus we have Cartan decompositions of H .R/ and LR.R/:

H .R/ D .P \H .R//.K \H .R//;

LR.R/ D .P \LR.R//.K \LR.R//:

Since DC1 is “horizontal” as showed by Step 2 in the proof of Theorem 1.11, we can
deduce that K \H .R/ DM \H .R/. In particular,

˛.u/.K \H .R//˛.u/�1 D K \H .R/;

which implies that
K \B1.R/ D K \H .R/:

Therefore
K \LR.R/ � B1.R/ \LR.R/ � LR.R/:

Since LR.R/ is simple and noncompact, the subgroup K \LR.R/ is a maximal proper
closed subgroup of LR.R/. Hence we have

B1.R/ \LR.R/ D LR.R/:

This finishes the proof of the sublemma.

Now let us prove the second statement of Lemma 6.1. Let B be a Q-simple factor of H

such that the projections of ER to all noncompact R-simple factors of BR are surjective.
If LR is a compact R-simple factor of BR, then LR D K \LR DM \LR and hence LR is
normalized by ˛.U1/. If LR is a noncompact R-simple factor of BR, by assumption the pro-
jection of E to LR is surjective, from which we deduce that B1.R/ \LR.R/ is noncompact,
and thus equal to LR.R/. So LR is again normalized by ˛.U1/. Therefore BR is normalized
by ˛.U1/ and we finish the proof of Lemma 6.1.
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Let S be the poset

S D ¹F � G W F is a semisimple Q-subgroup of type K and E ¨ F � H º

with the partial order given by inclusion.

Lemma 6.3. In order to prove Proposition 5.4, it suffices to assume that H is a minimal
element of S .

Proof. Let F be a minimal element of S . By assumption, T normalizes F . We have
an almost direct product decomposition T D .T \ F /T 0 with T 0 centralizes F . The algebraic
subgroup F 0 generated by F and T is reductive and has an almost direct product decompo-
sition F 0 D T 0F .F D F 0 der/. Let D 0 be the F 0.R/-conjugacy class of ˛. Note that D 0C is
automatically “horizontal” as it is contained in DC1. Hence by the same reasoning as in the last
part of the proof of Theorem 1.11, .F 0;D 0/ is a Shimura datum. It is easy to see that F 0 is the
generic Mumford–Tate group of D 0. Let ˛0 be a Hodge generic point of D 0n and replace the
Shimura datum .G ;D/ by .F 0;D 0/, T by T 0 and ˛ by ˛0. We thus reduce the proof of Propo-
sition 5.4 to the inclusion F � H . After iterating the above procedure finitely many times,
Proposition 5.4 follows.

We suppose now H is minimal in the set S and proceed to finish the proof of the
Proposition 5.4.

Let T 0D T\NG .H /ı and write T D T 0T 00 as an almost direct product. Suppose that T 00

is nontrivial. Note that ˛.U1/ D ˛.S/ is not contained in T 0.R/E.R/ as G is adjoint and Gn

is the generic Mumford–Tate group of DCn . We can choose b D ag 2 ˛.U1/ with g 2 E.R/
and a D a0a00 2 T .R/ such that a0 2 T 0.R/; a00 2 T 00.R/ and a00 … T 0.R/ \ T 00.R/.

Since T 0.Q/ (resp. T 00.Q/) is dense in T 0.R/ (resp.T 00.R/) for the usual topology,
we can find a sequence .an D a0na

00
n 2 T .Q//n2N such that a0n 2 T 0.Q/ (resp. a00n 2 T 00.Q//

converges to a0 (resp. a00). We can also assume that a00n … T 0.R/ \ T 00.R/,for all n 2 N.
Consider H 0n WD .anH a�1n \H /ı. As H 0n contains E , it is reductive by [9, Lemma 5.1].

We have an almost direct product decomposition

H 0n D H nc
n H 00n;

where H nc
n is the almost direct product of Q-simple factors of noncompact type of H 0n and

H 00n is the almost direct product of the remaining factors, so in particular H nc
n 2 S . Note that

the projection of E to H 00n is trivial, so

H 00n.R/ � ZG .E/.R/ �M \H .R/ D K \H .R/:

Therefore
E � H nc

n � H :

By the minimality of H and a00n … T 0.Q/, we have H nc
n D E and

H 0n D E H 00n:

Letting n tend to infinity, we deduce that every element of .aH .R/a�1 \H .R//C can be
written as a product of an elements of E.R/ and an element of M \H .R/.
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Let B be a Q-simple factor of H . By Lemma 6.1, there exists a noncompact R-simple
factor LR of BR which is normalized by ˛.U1/. Since b 2 ˛.U1/ and

aH .R/a�1 \H .R/ D bH .R/b�1 \H .R/;

we have
LR.R/

C
� .aH .R/a�1 \H .R//C;

which implies that ER projects surjectively onto LR. In particular, LR is also an R-simple
factor of ER.

Sublemma 6.4. The smallest Q-algebraic subgroup F of G which contains LR is B.

Proof. Let h 2 B.Q/. Then LR � hF Rh
�1. Since hF h�1 is a Q-subgroup of G , it

follows that F � hF Rh
�1. So F is a normal subgroup of B and hence equals B as B is

Q-simple.

By Sublemma 6.4, B is contained in E . In particular, the projection of ER to any non-
compact R-simple factor of BR is surjective. By Lemma 6.1, ˛.U1/ normalizes BR and hence
normalizes H R, i. e.,

˛.U1/ � NG .H /R:

Therefore
Gn � NG .H /:

In particular, T n � NG .H / which contradicts to our assumption that T 00n is nontrivial.
This completes the proof of Proposition 5.4.
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