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Preface

Let (X, d) be a metric space (see below for the terminology) and let F : X −→ X be a
mapping. We say that F is Lipschitz continuous with Lipschitz constant c ≥ 0 when

d(F(x), F(y)) ≤ cd(x, y) for all x, y ∈ X . (1)

If (1) is satisfied with c < 1, then F is called a contraction. If If (1) is satisfied with
c = 1, then F is called nonexpansive. If we have

d(F(x), F(y)) ≥ cd(x, y) for all x, y ∈ X . (2)

with c > 1, then F is called expanding.
A point z ∈ X with F(z) = z is called a fixed point of F . We denote by FixX(F) the

set of fixed points of F in X .

This monograph is mainly devoted to the study of nonexpansive mappings. In the
focus is the question under which assumptions F has a fixed point and under which
conditions the orbit (Fn(x))n∈N defined by the successive approximation

xn+1 := F(xn) = Fn(x0) , n ∈ N0, x
0 := x , (3)

converges to a fixed point. As we know, in the case of a contraction this question has
a simple answer: the metric space has to be complete. In contrast to the situation of
contractions, the theory concerning the existence of fixed points and the convergence of
successive approximation in the case of nonexpansive mappings is rather extensive. We
discuss the questions in the framework of Hilbert and Banach spaces only. For the most
part of the considerations we present areas of current and active research.

In the main focus are realizations of the successive approximation when F is a compo-
sition of nonexpansive mappings F1, . . . , Fm : F = Fm ◦ · · · ◦ F1 . Then the iteration (1.4)
may be adapted to this situation in the following way:

xn+1 := Fi(x
n) , n ∈ N0, x

0 := x , where i = n mod m+ 1 . (4)

We call this method the method of cyclic approximation (MCA). If m = 2 the
method is called the method of alternate approximation (MAA). In the analysis
of these methods a subclass of nonexpansive mappings plays an outstanding role, namely
the class of firmly nonexpansive mappings. These are nonexpansive mappings which have
the property that their finite composition is a firmly nonexpansive mapping too.

Most of our considertions are devoted to metric projection operators. These are op-
erators which assign to each point of a Banach space the best approximation in a subset
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of the space. Such mappings have nice properties in Hilbert spaces but are their study in
Banach spaces is somewhat delicate.

The first chapter is devoted to the fixed point approach. We sketch the importance of
the famous fixed point theorems of Banach, Brouwer and Schauder and give some hints
to the algorithmic implementation of the successive approximation in the context of these
fixed point theorems.

In the second chapter we discuss metric projections which describe the best approx-
imation of points by elements of a convex set. Metric projections in Hilbert spaces are
well studied examples of firmly nonexpansive mappings. These considerations are related
to early contributions to the theory of approximation theory and successive projections.
In the focus are the questions concerning existence, uniqueness, characterization of best
approximations and the continuity of the metric projection.

The third chapter is devoted to the presentation of problems which may formulated
nd analyzed as best approximation problems. We study the feasibility problem, matrix
problems, variational inequalities, the inversion of radiographs and the recovery of signals
and some other inverse problems.

The results of the first chapter are used in the fourth chapter to analyze the metric
projection methods. These are methods which compute a metric projection of a

”
compli-

cated set“ by an iteration of metric projections of simpler sets. We consider the method
of alternate projection (MAP) and the method of cyclic projection (MCP). In
the focus is the convergence of the iteration process. Several specific cases and various
variants of the iteration methods are presented.

The last chapter is devoted to the proximal point algorithm. This is an algorithmic
approach for the computation of the the minimizers of a convex function. Here, the
resolvents of maximal monotone operators – the subfifferential of a convex function is a
such a maximal monotone operator – which are nonexpansive mappings play an important
role. To present this a methods convex analysis plays an important role.

The monograph has been prepared for a lecture on Nonexpansive operators at the
departement of Computer Sciences and Mathematics. It benefits from a huge list of
papers. It is not possible to present a complete bibliography concerning the different
subjects. Instead, we prefer to mention just a few books and monographs of review
character.

Sources for results and techiques in functional analysis are [1, 12, 13, 17]. References
for convex analysis are [3, 5, 10, 15, 16]. The subject metric projection is studied in
[4, 7, 9]. Monographs concerning the fixed point theory are [2, 6, 8, 11]. Proximal point
algorithms are studied in [14].

Here are notations and preliminaries which are sufficient to start our considerations
in the next chapter. Troughout the monograph we implicetely assume that the
vector spaces considered are real vector spaces and have dimensions at least
one.

A metric space is a nonempty set X endowed with a metric d ; the pair (X, d) is then
called a metric space. With respect to this metric convergence of sequences and their
limits are well defined. The space (X, d) is called complete when each Cauchy sequence
converges in X . The closure of a subset S of X is denoted by S and we call a subset S of
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X closed if S = S holds. The diameter of a set S ⊂ X is given as

diam(S) := sup
x,y∈S

d(x, y) .

A normed space X is a real vector space – the null vector is denoted by θ – endowed
with a norm � · � . Clearly, the pair (X , � · �) becomes a metric space when we define the
metric d as d(u, v) := �u− v� . If the resulting metric space is complete we call the space
X a Banach space. In a normed space X we have with x ∈ X , r ≥ 0:

Br(x) := B1,X (x) := {u ∈ X : �u− x� < r} , Br := Br(θ)

Br(x) := B1,X (x) := {u ∈ X : �u− x� ≤ r} , Br := Br(θ)

Let S1 := S1,X := {x ∈ X : �x� = 1} denote the unit sphere in a Banach space X .

Without further mention, all vector spaces will be assumed non-trivial, i.e. contain
more than just the zero vector. A normed space X is separable iff there exists a countable
subset S which is dense in X .We know that X is separable if X ∗ is separable. The converse
is true if X is reflexive.

A pre-Hilbert space H is a real vector space endowed with an inner product �·|·� .
This inner product generates a norm � · � in H via �x� :=

�
�x|x� . If the space H is

complete with this associated norm we call the space H a Hilbert space. It is easy to
prove that the so called parallelogram identity holds in a pre-Hilbert space H:

�u+ v�2 + �u− v�2 = 2�u�2 + 2�v�2 , u, v ∈ H (5)

Another tool in Hilbert spaces is the Cauchy-Schwarz inequality:

|�x|y�| ≤ �x��y� for all x, y ∈ H (6)

(5), (6) have many nice geometric and analytic consequences. Especially, the Cauchy-
Schwarz inequality allows us to introduce the concept of orthogonality: x, y ∈ H are
called orthogonal if �x|y� = 0 holds. If S is a subset of H we call S⊥ := {x ∈ H : �x|u� =
0 for all u ∈ S} the orthogonal complement of S . If S is a subspace of H then S⊥ is a
closed subspace. If S is a closed subspace then we have H = S⊕ S⊥ .

In a vector space X convexity of a subset C is defined as follows: C is called convex
if the following property holds:

[u, v] := {z ∈ X : z = tu+ (1− t)v, u, v ∈ C, t ∈ [0, 1]} ⊂ C for all u, v ∈ X .

[u, v] is called a segment joining u, v . The balls Br(x), Br(x) introduced above are convex
sets. If a set C ⊂ X is not convex we may consider the convex hull

co(C) :=
�

{K ⊂ X|K convex, C ⊂ K}

The closed convex hull co(C) of C is the closure of co(C) . A point x ∈ X is called an
extremal point of a convex set A ⊂ X if and only if x ∈ [u, v] with u, v ∈ A,u �= v,

implies x = u or x = v .

If X ,Y are normed spaces we may consider the space B(X ,Y) of all linaer continuous
mappings from X −→ Y . We set B(X ) := B(X ,Y) . B(X ,Y) is a normed spaced when
it is endowed with the norm

�T� := max{�T(x)� : x ∈ X1} .
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If X ,Y are Banach spaces B(X ,Y) is a Banach space too. With I we denote the identity
map between spaces. If T ∈ B(X ,Y) we set

ker(T) := {x ∈ X : Tx = θ} (nullspace/kernel of T)

ran(T) := {y ∈ Y : Tx = y for some x ∈ X } (range/image of T)

The dual space X ∗ of a normed space X is defined as follows:

X ∗ := B(X ,R) = {λ : X −→ R : λ linear and continuous} .

The action of a functional λ ∈ X ∗ on the space X is called the canonical pairing. We
use the following notation:

λ : X � x �−→ �λ, x� ∈ R .

X ∗ is a normed space with respect to the norm

� · �∗ : X � λ �−→ sup{�λ, x� : x ∈ B1} ∈ R .

Actually, X ∗ is a Banach space. It is a result of the Hahn-Banach-Theorem that the norm
in X can be regained by the dual space in the following sense:

�x� = max
λ∈B1

�λ, x� , x ∈ X .

The bidual space X ∗∗ of a normed space X is the dual space of X ∗. Clearly, each element
x in X defines an element µx ∈ X ∗∗ as follows:

�µx, λ� := �λ, x� , λ ∈ X ∗ .

If the mapping X � x �−→ µx ∈ X ∗∗ is surjective, then the space X is called reflexive.
A necessary condition for reflexivity is the completeness of X . A Banach space is reflexive
if and only if its dual space is reflexive (see [17]). Another classification of reflexivity is
the following one: A space X is reflexive if and only if the norm of each functional λ in
X ∗ can be regained by �λ� = maxx∈X �λ, x� (Theorem of James).

Besides the norm-convergence we have in a Banach space X another type of conver-
gence, namely the weak convergence. A sequence (xn)n∈N converges weakly to x ∈ X
iff limn�λ, xn� = �λ, x� for all λ ∈ X∗ ; we write x = w− limn x

n . Due to the Hahn-Banach
theorem the limit x is uniquely determined. It is known that the norm in X is weakly
lower semicontinuous, i.e. �x� ≤ lim infn �xn� if (xn)n∈N converges weakly to x . An im-
portant result is that in a reflexive Banach space X the unit ball B1 is a weakly compact
subset of X which means that every sequence in B1 has a weakly convergent subsequence.

As we know from the Riesz-representation theorem, the dual space H∗ of a Hilbert
space H may be isometrically identified with the space H by the so called Riesz-isomor-
phism RH:

RH : H � x �−→ λx ∈ H , �λx, u� := �x|u�, u ∈ H .

A simple consequence of this fact is that every Hilbert space is reflexive.
In the background of this result is the fact that each closed subspace U in a Hilbert
space H has an orthogonal complement U⊥ So, we have H = U⊕U⊥ . Associated to this
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decomposition of H are the projections PU and PU⊥ . We shall consider these projections
in a vera detailed manner.

Throughout the monograph we assume that the spaces used (metric spaces, normed
spaces, inner product spaces) are complete. This is an assumption which is not neces-
sary for the most part of the results. But for the very important theorems one cannot
go without this assumption. Therefore we state all our result under the completeness
assumption.

Frankfurt, im Oktober 2016 Johann Baumeister
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