
Chapter 8

The proximal point algorithm

In this chapter we consider an algorithm for computing minima of a convex function.
Actually, such an algorithm determines a zero of the subdifferential of a convex function.
It benefits from the fact that a subdifferential is a maximal monotone operator. Therefore,
the main part of the considerations in this chapter is devoted to algorithms which can
be used to find zeroes of maximal monotone operators. We exploit the idea of splitting.
This idea unifies a substantial part of decomposition methods for convex programming.

For the larger part of the chapter we study the methods and algorithms in Hilbert
spaces. The subdifferential of convex functions and their properties play an important
role.

The literature concerning the proximal operator and monotone operators is really
immense. We refer without making a claim for the best choice [1, 4, 6, 10, 23, 25, 27, 28,
32, 35, 36].

8.1 The proximal operator: preliminaries

Let X be a Banach space with norm � · � . In the following we use the abbreviation:

Γ0(X ) := {f : X −→ R̂ : f proper, lower semicontinuous, convex} .

Notice that a function f is called lower semicontinuous iff all level sets Nt := {x ∈
X : f(x) ≤ t}, t ∈ R, are closed. This equivalent to the closedness of the epigraph
epi(f) := {(x, t) ∈ X × R : t ≥ f(x)} .

Let X be a Banach space and let f ∈ Γ0(X ) . We consider the minimization problem

Minimize f(u) subject to u ∈ X . (8.1)

Even if f is bounded from below, existence und uniqueness of a solution cannot be guar-
anteed. Moreover, unstable dependence upon the function f can be observed. In order to
get a minimization problem with better properties, the idea of regularization is helpfull.
Let us consider

mors,f(x) := inf
u∈X

(f(u) +
1

2s
�u− x�2) (8.2)

where x ∈ X is a given point in X and s > 0 . The family (mors,f)s>0 is called the Moreau
envelope or the Moreau-Yosida regularization family. s is a scaling parameter. We
set morf := mor1,f .
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Notice that mors,f is the inf convolution of f and s−1j where j(x) := 1
2
�x�2, x ∈ X :

mors,f = f � s−1j (8.3)

Lemma 8.1. Let X be a reflexive Banach space and let f ∈ Γ0(X ) . Let (mors,f)s>0 be the
Moreau-envelope of f . Then we have:

(1) mors,f is convex and lower semicontinuous for all s > 0 .

(2) #{z ∈ X : f(z) + 1
2s
�z− x�2 = mors,f(x)} = 1 .

(3) dom(mors,f) = X for all s > 0 .

(4) infu∈X f(u) = infx∈H mors,f(x) for all s > 0 .

Proof:
Ad (1) Consider the function l, defined by l(x, u) := f(u)+ 1

2s
�u−x�2 . l is jointly convex

in x and u . Then mors,f is convex since it is the infimum of l with respect to variable u .

Since mors,f is the infimum of lower semicontinuous functions mors,f is lower semicontin-
uous.
Ad (2) We have lim�u�→∞(f(u)+ 1

2s
�u−x�2) = ∞ . This follows from the fact that due to

the duality theorem f is bounded from below by an affine function. Therefore mors,f(x)
is found by minimizing the mapping u �−→ f(u) + 1

2s
�u − x�2 in a ball Br, r > 0 . Since

bounded sets in reflexive Banach spaces are weakly sequential compact and since f is
lower semicontinuous we obtain the existence of a minimizer z . The uniqueness of the
minimizer z follows from the fact that the mapping g : X � u �−→ f(u)+ 1

2s
�u−x�2 ∈ R̂

is strongly convex with modulus 1
2s
, i.e. g− 1

2s
� ·−x�2 is convex.

Ad (3) Follows from (2).
Ad (4) Follows from

inf
x∈H

inf
u∈X

(f(u) +
1

2s
�u− x�2) = inf

u∈H
inf
x∈X

(f(u) +
1

2s
�u− x�2) = inf

u∈X
f(u) .

�
Definition 8.2. Let X be a reflexive Banach space, let f ∈ Γ0(X ) and let s > 0 . The
mapping

proxs,f : X � x �−→ argminu∈X (f(u) +
1

2s
�u− x�2) ∈ X (8.4)

is called the proximal operator of the function f with scaling parameter s .

We set proxf := prox1,f . �
Lemma 8.3. Let X be a reflexive Banach space with duality mapping JX, let x ∈ X and
let f ∈ Γ0(X ) . Then the following statements are equivalent:

(a) w = proxs,f(x) .

(b) θ ∈ JX(w− x) + s∂f(w) .

Proof:
We know that w minimizes u �−→ f(u)+ 1

2s
�u− x�2 if and only if θ ∈ ∂(f+ 1

2s
� ·−x�2) .

Since the norm is continuous in each point, especially in the points of dom(f), we may
apply the sum-decomposition of subdifferentials and obtain that w minimizes u �−→
f(u) + 1

2s
�u− x�2 if and only if θ ∈ ∂f(w) + 1

s
JX(w− x) . Here we have used the fact that

∂( 1
2
� · �2) = JX ; see Theorem 3.33. Now, the equivalence of (a), (b) is clear. �
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Lemma 8.4. Let X be a reflexive Banach space and let f ∈ Γ0(X ) . Let x∗ ∈ X , s > 0 .

Then the following statements are equivalent:

(a) x∗ minimizes f .

(b) proxs,f(x
∗) = x∗ .

Proof:
Let JX be the duality map of X .

Ad (a) =⇒ (b) We have

f(x∗) +
1

2s
�x∗ − x∗�2 ≤ f(u) +

1

2s
�u− x∗�2 for all u ∈ X .

Hence proxs,fx
∗ = x∗ .

Ad (b) =⇒ (a) w := x∗ minimizes u �−→ f(u) + 1
2s
�u − x∗�2 and therefore θ ∈

s∂f(w)+JX(w−x∗) . Since w = x∗ we obtain θ ∈ ∂f(x∗) due to the fact that JX (θ) = {θ} .

This implies that x∗ minimizes f . �

Lemma 8.5. Let H be a Hilbert space and let f ∈ Γ0(H) with the Fenchel-conjugate f∗ .
Then for all x ∈ H:

(a) proxf(x) + proxf∗(x) = x .

(b) morf(x) +morf∗(x) =
1
2
�x�2 .

Proof:
Ad (a) Let x ∈ H . Then

w = proxf(x) ⇐⇒ x−w ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(x−w) ⇐⇒ x−w = proxf∗(x) . (8.5)

Ad (b) Let x ∈ H . We have (see (8.3))

morf(x) = inf
u∈H

(f(u) +
1

2
�x�2 + 1

2
�u�2 − �u|x�) =

1

2
�x�2 − (f+ j)∗(x)

=
1

2
�x�2 − (f∗ � j)(x) =

1

2
�x�2 −morf∗(x) .

Here we have used the fact that j is selfdual, i.e. j∗ = j . �

Example 8.6. Consider the function f : R � u �−→ |u| ∈ R . The proximal operator and
the Moreau envelope is given as follows:1

proxs,f(x) = (1−
s

|x|
)+ x , x ∈ R,

mors,f(x) =

�
1
2s
|x|2 , |x| ≤ s

|x|− s
2

, |x| > s

Notice that mors,f is differentiable in x = 0 . �

Lemma 8.7. Let X be a Banach space and let f ∈ Γ0(X ) . Then mors,f is locally Lipschitz
continuous.

1a+ = a, if a ≥ 0,= 0 else.
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Proof:
This follows from the fact that mors,f is convex with dom(mors,f) = X ; see Theorem
10.10. �

Theorem 8.8. Let X be a reflexive Banach space and let f ∈ Γ0(X ) . If f is bounded from
below then lims↓0mors,f(x) = f(x) for all x ∈ X .

Proof:
Let x ∈ X . Clearly, when f(x) = ∞ then the result is true since lims↓0

1
2s
�u − x�2 = ∞

for all u ∈ X\{x} .

Let x ∈ dom(f) and let b ≤ f(u) for all u ∈ X . Then

f(w) +
1

2s
�w− x�2 ≥ b+

1

2s
�w− x�2 > f(x) if �w− x�2 > 2s(f(x)− b) .

Let rs := (2s(f(x)− b))
1
2 . Then lims↓0rs = 0 and since mors,f(x) ≤ f(x), we have

mors,f(x) = inf
w∈Brs (x)

(f(w) +
1

2s
�w− x�2)

and hence
mors,f(x) ≥ inf

w∈Brs (x)
f(w) .

This implies

f(x) ≥ lim sup
s↓0

mors,f(x) ≥ lim inf
s↓0

mors,f(x)

≥ lim inf
s↓0

inf
w∈Brs (x)

f(w) = lim inf
w→x

f(w)

≥ f(x)

where we used the fact that f is lower semicontinuous. Thus, the result is proved. �

We now briefly describe some basic interpretations of the proximal operator that we
will revisit in more detail later. Here, we restrict ourselves to considerations in Hilbert
spaces.

Let H be a Hilbert space and let f ∈ Γ0(H) . The definition of the proximal operator
indicates that proxf(x) is a point that compromises between minimizing f and being
near to x . In proxsf, the parameter s can be interpreted as a relative weight or trade-off
parameter between these terms.

When f is the indicator function

δC(x) :=

�
0 , x ∈ C

∞ , x /∈ C

where C is a nonempty closed convex set, the proximal operator of f reduces to the
projection onto C, for which we have the denotation

PC(x) := argminu∈C�x− u�2
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Proximal operators can thus be viewed as generalized projections, and this perspective
suggests various properties that we expect proximal operators to obey.

The proximal operator of f can also be interpreted as a kind of gradient step for the
function f . In particular, we have under the assumption that f is differentiable with
gradient ∇f (we will consider this in the next sections more detailed) for the minimizer
u∗ of u �−→ f(u) + 1

2s
�u− x�2 the necessary condition

(s∇f+ I)(u∗) = x or alternatively u∗ = (s∇f+ I)−1(x) .

From this we conclude that
proxs,f(x) ≈ x− s∇f(x)

when s is small. This suggests a close connection between proximal operators and gradient
methods, and also hints that the proximal operator may be useful in optimization. It also
suggests that the scaling parameter s will play a role similar to a step size in a gradient
method.

Finally, the fixed points of the proximal operator of f are precisely the minimizers
of f; see Lemma 8.4. This implies a close connection between proximal operators and
fixed point theory, and suggests that proximal algorithms can be interpreted as solving
optimization problems by finding fixed points of appropriate operators. Since minimizers
of f are fixed points of proxs,f, we can minimize f by finding a fixed point of its proximal
operator. It turns out that while proxs,f need not be a contraction (unless f is strongly
convex), it does have a different property, firmly nonexpansiveness, a sufficient property
for efficient fixed point iteration. Firmly nonexpansive operators are special cases of
nonexpansive operators. This immediately suggests the simplest proximal method

xk+1 := proxs,f(x
k)

which is called proximal minimization or the proximal point algorithm. In practice,
the parameter s will be replaced by a sequence (sk)k∈N0

which should have the property
limk sk = 0 . Then we end up with the iteration

xk+1 := proxsk,f(x
k) , k ∈ N0 . (8.6)

This is the proximal point algorithm, as introduced by Martinet first [23, 24] and later
generalized by Rockafellar [33]. In the realization of the iteration method (8.6) all the
methods of fixed point iteration and alternate projection methods may be applied. We
will study a few specific methods.

The consideration of the proximal operator may be embedded in a larger context,
namely the theory of monotone and maximal monotone operators. Monotone operators
are setvalued mappings. The minimization of a proper lower semicontinuous convex func-
tion f : X −→ R̂ may be formulated as follows:

Find x ∈ X with θ ∈ ∂f(x) (8.7)

Since the subdifferential is a maximal monotone operator the problem (8.7) can be gen-
eralized.

Given a mapping A : X ⇒ X ∗ find x ∈ X with θ ∈ A(x) (8.8)
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In the next section we present results of the theory of monotone operators. These results
are then used to solve the equation (8.8) by an iteration method similar to the proximal
point method above.

Regularization is an important tool to solve problems in a stable way. Problems which
are in general not solvable without regularization are ill-posed problems; see Subsection
5.9. These are problems where the continuous dependence of the solution on the data of
the problem does not hold.

Let be given an equation
Ax = y0 (8.9)

where A is a continuous injective mapping from the Hilbert space H into the Hibert space
K . Suppose that a solution x0 exists. The equation is difficult to solve when the range of
the operator A is dense in K but not closed. Then the inverse A−1 exists on the range of
A but is not continuous.

If we want to find a solution of (8.9) by minimizing the defect f(x) := �Ax−y0�2, x ∈ H,

this minimization is not very stable to errors in the data y0 . Regularization along the
lines of the proximal operator is called in the community of ill-poed problems Tikhonov
regularization. We are then lead to the following problem:

Minimize �Au− y0�2 + α�u− x∗�2 subject to x ∈ H . (8.10)

Here x∗ is a given point in H and α is the regularization parameter. In practice,
instead of y0 we have at hand only an erroneous data vector yε with �yε − y0� ≤ ε . It is
the goal of regularization to find a sequence of regularization parameters α(ε) such that
for the solution xε,α of (8.10) with yε instead of y0 holds:

lim
ε→0

xε,α(ε) = x0 . (8.11)

The choice of the regularization parameter strategy α(ε) depends heavily on the
”
degree

of discontinuity“ of A−1 ; see [3, 22].

Regularization has become an indispensable part of reconstruction of signals and im-
ages, modern machine learning algorithm and pattern recognition. These problems may
be formulated in the euclidean space Rn by an optimization problem like

Minimze l(u) + r(u) subject to u ∈ Rn . (8.12)

Here l : Rn −→ R̂ is a loss function/cost function and r : Rn −→ R̂ is the
regularization term which may be decomposed into a sum of terms of different qualities.
A loss function is used to measure the degree of a fit for data. In statistics, a loss function
is used for parameter estimation, in machine learning a loss function might be a measure
for the deviation of a real situation from a training set. An often used loss function is the
l2 norm in Rn :

l(u) :=
1

2
�u− x�2 := 1

2

n�

i=1

|ui − xi|
2 , u = (u1, . . . , un), x = (x1, . . . , xn) ∈ Rn . (8.13)

Here, x is a reference point choosen a priori.
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The regularization term is a function which should induce a quality of the minimzers.
Very popular regularization functions are (u = (u1, . . . , un) ∈ Rn)

r(u) := �u�1 :=
n�

i=1

|ui| , r(u) := �u�TV :=

n−1�

i=1

|ui+1 − ui| , r(u) := �u�∞ := max
i=1,...,n

|ui| .

Regularization by the function � ·�TV called total variation regularization has become
a standard method for jump or edge preserving reconstruction of signals and images; see
for instance [38]. Regularization with the l1-norm � ·�1 is more robust to noise and to the
presence of outliers than regularization by the l2-norm; see [26].

Suppose we consider the loss function in (8.13). Then with L1-TV regularization we
end up with the following minimization problem:

Minimize
1

2
�u− x�2 + �u�1 + �u�TV subject to u ∈ Rn . (8.14)

In practice, various weights are introduced to bring the regularization terms and the
loss function into a balance. As we see, the minimizer of the problem is realized by the
proximal operator prox�·�1+�·�TV

. Fortunately, prox�·}|1+�·�TV
can be decomposed as follows:

prox�·�1+�·�TV
= prox�·�1 ◦ proxTV ; (8.15)

see [14] and [39] where the decomposition problem is considered from a systematically
point of view. In practice, when several weights are introduced this decomposition cannot
be used and one has to use a numerical algorithm to compute the proximal operator.

The discrete models above have their equivalents in the continuous case. We sketch
this (a little sloppy) in the framework of image processing. Suppose we have an image f

in a bounded set Ω ⊂ R2, i.e. a mapping f : Ω −→ R . This image f may be corrupted
by noise and we try to reconstruct the

”
clean“ image behind.

Let � · �p denote the norm in Lp(Ω), 1 ≤ p ≤ ∞ , and let � · �TV denote the TV-norm
of a sufficient smooth g:

�g�TV :=

�

Ω

�∇g(ξ)�dξ .

In 1992 Rudin, Osher and Fatemi proposed the so called ROF-model – we call it the
ROF2-model – for image reconstruction/denoising; see [34]:

Minimize rof2(u,α; f) :=
1

2
�u− f�22 + α�u�TV subject to u ∈ X2 (8.16)

where X2 is a subspace of L2(Ω) such that �u�TV is well-defined. In the following, the
fidelity term2 1

2
�u− f�2 is replaced by the distance in L1(Ω):

Minimize rof1(u,α; f) := �u− f�1 + α�u�TV subject to u ∈ X1 (8.17)

where X1 is a subspace of L2(Ω) such that �u�TV is well-defined; see [26]. We call this
model the ROF1-model. Both models are convex problems, the ROF2-model has a

2

”
Image fidelity“ refers to the ability of a process/model to render an image accurately, without any

visible distortion or information loss.
”
Quality of an image“ is a more subjective preference of images

and is much more difficult to evaluate.
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uniquely determined (global) minimzer, the ROF1-model may have many minimizer since
the function to be minimized is not strictly convex.

To compare the different models test images like f = χBr
in Ω := BR, 0 < r < R,

may be used. The efficiency may then be evaluated along of two lines: how good is the
contrast 1 versus 0 and how good is the edge ∂Br reconstructed. In general, the ROF1-
model show better results. For example, the ROF1-model has the remarkable property
that a minimizer u of rof1(·,α; f) is the minimizer of rof1(·,α;u): a denoised image u is
considered as

”
clean“.

8.2 Monotone operators

Let us begin with a few introductory remarks. We want to solve the equation

f(x) = y (y ∈ R given) . (8.18)

whwere f : R −→ R is a given function. We may formulate the property
”
f is monotone

increasing“ as follows:

(f(u)− f(v))(u− v) ≥ 0 for all u, v ∈ R . (8.19)

Let additional

f be continuous (8.20)

We know that under assumptions (8.19), (8.20) the range of f is R or a convex interval
of R . So, if we want to have solvability of the equation (8.18) for all y ∈ R we need an
additional assumption. We consider

lim
x→±∞

f(x) = ±∞ , (8.21)

a property which is called coercivity. Now, we conclude that the equation (8.18) is
solvable under the assumptions (8.19), (8.20), (8.21). Under the additional assumption
that f is strictly increasing which may be formulated by

(f(u)− f(v))(u− v) > 0 for all u, v ∈ R, u �= v , (8.22)

the solution of (8.18) is then uniquely determined. It is the goal to generalize these
observations to the case of nonlinear mappings defined on a Banach spaces. We will see
that this generalization was successful during the last 60 years.

Let X be a Banach space and let A : X ⇒ X ∗ be a setvalued mapping. We set

dom(A) := {x ∈ X : A(x) �= ∅}
gra(A) := {(x, λ) ∈ X × X ∗ : x ∈ X , λ ∈ A(x)}

ran(A) := {λ ∈ X ∗ : λ ∈ A(x) for some x ∈ X } .

We call dom(A) the effective domain of A . gra(A) is the graph of A and ran(A) is
the range of A . From the definition of gra(A−1) we read off the definition of the inverse
of the set-valued mapping A:

A−1(λ) := {x ∈ X : λ ∈ A(x)} , λ ∈ X ∗ .
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Notice
dom(A−1) = ran(A) , ran(A−1) = dom(A) .

A simple example of a setvalued mapping is the sign-operator on R:

A(x) := sign(x) :=





−1 , x < 0

[−1, 1] , x = 0

1 , x > 0

.

Definition 8.9. Let X be a Banach space and let A : X ⇒ X ∗ be a setvalued mapping.

(a) A is called monotone if

�λ− µ, x− y� ≥ 0 for all λ ∈ A(x), µ ∈ A(y), x, y ∈ X .

(b) A is called strictly monotone if

�λ− µ, x− y� > 0 for all λ ∈ A(x), µ ∈ A(y), x, y ∈ X , x �= y .

(c) A is called strongly monotone if there exists b > 0 such that

�λ− µ, x− y� ≥ b�x− y�2 for all λ ∈ A(x), µ ∈ A(y), x, y ∈ X .

(d) A is called maximal monotone if A is monotone and if its graph is not properly
contained in the graph of any other monotone operator A � : X ⇒ X ∗ , i.e. if A � :
X ⇒ X ∗ is a monotone operator with gra(A) ⊂ gra(A �) then A(x) = A �(x) for all
x ∈ X .

(e) A is called coercive if dom(A) is bounded or if dom(A) is unbounded and

lim
�x�→∞

inf{�λ, x� : λ ∈ A(x)}

�x� = ∞ .

�
By applying Zorn’s Lemma it is easy to see that every monotone operator posesses

a maximal monotone extension. Notice that in the definition of monotone operators in
Hilbert spaces the canonical pairing �·, ·� is replaced by the inner product �·|·� . Clearly,
the identity on a Hilbert space is a maximal monotone operator.

We will see that subdifferentials of proper lowersemicontinuous convex functions are
maximal monotone operators. As a rule, whenever a property is valid for subdifferentials
in arbitrary Banach spaces there is some hope that it also holds for all maximal monotone
operators. The following considerations demonstrate this fact quite valid.

The sign-operator is maximal monotone. It is the maximal extension of

A(x) :=





−1 , x < 0

0 , x = 0

1 , x > 0

.

If f : R −→ R is monotone increasing then we may define a mapping f : R ⇒ R by

f(x) := [f(x−), f(x+)] where f(x−) := sup
t<x

f(t), f(x+) := inf
t>x

f(t) , x ∈ R .

f : R ⇒ R is a maximal monotone operator.
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Lemma 8.10. Let H be a Hilbert space and let A : H ⇒ H be a mapping. Then the
following statements are equivalent:

(a) A is maximal monotone operator.

(b)

�x− y� ≤ �(x+ tu)− (y+ tv)� for all (x, u), (y, v) ∈ gra(A) and t ≥ 0 . (8.23)

Proof:
Let (x, u), (y, v) ∈ H×H, t ≥ 0 . For t = 0 nothing has to be proved. So, assume t > 0 .

Then
1

t
(�(x+ tu)− (y+ tv)�2 − �x− y�2) = 2�u− v|x− y�+ t�u− v�2 .

Now, the equivalence of (a) and (b) is clear. �

The property (8.23) may be interpreted as nonexpansivity of the mapping (I+ tA)−1 .

Notice that this mapping is single-valued due to this property.

Lemma 8.11. Let X be a reflexive Banach space and let A : X ⇒ X ∗ be a monotone
operator. Then the followings statements are equivalent:

(a) A is a maximal monotone operator.

(b) For all (x, λ) ∈ X × X ∗ the condition

�λ− µ, x− y� ≥ 0 for all (y, µ) ∈ gra(A) i.e. inf
(y,µ)∈gra(A)

�λ− µ, x− y� ≥ 0 (8.24)

implies λ ∈ A(x) .

Proof:
Let (x, λ) ∈ X × X ∗ . We set

Ã(x) := A(x) ∪ {λ} , Ã(z) := A(z) for z �= x .

Then Ã is an extension of A which is monotone due to (8.24). �

Lemma 8.12. Let X be a reflexive Banach space and let A : X ⇒ X ∗ be a maximal
monotone operator. Then A is strong-weak closed, i.e.

(xn, λn) ∈ gra(A), n ∈ N, x = lim
n

xn, λ = w− lim
n

λn implies (x, λ) ∈ gra(A) .

Proof:
Let (y, µ) ∈ gra(A) . Then due to the monotonicity

�λn − µ, xn − y� ≥ 0, n ∈ N, and lim
n
�λn − µ, xn − y� = �λ− µ, x− y�

since (xn)n∈N converges strongly and (λn)n∈N converges weakly. Since A is a maximal
monotone operator we conclude λ ∈ A(x) by Lemma 8.11. �

Lemma 8.13. Let X be a reflexive Banach space and let A : X ⇒ X ∗ be a maximal
monotone operator. Then A is weak-strong closed, i.e.

(xn, λn) ∈ gra(A), n ∈ N, x = w− lim
n

xn, λ = lim
n

λn implies (x, λ) ∈ gra(A) .
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Proof:
This can be proved similar to Lemma 8.12. �

Theorem 8.14 (Minty’s trick). Let X be a reflexive Banach space and let A : X ⇒ X ∗ be
a maximal monotone operator. Let (xn)n∈N, (λn)n∈N be sequences in X and X ∗ respectively
and let x ∈ X , λ ∈ X ∗ . Assume

(1) un ∈ A(xn), n ∈ N .

(2) x = w− limn x
n, u = w− limn u

n .

(3) lim supn�λn, xn� ≤ �λ, x� .

Then λ ∈ A(x) and limn�λn, xn� = �λ, x� .

Proof:
Let (y, µ) ∈ gra(A) . Since A is monotone we have

0 ≤ �λn − µ, xn − y� = �λn, xn�− �λn, y�− �µ, xn�+ �µ|y� .

Tacking the lim sup we conclude using the reflexivity of X

0 ≤ lim sup
n

�λn, xn�− �λ, y�− �µ|x�+ �µ, y� ≤ �λ− µ, x− y� .

Since A is maximal monotone this implies λ ∈ A(x) . Moreover,

0 ≤ �λn − λ|xn − x� = �λn, xn�− �λn, x�− �λ, xn�+ �λ, x� .

Tacking the lim inf we obtain �λ, x� ≤ lim infn�λn, xn� . Hence, limn�λn, xn� = �λ, x� . �

Lemma 8.15. Let X be a reflexive Banach space and let A : X ⇒ X ∗ be a maximal
monotone operator. Let x ∈ X , λ ∈ X ∗, let (xn)n∈N be a sequence in X , and let (λn)n∈N
be a sequence in X ∗ such that λn ∈ A(xn), n ∈ N, x = w− limn x

n, λ = w− limn λ
n, and

lim sup
m,n

�λn − λm, xn − xm� ≤ 0 . (8.25)

Then (x, λ) ∈ gra(A) and �λ, x� = limn�λn, xn� .

Proof:
We folllow [8].
Due to the monotonicity and (8.25)

lim
m,n

�λn − λm, xn − xm� = 0 .

(�λnk , xnk�)n∈N is bounded since each sequence (xn)n∈N, (λn)n∈N is bounded. Let (nk)k∈N
be a subsequence such that L := limk(�λnk , xnk�) exists. Then

0 = lim
i
lim
k
�λni − λnk , xni − xnk�

= lim
i
(�λni, xni�− �λ, xni�− �λni, x�+ L)

= 2L− 2�λ, x� .
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Hence L = �λ, x� and therefore (since L is uniquely determined) limn�λn, xn� = �λ, x� . Let
(y, µ) ∈ gra(A) . Then

�λ− µ, x− y� = �λ, x�− �λ, y�− �µ, x�+ �µ, y�
= lim

n
�λn, xn�− �λn, y�− �µ, xn�+ �µ, y�

= lim
n
�λn − µ, xn − y� ≥ 0

This implies λ ∈ A(x) by Lemma 8.11. �

Corollary 8.16. Let X be a uniformly convex Banach space with duality mapping JX .

Let x ∈ X , λ ∈ X ∗, let (xn)n∈N be a sequence in X and let (λn)n∈N be a sequence in X ∗

with λn ∈ JX (xn), n ∈ N . Suppose

lim sup
n

�λn − λ, xn − x� ≤ 0 . (8.26)

Then λ ∈ JX (x), �λ, x� = limn�λn, xn�, and x = limn x
n .

Proof:
JX is a single-valued maximal monotone operator. Then from Lemma 8.15 we obtain
�JX (x), x� = limn�JX (xn), xn� . Moreover

�xn�2 = �JX (xn), xn�, n ∈ N, �JX (x), x� = �x�2 .

Now we have limn �xn� = �x� and this implies in a uniformly convex Banach space
limn x

n = x . �

Let X be a Banach space. We define for A : X ⇒ X ∗, B : X ⇒ X ∗ aA (a ∈
R), A+ B, co(A) as follows:

(aA)(x) := aA(x) , x ∈ X ,

(A+ B)(x) := A(x) + B(x) , x ∈ X ,

co(A)(x) := co(A(x)) , x ∈ X .

Here we use the convention that the sum M +N of two sets is empty is one of the sets
M or N is empty.

Lemma 8.17. Let X be a Banach space, A,B : X ⇒ X ∗ be monotone operators, and let
a ≥ 0 . Then aA,A+ B and co(A) are monotone.

Proof:
Follows from the definition of monotonicity in a simple way. �

Corollary 8.18. Let X be a reflexive Banach space and let A : X ⇒ X ∗ be a maximal
monotone operator. Then aA (a > 0), co(A) are maximal monotone operators. Moreover,
A(x) is convex and closed for all x ∈ dom(A) .

Proof:
The assertion concerning aA is obvious. Due to Lemma 8.17 co(A) is a monotone oper-
ator. Since x �−→ co(A)(x) defines an extension of A we conclude A = co(A) and co(A)
is maximal monotone. Since A = co(A) all sets A(x) are convex. The closedness of A(x)
for each x ∈ dom(A) follows from an easy application of Lemma 8.13. �
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Corollary 8.19. Let X be a reflexive Banach space and let A : X ⇒ X ∗ be a maximal
monotone operator.Then A−1(λ) is convex and closed for all λ ∈ ran(A) .

Proof:
Let x, z ∈ A−1(λ) . Let (y, µ) ∈ gra(A) and let t ∈ [0, 1] . Then due to the monotonicity
of A we have

�λ− µ, tx+ (1− t)z− y� = t�λ− µ, x− y�+ (1− t)�λ− µ, z− y� ≥ 0 .

SinceA is a maximal monotone operator this implies λ ∈ A(tx+(1−t)z), i.e. tx+(1−t)z ∈
A−1(λ) . Thus, the convexity of A−1(λ) is proved.
Let λ ∈ ran(A) . The closedness of A−1(λ) is proved by applying Lemma 8.12. �

Notice, the sum of maximal monotone operators must not be a maximal monotone
operator. A sufficient condition for this property is int(dom(A)) ∩ dom(B) �= ∅ ; see [31].

Lemma 8.20. Let X be a uniformly convex Banach space with duality mapping JX and
let A : X ⇒ X ∗ be a maximal monotone operator. Then for every λ ∈ X ∗ the mapping

g : (0,∞) � t �−→ (JX + tA)−1(λ) ∈ X
is continuous. If λ = JX(x) for some x ∈ dom(A), then g is also continuous in t = 0 and
we have limt→0 g(t) = x .

Proof:
We follow [21].
Suppose t0 > 0 . Let 0 < a < t0 < b and set

xt := (JX + tA)−1(λ) , t ∈ (a, b) .

We have λ = (JX + tA)(xt) = JX (xt0) + t0xt0 with µt ∈ A(xt), µt0 ∈ A(xt0) and this
implies

0 = �(JX (xt) + tµt)− (JX (xt0) + t0µt0), xt − xt0�
= t�µt − µt0, xt − xt0�+ (t− t0)�µt0, xt − xt0�+ �JX (xt)− JX (xt0), xt − xt0� .

Hence
(�xt�− �xt0�)2 ≤ |t− t0|�µt0�(�xt0�2 + �λ�2) .

Here we have used (3.4). Now, we obtain (�xt�)t∈(a,b) is bounded. Letting c be an upper
bound for (�xt�)t∈(a,b) we obtain from the inequalities above

�(JX (xt)− (JX (xt0)), xt − xt0� ≤ (c+ �xt0�)|t− t0|�λ� , t ∈ (a.b) .

Then by Corollary 8.16 limt→t0 xt = xt0 .

The additional result follows by inspection of the proof above. �
Definition 8.21. Let X be a Banach space and let A : X −→ X ∗ be a mapping.3

A is called hemicontinuous if for all x, y ∈ X the mapping

[0, 1] � t �−→ �A(ty+ (1− t)x), y− x� ∈ R

is continuous in t = 0 . �
3If an operator is not setvalued like A : X −→ X ∗ then the effective domain of definition is the the

whole space.
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Theorem 8.22. Let X be a reflexive Banach space and let A : X −→ X ∗ be a monotone
hemicontinuous operator. Then A is a maximal monotone operator.

Proof:
Let (x, λ) ∈ X × X ∗ and let

�λ−A(u), x− u� ≥ 0 for all u ∈ X .

We set u := x± tw with w ∈ X and t > 0 . Then we obtain

±t�λ−A(x± tw),−w� ≥ 0

and hence
�λ−A(x+ tw), w� ≤ 0 , �λ−A(x− tw), w� ≥ 0

Letting t → 0 we obtain �λ − A(x), w� = 0 since A is hemicontinuous. This shows
λ = A(x) since w ∈ X is arbitrary chosen. With Lemma 8.17 we obtain that A is a
maximal monotone. �

Monotone operators are important objects in modern optimization and analysis. Here
are core examples for monotone operators:

Subgradients Subdifferentials of convex lower semicontinuous functions are examples of
maximal monotone operators; see below. A very important example is the duality
mapping which captures many geometric aspects of Banach spaces. For the duality
mapping we have already schown its monotonicity; see (5) in Lemma 3.6.

Skew linear operators We will see examples of this class of monotone operators below.

Laplacian operators Using monotone operators we are able to find weak solutions in
Sobolev spaces of (nonlinear) elliptic and parabolic partial differential equations.
With these type of operators we may describe physical phenomena like friction,
internal forces, additional constraints, . . . .

Example 8.23. Let H be a Hilbert space, let y ∈ H, and let T : H −→ H be a linear
continuous operator. Then the (affine) mapping A : H � x �−→ Tx+ y ∈ H is monotone
if the symmetric part T + T ∗ is nonnegative, i.e.

�(T + T ∗)z|z� ≥ 0 for all z ∈ H .

Actually, A is maximal monotone. This follows by using Theorem 8.22.
The skewsymmetric part ST := T − T ∗ is – due to the fact �STz|z� = 0 for all z ∈ H –
a monotone operator. Actually, ST is maximal monotone. Again, this follows by using
Theorem 8.22. �

Example 8.24. Consider4

A(u) := −div(|∇u|p−2∇u)

4This is an example for readers which are familiar with the theory of weak solutions for elliptic
equations in Sobolev spaces.
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for functions u ∈ C∞
0 (Ω) ;5 with Ω ⊂ Rn . Let W1,p be the space of functions with a

distributional derivative of order zero and one in Lp(Ω) . This becomes a Banach space
endowed with the sum of Lp-norms of all derivatives. The functions in W1,p with zero
trace on the boundary ∂Ω is denoted by W1,p

0 . The dual space of W1,p
0 is W−1,q where

1/p+ 1/q = 1 . Then A � has an extension to the p-Laplacian Δp on the space W1,p
0 :

Δpu := div(|∇u|p−2∇u)

Thus the operator describes (for f ∈ W−1,p(Ω))

−div(|∇u|p−2∇u) = f, in Ω , u = θ in ∂Ω . (8.27)

The operator Δp (called also the p-harmonic operator) may be used to describe models
for fluids. Three cases are of importance:

p = 2 This is the case of newtonian fluids (air, water,. . . ) and Δ2 is the well known
Laplace operator.

p > 2 The viscosity (of oil,. . . ) is a monotone increasing function of the gradient ∇u .

p < 2 The viscosity (of blood,. . . ) is a monotone decreasing function of the gradient ∇u .

Another field of application is located in image processing.
It can be shown that Δp is a maximal monotone operator. To study this some special

inequalities are helpful. Expressions like

�|∇v|p−2∇v− |∇u|p−2∇u|∇v−∇u�
can be treated by using inequalities resulting from

��b�p−2b−�a�p−2a|b−a�1
2
(�b�p−2+�a�p−2)�b−a�2+ 1

2
(�b�p−2−�a�p−2)(�b�2−�a�2)

for vectors in Rn . Here are two results:

p ≥ 2 �|b|p−2b− |a|p−2a|b− a� ≥ 2−1(|b|p−2 + |a|p−2)|b− a| ≥ 22−p|b− a|p .

p ≤ 2 �|b|p−2b− |a|p−2a|b− a� ≤ 1
2
(|b|p−2 + |a|p−2)|b− a|2 .

Δp has different properties depending on the numbers p, n .

p = 1 We have Δ1u = div( ∇u
|∇u|

) . Δ1u describes the mean curvature of u .

p = 2 Δ2 is the usual Laplace operator.

p > n Due to embedding theorems for Sobolev spaces solutions of (8.27) show good con-
tinuity properties (if f is smooth).

p = n This is the critical case.

p = ∞ As p → ∞ one encounters the p-Laplacian becomes

Δ∞u =

n�

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
.

It can be used to describe certain phenomena in image processing.

�
5| · | denotes the euclidean norm in Rn
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8.3 Solving equations governed by a maximal mono-

tone operator

Let X be a Banach space and let A : X ⇒ X ∗ . The question whether the equation

θ ∈ A(x) for some x ∈ X (8.28)

has a solution is of interest especially in the case when A is the subdifferential of a function
f ∈ Γ0(X ) .

Theorem 8.25. Let X be a uniformly convex Banach space with duality mapping JX .

Let A : X ⇒ X ∗ be a maximal monotone operator. Then the following conditions are
equivalent:

(a) θ ∈ ran(A) .

(b) There exists an open and bounded set G ⊂ X and x0 ∈ G ∩ dom(A) with6

�λ, x− x0� ≥ 0 for all x ∈ ∂G ∩ dom(A), λ ∈ A(x) .

(c) There exists an open and bounded set G ⊂ X and x0 ∈ G ∩ dom(A) with

s(JX (x)− JX (x
0)) /∈ A(x) for all s > 0, x ∈ ∂G ∩ dom(A) .

Proof:
We follow [21].
Ad (a) =⇒ (b) Let θ ∈ A(x0) with x0 ∈ dom(A) and let G be an open set with
x0 ∈ G . Suppose x ∈ ∂G∩ dom(A), λ ∈ A(x) . Since A is monotone we have �λ, x− x0� =
�λ− θ, x− x0� ≥ 0 .

Ad (b) =⇒ (c) We want to show (c) with the same set G and x0 as in (b) . Assume that
(c) does not hold. Then there exists s > 0 and x ∈ ∂G ∩ dom(A) with

λ = s(JX (x)− JX (x
0)) for some λ ∈ A(x) .

Since JX is strongly monotone we obtain by (b) in

0 ≤ �λ, x− x0� = s�JX (x)− JX (x
0), x− x0� < 0

a contradiction.
Ad (c) =⇒ (a) We observe that the mapping

g : [0,∞) � t �−→ �(JX + tA)−1JX (x
0) ∈ dom(A) ⊂ X

is continuous in (0,∞) ; see Lemma 8.20. Then (c) says that g(t) /∈ ∂G for any t ∈ (0,∞) .
Since g(0) = x0 ∈ G we conclude that g(t) ∈ G, t ∈ [0,∞) . Due to the boundeness of
G there exists κ > 0 with �g(t)� ≤ κ, t ∈ [0,∞) . Consider a sequence (tn)n∈N in (0,∞)
with limn tn = ∞ . Set xn := (JX + tnA)−1JX (x0), n ∈ N . Then we have

�xn� ≤ κ , JX (x
0) ∈ JX (x

n) + tnA(xn), n ∈ N .

6∂G is the boundary of the set G
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Thus, for some λn ∈ A(xn), n ∈ N, we have

�λ� = t−1
n �JX (xn)− JX (x

0)� ≤ t−1
n (κ+ �x0�), n ∈ N .

Since X is reflexive (xn)n∈N has a weak cluster point; let x � = w − limn x
nk . Since

limn�λn, xn − x �� (notice limn λ
n = θ) we can apply Lemma 8.15 and obtain x � ∈ dom(A)

and θ ∈ A(x �) . �

Corollary 8.26. Let X be a uniformly convex Banach space and let A : X ⇒ X ∗ be a
maximal monotone operator. Consider the condition

There exists x0 ∈ X , r ≥ 0, such that �λ, x− x0� for all (x, λ) ∈ gra(A), �x− x0� ≥ r .

(8.29)
Then θ ∈ ran(A) .

Proof:
(8.29) implies the condition (b) in Theorem 8.25. �

Corollary 8.27. Let X be a uniformly convex Banach space and let A : X ⇒ X ∗ be
a maximal monotone operator with a bounded domain of definition dom(A) . Then θ ∈
ran(A) .

Proof:
The condition (8.29) in Corollary 8.26 is trivially satisfied. �

Lemma 8.28. Let X be a Banach space and let A : X ⇒ X ∗ be a maximal monotone
operator. Then A is locally bounded at x ∈ int(dom(A)), i.e. there exists r > 0 and c > 0

such that
sup

λ∈A(y)

�λ� ≤ c for all y ∈ Br(y) .

Proof:
Let x ∈ int(dom(A)) . Without loss of generality we may assume x = θ and θ ∈ A(θ) .
Define

f : X � y �−→ sup
(u,v)∈gra(A),�u�≤1

�y− u, v� ∈ R̂ .

Then f ∈ Γ0(X ) . Since θ ∈ int(dom(A)), there exists s > 0 such that Bs ⊂ dom(f) . Let
y ∈ Bs and w ∈ A(y) . Then we have for all (u, v) ∈ gra(A) with �u� ≤ 1

�y− u,w− v� ≥ 0 , �y− u,w� ≥ �y− u, v� , �y− u, v� ≤ (�y�+ 1)�v� < ∞ .

This implies f(y) < ∞, i.e. y ∈ dom(f) . This shows Bs ⊂ int(dom(f)) . Then there exists
r > 0 with r ≤ min( 1

2
, 1
2
s) such that

f(y) ≤ f(θ) + 1 for all y ∈ B2r .

Since (θ,θ) ∈ gra(A) we have f(θ) ≥ 0 . On the other hand, by the monotonicity of A,

�u, v� = �u− θ, v− θ� ≥ 0 for all (u, v) ∈ gra(A) .

Then we have by the definition of f the inequality f(θ) ≤ 0 . Alltogether, f(θ) = 0 . Thus,

�y, v� ≤ �u, v�+ 1 for all y ∈ B2r, (u, v) ∈ gra(A), �u� ≤ r .
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Taking the supremum with respect to y we obtain for all (u, v) ∈ gra(A), �u� ≤ r,

2r�v� ≤ �u�+ 1 ≤ r�v�+ 1 , �v� ≤ r−1 .

Setting c := r−1 the result is proved. �

Maximal monotone opertors and subdifferentials show very similar properties. This
suggests to ask whether the theory of maximal monotone operators and subdifferentials
can be considered under a common point of view. This is nearly the case but subdifferen-
tial have a property which has not every maximal monotone operator: cyclic monotonicity.

Definition 8.29. Let X be a Banach space and let A : X ⇒ X ∗ be a mapping. A is
called n-cyclically monotone if the following holds:

�n
i=1�λi, xi − xi−1� ≥ 0 whenever

n ≥ 2 and x0, . . . , xn ∈ X , x0 = xn, λi ∈ A(xi), i = 1, . . . , n .

A is called cyclically monotone if A is n-cyclically monotone for every n ∈ N . �

Clearly, a 2-cyclically monotone operator is monotone. Subdifferentials are cyclically
monotone but not every maximal monotone operator is n-cyclically monotone for n ≥ 3 .

Example 8.30. Consider A : R2 � (x, y) �−→ (y,−x) ∈ R2. A is maximal monotone but
not 3-cyclically monotone. To show this consider the vectors (1, 1), (0, 1), (1, 0), (1, 1) . �

Let X be a Banach space and let A : X ⇒ X ∗ be a monotone operator. Then

�λ− µ, x− y� ≥ 0 for all (x, λ), (y, µ) ∈ gra(A) .

This implies

�λ, y�+ µ, x�− µ, y� ≤ �λ, x� for all (x, λ), (y, µ) ∈ gra(A) .

From this observation starts the following definition.

Definition 8.31. Let X be a Banach space and let A : X ⇒ X ∗ be a monotone operator.
The Fitzpatrick function associated with this operator is the function

FA : H×H � (x, u) �−→ sup
y,v)∈gra(A)

(�v, x�+ �u, y�− �v, y�) ∈ R̂ .

�

Fitzpatrick functions have been proved to be an important tool in modern monotone
operator theory; see [12, 13, 29]. It connects the theory of convex functions with the theory
of (maximal) monotone operators. It can be shown that a maximal monotone operator
can be represented by a convex function. Nowadays it is an effective tool to study the
existence problem for stochastic differential equations. This is inspired by the fact that
stochastic differential equations where the nonlinearity is governed by a subdifferential
operator allows existence results; see for instance [27].

In the following we study and use the Fitzpatrick function in a reflexive Banach space
X . Then the pairing between the spaces X × X ∗ and X ∗ × X ∗∗ may be identified with
the pairing between X × X ∗ and X ∗ × X . To provide more orientation in the following
we prefer for the analysis and the use of the Fitzpatrick function the notion x∗, y∗, . . . for
functionals in X ∗ .
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Lemma 8.32. Let X be a reflexive Banach space and let A : X ⇒ X ∗ be a monotone
operator with dom(A) �= ∅ . Let FA be the Fitzpatrick function of A . Then:

(1) FA is proper

(2) FA is convex.

(3) FA ∈ Γ0(X × X ∗) where X ,X ∗ are endowed with the strong topologies.

(4) FA(x, x
∗) ≤ �x∗, x� for all (x, x∗) ∈ gra(A) .

(5) If (y∗, y) ∈ gra(A) then (y, y∗) ∈ ∂FA(y, y
∗) .

Proof:
Ad (1) If (x, x∗) ∈ gra(A) then FA(x, x

∗) ≤ �x∗, x� < ∞ .

Ad (2) FA is the supremum of a family of affine continuous functions.
Ad (c) it is easy to see that level sets of FA are closed.
Ad (4) See the observation above Definition 8.31. �

Theorem 8.33. Let X be a reflexive Banach space and let A : X ⇒ X ∗ be a maximal
monotone operator with dom(A) �= ∅ . Let FA be the associated Fitzpatrick function of A .

Then
FA(x, x

∗) ≥ �x∗, x� for all (x, x∗) ∈ X × X ∗

and the following statements for (x.x∗) ∈ X × X ∗ are equivalent:

(a) (x, x∗) ∈ gra(A) .

(b) FA(x, x
∗) = �x∗, x� .

(c) There exists (u, u∗) ∈ dom(∂FA) with �u∗ − x∗, u− x� .
(d) (x∗, x) ∈ ∂FA(x, x

∗) .

Proof:
Let (x, x∗) ∈ X × X ∗ . Notice that

FA(x, x
∗) = �x∗, x�− inf

(u,u∗)∈gra(A)
�x∗ − u∗, x− u� . (8.30)

Assumption: FA(x, x
+) < �x∗, x� . Then inf(u,u∗)∈gra(A)�x∗ − u∗, x − u� > 0 and hence,

(x, x∗) ∈ gra(A) . Using (8.30) we obtain FA(x, x
∗) ≥ �x∗, x� contradicting the assumption

above.
It is not difficult to show that (b) =⇒ (a) =⇒ (e) =⇒ (d) =⇒ (a) holds.
Using the Fenchel-Young equality

(x∗, x) ∈ ∂FA(x, x
∗) ⇐⇒ FA(x, x

∗) + F+B(x
∗, x) = �(x, x+), (x∗, x)�

we obtain (a)(and(b)) =⇒ (c) .
The prove of the implication (c) =⇒ (a) starts from the equality

F∗A(x
∗, x) = �x, x∗�− inf

(u,u∗)∈X×X ∗
�x∗ − u∗, x− u�+ FA(u, u

∗)− �u∗, u� .
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This implies
inf

(u,u∗)∈X×X ∗
�x∗ − u∗, x− u�+ FA(u, u

∗)− �u∗, u�

and hence,

�x∗ − u∗, x− u� ≥ �u∗, u�− FA(u, u
∗) = 0 for all (u,u∗) ∈ gra(A) .

This shows (x, x∗) ∈ gra(A) . �

Definition 8.34. Let X be a Banach space and let A : X ⇒ X ∗ be a mapping. A is
called nonexpansive if

�λ− µ� ≤ �x− y� for all (x, λ), (y, µ) ∈ gra(A) .

�

Definition 8.35. Let H be a Hilbert space, let A : H ⇒ H be a mapping and let s > 0 .

Then:
R(A, s) : H ⇒ H , R(A, s)(x) := (I+ sA)−1(x) ,

is called the resolvent of A with parameter s .

We set C(A, s) := 2R(A, s)− I and call C(A, s) the Caley operator of A with parameter
s > 0 . �

Corollary 8.36. Let H be a Hilbert space and let A : H ⇒ H be a monotone operator.
Then R(A, s), C(A, s) are single-valued nonexpansive mappings for all s ≥ 0 .

Proof:
For s = 0 nothing has to proved. Let s > 0 and let x, y, u, v ∈ H with

x ∈ u+ sA(u) , y ∈ v+ sA(v) .

Then we get x − y ∈ u − v + sA(u) − A(v) and therefore by using the monotonicity
�u − v�2 ≤ �x − y|u − v� . So when x = y, we must have u = v . This shows that R is a
single-valued mapping and consequentely C too.
We have

C(A, s) = �(2u− x)− (2v− y)�2 = �2(u− v)− (x− y)�2
= 4�u− v�2 − 4�u− v|x− y�+ �x− y�2
≤ �x− y�2

R(A, ·) is nonexpansive since it is the average of I and C(A, ·):

R(A, ·) = 1

2
I+

1

2
(2R(A, ·)− I) .

�

Theorem 8.37 (Minty, 1963). Let H be a Hilbert space and let Let A : H ⇒ H∗ be a
mapping. Then the following conditions are equivalent:

(a) A is maximal monotone.
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(b) A is monotone and ran(I+ sA) = H for all s > 0 .

(c) We have for all s > 0: R(A, s) is nonexpansive, dom(R(A, s)) = H, ran(R(A, s)) =
H .

Proof:
Ad (a) =⇒ (b) It is enough to prove this for s = 1 since sA is maximal monoton for all
s > 0 . Given z0 ∈ H, we want to show that z0 belongs to ran(I+A) .
We define B : H ⇒ H by B(x) := A(x) − {z0} . Then B is a maximal monotone operator.
Define with the Fitzpatrick function FB of B

F : H×H −→ R̂ , F(x, u) := FB(x, u) +
1

2
�x�2 + 1

2
�u�2 , (x, u) ∈ H×H .

Since FB is due to FB ∈ Gamma0(X × X ∗) bounded from below by a continuous affine
function, F is coercive. Then F has a minimizer, say (y, v), and we have (θ, θ) ∈ ∂F(y, v) .
Thus, (θ,θ) ∈ ∂FB(y, v) + (y, v) and (−y,−v) ∈ ∂FB(y, v) . Then

�(−y,−v)|(b,w)− (y, v)� ≤ FB(b,w)− FB(y, v) for all (b,w) ∈ gra(B) ,

and by Lemma 8.32

�(−y,−v)|(b,w)− (y, v)� ≤ �b|w�− �y|v� for all (b,w) ∈ gra(B) .

This implies

0 ≤ �b|w�− �(y|v)�+ �y|b�+ �v|w�− �y�2 − �v�2 for all (b,w) ∈ gra(B) , (8.31)

and hence

�b+ v,w+ y� = �b,w�+ �y, b) + �v,w�+ �y, v� ≥ �y+ v�2 ≥ 0 for all (b,w) ∈ gra(B) .

We obtain (−y,−v) ∈ gra(B) since B is a maximal monotone operator. This and (8.31)
implies 0 ≤ −2�y, v� − �y�2 − �v�2 . Then we have y = −v and (v,−v) ∈ gra(B) and
hence −v ∈ B(v) = A(v)− {z0} . Therefore z0 ∈ A(v) + v, which implies z0 ∈ ran(I+A) .
Ad (b) =⇒ (a) Let A � : H ⇒ H be a monotone extension of A . Let v ∈ A �(y) . Choose
x ∈ dom(A) such that y+v ∈ x+A(x) . Then y+v ∈ x+A �(x), y+v ∈ y+A �(y) . From
Lemma 8.10 we conclude x = y which implies y + v ∈ y + A(y) . Therefore, v ∈ A(y) .
Thus, we have shown A = A � .
Ad (a), (b) =⇒ (c) Let s > 0 . Then sA is a maximal monotone operator and we have
ran(I+ sA) = H . From Lemma 8.10 we obtain the assertion in (c) .
(c) =⇒ (b) This is a consequence of Lemma 8.10 too. �

Example 8.38. Consider7 (see Example 8.24) in the Hilbert spaceH := L2(Ω) the Laplace
operator:

dom(A) := H1
0(Ω) ∩H2(Ω) , Ax := −Δx, x ∈ dom(A) .

Obviously, A is linear. A is mnotone since

�Ax|x� = −

�

Ω

xΔxdξ =

�

Ω

�∇x�dξ ≥ 0, x ∈ dom(A) .

7This is an example for readers which are familiar with the thora of weak solutions for elliptic equations
in Sobolev spaces.
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A is maximal monotone due to Theorem 8.37 if

Δx+ x = f

has a solution x ∈ dom(A) for each f ∈ H . The problem consists in the regularity: one
has to show that the weak solution of −Δx+x = f which can be ensured to exists in H1

0(Ω)
has the property x ∈ H2(Ω) . This is the case under the assumptions that Ω is bounded
and its boundary is sufficiently smooth. �

Let H be a Hilbert space and let A : H ⇒ H be a maximal monotone operator. Then
acording to (c) in Theorem 8.37 the inclusion

y ∈ x+ sA(x) (8.32)

has a solution in H for each y ∈ H and each s > 0 . Now, we are interested in a solution
of

y ∈ A(x) (8.33)

Theorem 8.39. Let H be a Hilbert space and let A : H ⇒ H be a maximal monotone
operator which is coercive. Then ran(A) = H .

Proof:
We know ran(I+ sA) = H for all s > 0 . Let y ∈ H . Since due to Theorem 8.14

ran(I+ sA) = H and sI+A = s(I+ 1/sA) , s > 0 ,

we have for each s > 0

sxs +ws = y , with xs ∈ H, ws ∈ A(xs) . (8.34)

Assume that there exists a sequence (sn)n∈N with limn sn = 0 and (xn := xsn)n∈N is not
bounded. Then we obtain

sn�xn|xn�+ �wn|xn� = �y|xn� , n ∈ N ,

withwn ∈ A(xn) and we conclude that dom(A) is not bounded. Without loss of generality
we may assume that limn �xn� = ∞ . Then we obtain

sn�xn�+
�wn|xn�
�xn�

= �y| xn

�xn�
� , n ∈ N .

This is a contradiction since the sum on the left side is unbounded whereas – due to the
coercivity – the term on the right side is bounded.
Let (sn)n∈N be a sequence with limn sn = 0 . Then (xn := xsn)n∈N is bounded and as a
consequence of (8.34) (wn := wsn)n∈N is bounded. Without loss of generality we may
assume that (xn)n∈N, (wn)n∈N converge weakly; notice that closed balls in a Hilbert space
are weakly sequential compact. Let x := w − limn xn , w := w − limn wn . We have
snxn+wn = y with wn ∈ A(xn) , n ∈ N , and we conclude that limn wn = y . This shows
w ∈ A(x) due to Lemma 8.13. �
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Theorem 8.40 (Browder, 1965). Let X be a reflexive Banach space and let A : H ⇒ H∗

be a a coercive maximal monotone operator. Then

ran(A) = X ∗ .

Proof:
We do not give the prove; see [9]. �

Remark 8.41. The proof of (a) =⇒ (b) in Theorem 8.37 is the harder part of the
Theorem. The proof for the solvability of the equation (I+A)(x) = y can be produced also
along the following five steps: finite dimensional approximations (Galerkin method) of
the equation, solvability in the finite dimensional case by using the fixed point theorem of
Brouwer, a priori boundeness of the resulting sequence of the finite dimensional problems,
weak convergence of this sequence of the finite dimensional solutions, use of the Minty
trick when passing to the limit for the finite dimensional approximations. We refer to
[4, 7, 9, 40].

A different proof of the part (a) =⇒ (b) my be based on the Min-Max Theorem; see
[7]. �

Remark 8.42. The assumption concerning the reflexivity in Theorem 8.40 is essential.
Without reflexivity one can prove under additional assumptions that ran(A( is dense in
X ∗ . This follows from the Theorem of Bishop-Phelps [5]. If A is the subdifferential of a
proper lower semicontinous function then ran(A) is dense in X ∗ without reflexivity. A
counterexample for the density of ran(A) in X ∗ in the general case is given in [16]. �

Theorem 8.43. Let X be a reflexive Banach space and let A : X ⇒ X ∗ be a maximal
monotone operator. Then dom(A), ran(A) are convex.

Proof:

�

Theorem 8.44 (Rockafellar). Let X be a Banach space and let A : X ⇒ X ∗ be a
maximal cyclically monotone operator with dom(A) �= ∅ . . Then there exists f ∈ Γ0(X )
with A = ∂f .

Proof:

�

8.4 Computing zeros of maximal monotone opera-

tors

Let X be a Banach space and let A : X ⇒ X ∗ be a mapping. Then we consider the
(generalized) equation

Find x ∈ X with θ ∈ A(x) . (8.35)

We study this problem in the case when X is a Hilbert space for maximal monotone
operators A . As we know, the solution set of the equation x ∈ A−1(θ) is convex and
closed.
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Each zero of A is a fixed point of R(A, s) (and C(A, s)) for all s > 0 . Therefore, one
can solve the equation θ ∈ A(x) by finding fixed points of R(A, ·) or C(A, ·) and hence,
the fixed point iteration is appropriate to compute a zero of the maximal operator A:

xk+1 := R(A, sk)(x
k) = (I+ skA)−1(xk) , k ∈ N0 . (8.36)

Here x0 is a given starting point and we assume throughout in the following that sk, k ∈
N0, are positive numbers. These numbers play the role of regularization parameters.

Remark 8.45. The iteration scheme in (8.36) can be reformulated as

xk+1 − xk

sk
∈ −A(xk+1) , k ∈ N0 .

This inclusion can be seen as an implicit discretization of the differential inclusion

u �(t) ∈ −A(u(t)) a.e. on (0,∞) , u(0) = x0 . (8.37)

(A solution is an absolute continuous mapping from (0,∞) into H .) In this interpretation
sk is a discretization parameter and the discretization scheme is called the backward
Euler scheme. �

Let (xk)k∈N be the sequence produced by the iteration (8.36). Associated to this
sequence is the sequence (yk)k∈N of

”
velocities“:

yk :=
xk+1 − xk

sk
, k ∈ N . (8.38)

Lemma 8.46. From the iteration scheme 8.36 we conclude:

(1) yk ∈ −A(xk+1), k ∈ N0 .

(2) The sequence (�yk�)k∈N is decreasing.

(3) For all (x, y) ∈ gra(A)

�xk − x�2 ≥ �xk − xk+1�2 + �xk+1 − x�2 − 2sk�y|xk − x� , k ∈ N0 .

(4) For all x ∈ A−1(θ)

�xk+1 − x�2 + s2k�yk�2 ≤ �xk − x�2 , k ∈ N0 .

(5) For all x ∈ A−1(θ)

�xk+1 − x�2 + 2

k�

i=1

s2i�yi� ≤ �x0 − x�2 , k ∈ N0 .
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Proof:
Ad (1) follows from the iteration scheme.
Ad (2) The inequality �yk − yk−1|xk − xk−1 ≤ 0 implies �yk − yk−1|yk� ≤ 0 and therefore
�yk� ≤ �yk−1� .
Ad (3) Observe that

�xk−1 − x�2 = �xk−1 − xk�2 + �xk − x�2 + 2�xk−1 − xk|xk − x�

and �xk−1 − xk|xk − x� ≥ sk�y|xk − x� .
Ad (4) We have for k ∈ N0 (see (3))

�xk − x�2 = �xk − xk+1�2 + �xk+1 − x�2 .

Ad (5) Follows from (4) . �

Lemma 8.47. The sequence (xk)k∈N0
is Fejer monotone with respect to A−1(θ), i.e.

�xk+1 − x� ≤ �xk − x�, n ∈ N, for all x ∈ A−1(θ) . (8.39)

Proof:
Follows from (5) in Lemma 8.46. �

Corollary 8.48. The following statements are equivalent:

(a) θ ∈ A(x) for some x ∈ H .

(b) The sequence (xk)k∈N produced by the iteration (8.36) is bounded.

Proof:
(a) =⇒ (b) Let θ ∈ A(x) . By Lemma 8.47 we know that (�xn − x�2n∈N) is bounded.
Then (xk)k∈N is bounded.
(b) =⇒ (a) We follow [30]. Suppose that xk ∈ Br, k ∈ N0, for some r > 0 . Consider the
monotone operator

A � := A+ ∂h with h = δB2r
.

We know
∂h(x) = {θ}, if �z� < 2r,= B2r if �z� = 2r,= ∅ if �z� > 2r .

Then A �(x) = A(x), x ∈ B2r, T
� is a maximal monotone operator since A � is the sum of

two maximal monotone operators with dom(A) ∩ int(dom)(∂h) �= ∅ . Therefore we may
assume xk+1 = (I + skA

�)−1(xk) where (I + skA
�)−1 is single-valued too. But the domain

of A � is bounded and by Corollary 8.27 there exists some x ∈ dom(A �) with θ ∈ A(x) .
Since A �(x) = A(x) we have a solution of θ ∈ A(x) . �

Theorem 8.49. Let H be a Hilbert spacea, let A : H ⇒ H be a maximal monotone
operator and let (sk)k∈N be a sequence with

�∞
k=0 s

2
k = ∞ . Suppose that the sequence

(xk)k∈N0
produced by the iteration (8.36) is bounded then it converges weakly to a x ∈ H

with θ ∈ A(x) .

Proof:
(xk)k∈N0

is bounded. Let (xnk)k∈N0
be a weakly convergent subsequence; x := w−limk x

nk .

Due to (5) in Lemma 8.46 the series
�k

i=1 s
2
i�yi�2 is convergent. Since the sequence
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(s2k)k∈N is not summable there must hold lim infk �yk�2 = 0 . Since (�yk�2)k∈N is convergent
we must have limk y

k = θ . Now, we conclude ynk ∈ A(xnk+1, k ∈ N0, and since x :=
w− limk x

nk we obtain θ ∈ A(x) .
Let x � be another cluster point of (xk)k∈N0

; x � = w − liml x
nl . With the same argument

as above, θ ∈ A(x �) . Then the sequences (�xn − x�2n∈N), (�xn − x ��2n∈N) are convergent
due to Lemma 8.47. Due to

�xk, x− x �� = 1

2
(�xk − x�2 − �xk − x ��2 + �x�2 − �x ��2)

(�xk, x− x ��)k∈N is convergent. Then

�x|x− x �� = lim
k
�xnk |x− x �� = lim

l
�xnl |x− x �� = �x �|x− x �� .

This implies �x− x �� = 0 and therefore x = x � . Alltogether, this shows that the sequence
(xk)k∈N0

converges to x . �

The question whether the algoritm above converges strongly has been decidered by
Güler [17]. He introduced an example for which the convergence generated by the algo-
rithm (8.36) converges weakly, but not strongly.

Kamimura and Takahashi [19, 20] and Solodov and Svaiter [37] modified the algorithm
(8.36) in such a way that the iteration converges strongly.

Algorithm 8.1 Proximal algorithm of Solodov and Svaiter

Given a maximal monotone operator A : H ⇒ H where H is a Hilbert space. This
algorithm computes a sequence (xn)n∈N which converges strongly to a zero of A .

(1) Choose x0 ∈ H and set n := 0 .

(2) Find (yn, vn) ∈ gra(A) with θ = vn + 1
rn
(yn − xn) .

(3) Set Hn := {z ∈ H : �z− yn|vn� ≤ 0} .

(4) Set Wn := {z ∈ H : �z− xn|x0 − xn� ≤ 0} .

(5) Set xn+1 := PHn∩Wn .

(6) Set n := n+ 1 and go to line (2).

8.5 The proximal operator

Lemma 8.50. Let H be a Hilbert spoace and let f ∈ Γ0(H) . Let x,w ∈ H . Then the
following conditions are equivalent:

(a) w = proxf(x) .

(b) �y−w|x−w�+ f(w) ≤ f(y) for all y ∈ H .
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Proof:
Ad (a) =⇒ (b) Let y ∈ H . Set wt := ty+ (1− t)w, t ∈ (0, 1) . Then

f(w) ≤ f(wt) +
1

2
�wt − x�2 − 1

2
�x−w�2

≤ tf(y) + (1− t)f(w)− t�x−w|y−w�+ t2

2
�y−w�2 .

Then

�x−w|y−w� ≤ f(y) +
t2

2
�y−w�2 .

Taking t → 0 (b) follows.
Ad (b) =⇒ (a) Let y ∈ H . We obtain from (b)

f(w) +
1

2
�x−w�2 ≤ f(y) +

1

2
�x−w�2 + �x−w|w− y�+ 1

2
�w− y�2

= f(y) +
1

2
�x− y�2 .

This implies w = proxf(x) . �

Lemma 8.51. Let H be a Hilbert spoace and let f ∈ Γ0(H) . Then proxs,f, I − proxs,f are
firmly nonexpansive.

Proof:
It is enough to prove the result for s = 1 . Let x, y ∈ H and w = proxf(x), v = proxf(y) .
Then

�v−w|x−w�+ f(w) ≤ f(v) , �w− v|y− v�+ f(v) ≤ f(w) .

This implies w, v ∈ dom(f) and

0 ≤ �w− v|x−w− (y− v)� .

�

Theorem 8.52. Let H be a Hilbert space, let f ∈ Γ0(X ) and let s > 0 . Then the mapping
mors,f : H −→ H is Fréchet differentiable and we have

∇mors,f(x) =
1

s
(I− proxs,f)(x), x ∈ H .

Proof:
Let x, y ∈ H, w := proxs,f(x), v := proxs,f(y) . Then with the help of Lemma 8.50

mors,f(y)−mors,f(x) = f(v)− f(w) +
1

2s
(�y− v�2 + �x−w�2)

≥ (2�v−w|x−w�+ �y− v�2 − �x−w�2) 1
2s

= (�y− v− x+w�2 + 2�y− x|x−w�) 1
2s

≥ 1

s
�y− x|x−w� .
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In the same way one shows

mors,f(y)−mors,f(x) ≤
1

s
�y− x|y−w� .

Since the operator proxs,f is firmly nonexpansive we obtain

0 ≤ mors,f(y)−mors,f(x)−
1

s
�y− x|x−w�

≤ 1

s
�y− x|(y− v)− (x−w)�

≤ 1

s
(�y− x�2 − �v−w�2) ≤ 1

s
�y− x�2 .

This implies

lim
y→x

mors,f(y)−mors,f(x)− �y− x|(x−w)/s�
�y− x� = 0 .

�
Lemma 8.53. Let H be a Hilbert space, let f ∈ Γ0(H) and let s > 0 . consider fs : H �
u �−→ (sf+ j)(u) ∈ R̂ . Then f∗s is Fréchet differentiable and proxs,f = ∇f∗s .

Proof:
Since proxs,f = R(s,∂f) we have to show that

proxs,f = R(s,∂f) = (∂fs)
−1 .

Since fs is strongly convex, f∗s is Fréchet differentiable. �
Lemma 8.54. Let H be a Hilbert space and let g ∈ Γ0(H) be Fréchet differentiable. Then
for x, y ∈ dom(g) the following conditions are equivalent:

(a) �∇g(x)−∇g(y)� ≤ �x− y� .
(b) g(x) ≥ g(y) + �∇g(y)|x− y�+ 1

2
�∇g(x)−∇g(y)�2 .

(c) �∇g(x)−∇g(y)|x− y� ≥ �∇g(x)−∇g(y)�2 .
Proof:
The implication (a) =⇒ (b) is the harder part of the result. Thus, we prove only this
implication.
The function h : H � u �−→ 1

2
�u�2 + g(u) ∈ R̂ is convey. Then

1

2
�x− y�2 ≥ g(x)− g(y)− �∇|x− y� .

Fix y and set d(z) := g(z) − g(y) − �∇|z − y�, z ∈ H . Since g is convex, so is d . Since
∇d(z) = ∇g(z)−∇g(y) we have

�∇f(z)−∇d(x)� ≤ �z− x� , 1
2
�z− x�2 ≥ d(z)− d(x)− �∇d(z)|z− x� .

Choose z : x−∇g(x) +∇g(y) . Then

0 ≤ d(z) ≤ d(x)−
1

2
�∇g(x)−∇g(y)�2 .

�
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Theorem 8.55. Let H be a Hilbert space, let f ∈ Γ0(H), let β > 0 and set h := f∗−β−1j .

The the following are equivalent.

(a) f is Fréchet differentiable and ∇f is Lipschitz continuous with Lipschitz constant β .

(b) βj− f is convex.

(c) f∗ − β−1j is convex.

(d) h ∈ Γ0(H) and f = morβ−1h∗ .

(e) h ∈ Γ0(H) and ∇f = β(I− proxβ−1h∗) .

(f) f is Fréchet differentiable and

�∇f(x)−∇f(y)�2 ≤ β�x− y|∇f(x)−∇f(y)� , x, y ∈ H . (8.40)

Proof:
We follow [4].
Ad (a) =⇒ (b) Let x, y ∈ H . By the Cauchy-Schwarz inequality

�x− y|βx−∇f(x)− βy+∇f(y)� = β�x− y�2 − �x− y|∇f(x)−∇f(x)�
≥ �x− y�(β�x− y�− �∇f(x)−∇f(x)�) ≥ 0 .

Hence, ∇(βj− f) = βI−∇f is a monotone operator and it follows that βj− f is convex.
Ad (b) =⇒ (c) Set g := βj− f . Then g ∈ Γ0(H) and therefore g = g∗∗ . Accordingly,

f = βj− g = βj− g∗∗ = βj− sup
u∈H

(�·|u�− g∗(u)) = inf
u∈H

(βj− �·|u�+ g∗(u)) . (8.41)

Hence,

f∗ = sup
u∈H

(βj− �·|u�+ g∗(u))

= sup
u∈H

(β−1j(·+ u)− g∗(u))

= β−1j+ sup
u∈H

(β−1(�·|u�+ j(u))− g+(u)) ,

The last term is a supremum of affine functions and hence convex. Thus, h is convex.
Ad (c) =⇒ (b) Since f ∈ Γ0(H) and h is convex, we have h, h∗ ∈ Γ0(H) and

f = f∗∗ = (h+ β−1j)∗ = h∗ � βj = morβ−1,h∗ = βj− β(I− proxβ−1,h .

Ad (d) =⇒ (e) Obvious.
Ad (e) =⇒ (f) We know, proxβ,h is firmly nonexpansive. Hence, the assertion in (f)
follows.
Ad (f) =⇒ (a) Apply the Cauch-Schwarz inequality. �

Remark 8.56. The implication (a) =⇒ (b) is is the Baillon-Haddad theorem; see [2].
�

Lemma 8.57. Let X be a Banach space and let f ∈ Γ0(X ) . Then the subdifferential
∂f : X ⇒ X ∗ is a monotone operator.
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Proof:
Let (x, λ), (y, µ) ∈ gra(∂f) . By definition

f(y) ≥ f(x) + �λ, y− x� , f(x) ≥ f(y) + �µ, x− y�

with f(x), f(y) ∈ R . Adding up these inequalities, we obtain

f(y) + f(x) ≥ f(x) + �λ, y− x�+ f(y) + �µ, x− y�

from which we conclude �λ− µ, x− y� ≥ 0 . �

Theorem 8.58. Let X be a Banach space and let f ∈ Γ0(X ) . Then the subdifferential
∂f : X ⇒ X ∗ is a maximal monotone operator with dom(∂f) ⊂ dom(f) .

Proof:
We know from Lemma 8.57 that ∂f : X ⇒ X ∗ is a monotone operator. To prove maximal
monotonicity we want to argue with Lemma 8.11.
Let us suppose (x0, λ0) ∈ X × X ∗ is such that

�λ− λ0, x− x0� ≥ 0 for all λ ∈ ∂f(x), x ∈ X , (8.42)

holds true. We want to prove that λ0 ∈ ∂f(x0) .
Define f0 : X −→ R̂, j : X −→ R as follows: f0(x) := f(x + x0) − �λ0, x�, j(x) := 1

2
�x�2 .

Applying the duality result in Theorem 10.62 to f0 and j we conclude that there exists
µ ∈ X ∗ such that

inf
x∈X

(f0(x) + j(x)) = −f∗0(µ)−
1

2
�µ�2 (8.43)

and both sides in the equation above are finite. Then there exists a sequence (yn)n∈N
such that for every n ∈ N

1/n2 ≥ f0(yn) +
1

2
�yn�2 + f∗0(µ) +

1

2
�µ�2

≥ �µ, yn�+
1

2
�yn�2 +

1

2
�µ�2

≥ 1

2
(�yn�− �µ�)2 ≥ 0 (8.44)

where the second inequality follows from the Fenchel-Young inequality (10.34). This
implies

f0(yn) + f∗0(µ)− �µ, yn� ≤ 1/n2, n ∈ N .

Hence, µ ∈ ∂1/n2f0(yn) and by Theorem 10.47 (variational principle of Ekeland) it follows
that there exist sequences (zn)n∈N in X and (µn)n∈N in X ∗ such that

µn ∈ ∂f0(zn) , �µn − µ� ≤ 1/n , �zn − yn� ≤ 1/n .

Using the assumptions (8.42), (8.44) we obtain

lim
n

�yn� = �µ� , lim
n
�µ, yn� = −�µ�2 (8.45)

which, combined with the inequalities above yields µ = θ. Therefore, limn yn = θ. Since
f0 is lower semicontinuous, x = θ minimizes x �−→ f0(x) +

1
2
�x�2 and from (8.43) we

have f0(θ) + f∗0(θ) = 0 . Therefore θ ∈ ∂f0(θ) which is equivalent to λ0 ∈ ∂f(x0) . �
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Example 8.59. Let H be a Hilbert space, let T : H −→ H be a linear continuous
operator and let f, g∗ : H −→ R̂ be convex lower semicontinuous functions. Then the
mapping (in a vector-matrix-notation)

FT,f,g : H×H � (x, z) �−→
�
θ T ∗

T θ

��
x

z

�
+

�
∂f(x)
∂g∗(z)

�
∈ H×H

is monotone. Actually, FT,f,g is maximal monotone. �

Corollary 8.60. Let H be a Hilbert space and let f ∈ Γ0(H) . Then we have

R(∂f, s) = proxs,f(x) , x ∈ H, s > 0 .

Proof:

�

Let us collect some additional results concerning the proximal operator. Let H be a
Hilbert space and let f ∈ Γ0(H) . We know already that the subdifferential ∂f : H ⇒ H is
a maxmal monotone operator. Moreover,

• ∂f(x) �= ∅ for all x ∈ dom(f) such that f is continous in x .

• ∂f(x) is a closed convex subset of H .

• proxs,f = (I+ ∂f)−1(θ) = R(A, s)(θ) , s > 0 .

Let H be a Hilbert space and let A : H ⇒ H be a maximal monotone operator. Then
we know from the results above that the mapping

R(A, s) : H −→ H , x �−→ (sI+A)−1(x)

is well defined for each s > 0 . In the specific case that the maximal monotone operator
is given as the subdifferential of a function f ∈ Γ0(H) the resolvent of A := ∂f is given as

R(∂f, s)(x) = proxs,f(x) := argminu∈H(f(u) +
1

2s
�x− u�2) .

Theorem 8.61. Let X be a reflexive Banach space with duality map JX and let f ∈ Γ0(X ) .
Then

proxs,f(x) = (JX + s∂f)−1(θ) (8.46)

Proof:
Let x ∈ X . Then w = fs(x) if and only if θ ∈ (∂(f + 1

2s
�x − ·�2))(w) . Since the norm is

continuos in each point of dom(f) we may apply the identity for sums of subdifferentials
and obtain

θ ∈ ∂f(w) +
1

s
∂(

1

2
� · �2)(w) and hence w = fs(x) ∈ (JX + s∂f)−1(θ) .

�
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Theorem 8.62. Let H be a Hilbert space and let f ∈ Γ0(H) . Then

(a) proxs,f(x) = (I+ s∂f)−1(θ) .

(b) proxs,f : H −→ H is firmly nonexpansive for each s > 0 , that is

�proxs,f(x)− proxs,f(y)�2 ≤ �proxs,f(x)− proxs,f(y)|x− y� for all x, y ∈ H . (8.47)

(c) proxs,f : H −→ H is nonexpansive for each s > 0 , that is

�proxs,f(x)− proxs,f(y)� ≤ �x− y� for all x, y ∈ H . (8.48)

Proof:

�

8.6 Minimization by the proximal point method

8.7 Pseudomonotone operators

[18]

Definition 8.63. Let X be a Banach space and let A : X ⇒ X ∗ be a setvalued mapping.

(a) A is called pseudomonotone if for every (x, λ), (y, µ) ∈ gra(A) the following im-
plication holds:

�λ− µ, x− y� ≥ 0 =⇒ �µ, y− x� ≥ 0 .

(b) A is called quasimonotone if for every (x, λ), (y, µ) ∈ gra(A) the following impli-
cation holds:

�λ− µ, x− y� > 0 =⇒ �µ, y− x� ≥ 0 .

�
It is clear that every monotone operator is pseudomonotone, and every pseudomono-

tone operator is quasimonotone.
There is an important difference between monotone and pseudomonotone operators. If

A and B are monotone operators then the sum A+B is monotone. For pseudomonotone
operators this does not hold in general.

8.8 Splitting methods

Let H be a Hilbert space and let F : H ⇒ H be a maximal monotone operator. Again,
we want to solve the inclusion

θ ∈ F(x) for some x ∈ dom(F) . (8.49)

The main idea which we exploit in this section is a decomposition of F into a sum of two
maximal monotone operators A,B : H ⇒ H , called operator splitting. Then we have
to consider the inclusion

θ ∈ (A+ B)(x) for some x ∈ dom(A) ∩ dom(B) . (8.50)
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We introduce the resolvent operators

R(s,A) := (I+ sA)−1 , R(s, B) := (I+ sB)−1 ,

and the Caley operators

C(s,A) := rR(s,A)− I , C(s;B) := 2R(s, B) .

Here s is a scaling/regularization parameter. The key observation for the following devel-
opments are the following fact:

Lemma 8.64. Let H be a Hilbert space and let A,B : H ⇒ H be a maximal monotone
operators. Then R(s,A), R(s, B), C(s,A), C(s, B) are nonexpansive mappings and we have
the equivalence of the following conditions:

(a) θ ∈ (A+ B)(x)

(b) x = R(s, B)(z) with z = C(s,A) ◦ C(s, B)(z) .

Proof:
The assertions concerning the nonexpansivity of the mentioned mappings see ??.
Ad (b) =⇒ (a) We write

x = R(s, B)(z) , z � := 2x− z , x � = R(s,A)(z �) , z = 2x � − z � .

and conclude x = x � . Then 2x = z � + z and

2x = z � + z ∈ 2x+ s(A(x) + B(x)) .

Ad (a) =⇒ (b) Consider the conputational steps above in reverse order. �

Let x0 ∈ H be a starting point. Here are the
”
big two“of splitting methods:

Peaceman-Rachford

xk+1 := C(s,A) ◦ C(s, B)(xk) , k ∈ N0

This is undamped method. In general, the itaration does not converge; see [].

Douglas-Rachford

xk+1 :=
1

2
(I+ C(s,A) ◦ C(s, B))(xk) , k ∈ N0

Here α = 1
2
is a damping parameter. Clearly, other damping parameters α ∈ (0, 1)

can be applied. This method converges strongly when the inclusion θ ∈ (A+B)(x)
is solvable; see [].
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The Douglas-Rachford method can be realized as follows:

Algorithm 8.2 Douglas-Rachford splitting

Given maximal monotone operators A,B : H ⇒ H where H is a Hilbert space. This
algorithm computes a sequence (xn)n∈N which converges strongly to a zero of A + B .

The sequence (zn+1 − zn+1/2)n∈N can be considered as sequence of residuals and (xn)n∈N
is the sequence of the sum of residuals.

(1) Choose x0 ∈ H and set n := 0 .

(2) Set zn+1/2 := R(s, B)(xn) .

(3) Set xn+1/2 := 2zk+1/2 − xn .

(4) Set zn+1 := R(s,A)(xn+1/2 .

(5) Set xn+1 := xn + zn+1 − zn+1/2 .

(6) Set n := n+ 1 and go to line (2).

As we see, in the realization of the Douglas-Rachford in Algorithm 8.8 the operators
A,B are handeled separately.

In the case where both A and B in the Douglas-Rachford splitting method are single-
valued, the algorithm 8.8 reduces to the original Douglas-Rachford scheme in [11] for heat
conduction problems. It turns out that the algorithm 8.8 is the root of a number of other
effective methods.

[?] [?] [?] [15][?]

Many methods for specific problems can be extracted from the Douglas-Rachford algo-
rithm. Here is a list of methods which may considered under Douglas-Rachford approach.

Alternating direction method Here we want to solve in the Hilbert space H the
minimization problem

Minimize (f+ g)(u) subject to u ∈ H (8.51)

where f, g ∈ Γ0(H) . This can be done by solving the inclusion

θ ∈ (∂f+ ∂g)(x) for some x ∈ dom(f) ∩ dom(g) , (8.52)

i.e. A = ∂f, B := ∂g . Then R(s,A) = proxs,f, R(s, B) = proxs,g .

Constrained optimization Here the we want to solve in the Hilbert space H the the
contraint optimization problem

Minimize f(u) subject to u ∈ C (8.53)

where f ∈ Γ0(H) and C is a nonempty closed convex subset of H . This can be done
by solving the inclusion

θ ∈ (∂f+ ∂δC)(x) for some x ∈ dom(f) ∩ dom(g) , (8.54)

i.e. A = ∂f, B := ∂δC . Then R(s,A) = proxs,f, R(s, B) = PC .
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Dykstra’s algorithm We want to compute a common point of two nonempty closed
convex sets C,D in the Hilbert space H . we consider

Minimize θ subject to u ∈ C and u ∈ D . (8.55)

Then we have to realize the Douglas-Rachford algorithm with A := ∂δC and B :=
∂δD . Then R(s,A) = PC, R(s, B) = PD and the algoritm becomes Dykstra’s alter-
nating method.

Let us now analyze the convergence of the Douglas-Rachford algorithm. Clearly, x+ ∈
H solves the problem (8.50) if and only if

x∗ = R(s,A)(x∗ − s)

We will measure of the accuracy
We will show that the convergence order

8.9 Exercises

1.) Let X be a Banach space and let f : X −→ X be strongly convex, i.e. f− c
2
� · �2

is convex for some c > 0 . Show that the subdifferential of f is strongly monotone.

2.) LetQ be a positive definite matrix in Rn,n . Show that for each y ∈ Rn the mapping

A : Rn � x �−→ Qx+ y ∈ Rn

is a strongly monotone operator.

3.) Let Q be a positive semidefinite matrix in Rn,n . Show that for each y ∈ Rn the
mapping

A : Rn � x �−→ Qx+ y ∈ Rn

is a cocoercive operator with parameter c > 0 if the largest eigenvalue of A is not
bigger than c−1 .

4.) Show that cocoercivity implies Lipschitz continuity.

5.) Show that Lipschitz continuity of a mapping does not imply cocoercivity.

6.) Find a continuous solution of the differentail inclusion

−x � ∈ sign(x) , x(0) = 1

7.) Let A ∈ Rn,n . Show C(A, s) = R(A, s)R(A,−s) .

8.) Consider

f̃ : R � x �−→
�
2x x < 2

3x x ≥ 2
∈ R , f : R � x �−→





2x x < 2

[4, 6] x = 2

3x x > 2

∈ R .

Show hat f defines a monotone operator on R and that f̃ is its maximal monotone
extension.
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9.) Compute the Yosida approximation of f̃ in the exercise above.

10.) Let H be a Hilbert space and let f, g ∈ Γ0(H) . Find a condition on f, g which
ensures proxs,f(x) = proxsg(x) for all s > 0, x ∈ H .

11.) Let H be the euclidean space Rn . We consider on H the functions

f((x1, . . . , xn)) :=

n�

i=1

|xi| , g((x1, . . . , xn)) :=

n−1�

i=1

|xi − xi+1| .

Verify proxf+g = proxf ◦ proxg .
12.) Let H be the euclidean space Rn, let y ∈ Rn, b ∈ R, and let f : Rn � x �−→

�y|x�+ b ∈ R . Compute proxs,f .

13.) Let H be the euclidean space Rn let f be the l1-norm. Prove proxs,f = I−P[−s,s]n .

14.) Let H be a Hilbert space and let f, g ∈ Γ0(H) . Consider F : H2 � (u, v) �−→
f(u) + g(v) ∈ R and show

proxs,f(u, v) = (proxs,f(u), proxsg(v)) , u.v ∈ H .

15.) Let A be the rotation in the euclidean space R2 by a an angle φ ∈ [−π/2,π/2] .
Show that A is a monotone operator on R2 .

16.) Let A be the rotation in the euclidean space R2 by a an angle φ ∈ [−π/2,π/2] .
Show that A is a cyclically monotone operator on R2 .

17.) Consider in the euclidean space Rn the function f : Rn � x �−→ �x|Ax�+ �b|x�+
c ∈ R with A ∈ Rn,n, b ∈ Rn, c ∈ R . Compute proxs,f(x), x ∈ Rn .

18.) Let H be a Hilbert space, let C be a nonempty closed convex subset of H and let
F : C −→ C be nonexpansive. Show that A := I − T is monotone. When is A

maximal monotone?

19.) Let X be a Banach space and let f ∈ Γ0(X ) . Show:

(1) proxh(x) = s−1(proxs2f∗(sx+ z)− z), x ∈ X , if h(x) := f(sx+ z), x ∈ X .

(2) proxsf∗(λ) = λ− s proxs−1f(s
−1λ), λ ∈ X ∗ .

20.) Let f : R −→ R . Compute proxs,f for

f(t) :=
1

2
t2 , f(t) := |t| , f(t) := δ[−1,1] .

21.) Let X be a Banach space and let f ∈ Γ0(X ) . Show: mor∗s,f(λ) = f∗(λ)+ s
2
�λ�2, λ ∈

X ∗, s > 0 .

22.) Let H be a Hilbert space, let C ⊂ H be a nonempty closed convex set, and let
F : C −→ Cbe a nonexpansive operator. Show that A := I−T defines a monotone
operator. When is A a maximal monotone operator ?

23.) Consider f : R −→ R, defined by

f(x :=

�
−x2 if x < 0

x2 + 2 if x > 0
.

Show that f is not maximal monotone. What is the the maximal monotone exten-
sion?
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24.) Let f : R −→ R be monotone increasing and continuous. Show: f is maximal
monotone.

25.) Let X be a Banach space and let f ∈ Γ0(X ) . Show for s >

mors,f =
1

2s
�x�2 − 1

s
(
1

2
�x�2 + sf∗(x)) , x ∈ X .
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