
Chapter 6

Metric projection methods

The alternating projection method is an algorithm for computing a point in the inter-
section of some convex sets. The common feature of these methods is that they use
compositions of metric projections onto closed convex subsets of a Hilbert space or a Ba-
nach space. The most impact is given 1933 by a paper of J. von Neumann (see [30] for
a reprint of this paper) which describes the method in Hilbert spaces. Metric projection
method in a finite-dimensional space were analyzed for the first time by S. Kaczmarz [26]
and G. Cimmino [13]. A breakthrough of these methods was the application in the first
tomography scanner by G.N. Hounsfield [24].

In this chapter we consider these methods, present some extensions and variants and
document the progress made during the last years. We restrict ourselves mainly to prob-
lems formulated in Hilbert spaces.

6.1 Alternating projection method – an introduction

Let X be a Hilbert space and let C1, . . . , Cm sets in H . The cycling projection method
consists in the construction of a sequence (xk)k∈N0

generated by

x0 �−→ x1 := PC1
(x0) �−→ x2 := PC2

(x1) �−→ · · · �−→ xm := PCm(x
m−1) �−→

�−→ xm+1 := PC1
(xm) �−→ xm+2 := PC2

(xm+1) �−→ · · · (6.1)

where x0 is used as a starting point of the iteration. We know that at least in the case
that X is a Hilbert space each metric projection PCi

is nonexpansive. In the case m = 2

we call the cycling method an alternating projection method.
As we see, we use the sets C1, . . . , Cm in a cyclic way. Clearly, the convergence of

the sequence (xk)k∈N0
is in the focus of our considerations in this chapter. The following

questions are of main interest:

(1) Does (xk)k∈N converge (strongly, weakly) to a point z ?

(2) Belongs the point z to the set C := ∩m
i=1Ci ?

(3) Is the point z in (1) a specific point of C ?

(4) How depends the point z in (1) on the starting point x0 ?

(5) What is the result when C is empty?
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(6) How quick converge the sequence (xn)n∈N (when it converges)?

Let H be a Hilbert space, consider the case m = 2 and let C := C1,D := C2 nonempty
closed convex subsets of H . Then the metric projections PC, PD are well defined. The
procedure (6.1) may be written down as follows:

x2n+2 := PD(x
2n+1) , x2n+1 := PC(x

2n) , n ∈ N0 , x
0 := x ∈ X given . (6.2)

This iteration generates a sequence of points xk ∈ H . If this sequence converges we expect
that it converge to a point z in C ∩D . Thus, a necessary condition is that C ∩D should
nonempty. Indeed, if C,D are closed subspaces, convergence can be proved; see Section
6.2. But the method of alternating projection is also useful when the sets C,D do not
intersect. In this case we should expect that the sequences (x2n+1)n∈N0

, (x2n)n∈N0
converge

to points x∗ ∈ C, y∗ ∈ D respectively, which satisfy �x∗−y∗� = dist(C,D) . Unfortunately,
the convergence of the sequence (xk)k∈N does not hold in general; see Section 6.5. In this
case only weak convergence can be proved; see [11]. There is a counterexample which
shows that convergence in norm does not hold in general; see [25].

In the case that the problem is considered in a Banach space which is not a Hilbert
space the convergence analysis of (6.2) is much more difficult and many questions are
still open; see [1, 27]. The main reason is that the metric projections PC, PD are not
nonexpansive in general.

The sequence (zk := x2k)k∈N0
generated by (6.2) is the orbit of the operator T : PDPC:

zk = Tk(x0), k ∈ N .1 As we know the metric projections PC, PD are well-studied nonex-
pansive mappings. As a consequence, the composite mapping T is nonexpansive too. This
fact is the motivation to consider orbits of nonexpansive mappings in the next chapter.

Due to its conceptual simplicity and elegance of the projection method, it is not sur-
prising that this method has been rediscovered and generalized many times. There are
many variations on and extensions of the basic alternating projection method. We sketch
a few of them. All variants are considered in Hilbert spaces.

Dykstra’s (1980) algorithm is a method that computes a point in the intersection
of convex sets; see [8, 18]. It differs from the alternating projection method in that there
are intermediate steps. The key difference between Dykstra’s algorithm and the standard
alternating projection method occurs when there is more than one point in the intersection
of the two sets. In this case, the alternating projection method gives some arbitrary point
in this intersection, whereas Dykstra’s algorithm gives a specific point: the projection of
the initial point x0 onto the intersection. Dykstra’s algorithm may be extended to the
case of projecting onto more than two sets.

When the convex sets C1, . . . , Cm are affine subsets in an euclidean space Rn then
this variant is nowadays called the ART-method. Kaczmarz studied such a method in
1937 (see [26]) and Cimmino in 1938 (see [13]) too. This method was successfully applied
in computerized tomography where one has to solve a (mostly over-determined) linear
system of equations; see Section 5.9.

A big class of new methods may be designed by the method of relaxation. It can be
observed that averaging of the projections may generate mappings with better behavior.

1Mostly, we use for the composition f ◦ g of f, g the short notation fg .
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Each of the variations above may be transformed into a randomized method: in each
step the number i of the projection PCi

used to update the approximation is picked at
random. Thus, we have a to choose a

”
probability measure“ on the different projections.

6.2 Alternating projection method on subspaces

Let H be a Hilbert space and let U,V be closed linear subspaces of H . Clearly, U ∩
V is a closed linear subspace of H too. It is easily seen by geometric inspection that
the projection PU, PV do not commute in general. The alternate projection method
consists in the following iteration:

x2n+2 := PV(x
2n+1) , x2n+1 := PU(x

2n) , n ∈ N0 , x
0 := x ∈ H given . (6.3)

Theorem 6.1 (von Neumann, 1933). Let H be a Hilbert space space and let U,V be closed
linear subspaces of H . Consider the sequence (xk)k∈N0

defined by the alternate projection
method (6.3). Then the sequence (xk)k∈N converges in norm to PU∩V(x0) .

Proof:
We follow [7].
Let W := U ∩ V . We have x2n+1 ∈ U, x2n+2 ∈ V,n ∈ N0 . We conclude from Theorem 3.3
(5) that xk − xk+1 is orthogonal to xk+1 and hence by the law of Pythagoras

�xn�2 = �xn+1�2 + �xn − xn+1�2 , n ∈ N . (6.4)

Therefore,

(�xn�)n∈N is decreasing, nonnegative and hence convergent. (6.5)

Let us prove by induction the following assertion:

�xk − xl�2 ≤ �xk�2 − �xl�2 , 1 ≤ k = l− n, k, l ∈ N, for all n ∈ N0 . (6.6)

Clearly (6.6) holds for n = 0 and also for n = 1 by (6.4). So assume (6.6) holds true for
some n ≥ 1 . Take k, l ∈ N with 1 ≤ k = l− (n+ 1) .
Case 1: n is even. Then n+ 1 = l− k is odd.
If l is odd, then both xk+1 = PU(x

k) and xl = PU(x
l−1) belong to U, whereas xk − xk+1 =

(I− PU)x
k belongs to U⊥; see Theorem 3.3 (5). Hence

�xk − xk+1|xk+1 − xl� = 0 . (6.7)

If l is even, we argue similar with U replaced by V and we derive (6.7) once again. Using
(6.7), (6.4) and the induction hypothesis, we now obtain

�xk − xl�2 = �xk − xk+1�2 + �xk+1 − xl�2 = �xk�2 − �xk+1�2 + �xk+1 − xl�2
≤ �xk�2 − �xk+1�2 + �xk+1�2 − �xl�2 = �xk�2 − �xl�2

Case 2: n is odd. Then n+ 1 = l− k is even.
By a similar argumentation as above we obtain

�xk − xl|xl − xl−1� = 0 . (6.8)
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This implies �xk−xl−1�2 = �xk−xl�2+�xl−xl−1�2 . With (6.4), the induction hypothesis
and (6.8) we conclude

�xk − xl�2 = �xk − xl−1�2 + �xl − xl−1�2 = �xk − xl−1�2 − �xl−1�2 + �xl�2
≤ �xk�2 − �xl−1�2 + �xl�2 − �xl−1�2 = �xk�2 − �xl�2

Now, the induction proof is complete.
By (6.5) and (6.6), the sequence (xn)n∈N is a Cauchy sequence and hence convergent. Let
z := limn x

n . Since x2n+1 belongs to U, x2n+2 belongs to V we conclude z ∈ W := U ∩ V .

Therefore, by the continuity of PW,

lim
n

PW(xn) = PW(z) = z . (6.9)

Choose n ∈ N, t ∈ R, and set u := (1 − t)PW(xn) + tPW(xn+1) . Then u ∈ W and
therefore PU(u) = PV(u) = u . Moreover, we have xn+1 ∈ {PU(x

n), PV(x
n)} . Since PU, PV

are nonexpansive, we obtain

�xn+1 − u� ≤ �xn − u� .

After squaring and simplifying, this inequality turns into

(1− 2t)�PW(xn+1)− PW(xn)�2 + �PW⊥(xn)�2 ≤ �PW⊥(xn)�2 . (6.10)

Since n and t where chosen arbitrarily, we conclude

PW(xn) = PW(xn+1) , n ∈ N . (6.11)

Combining (6.9) and (6.11) we obtain limn x
n = PW(x0) . �

Algorithm 6.1 Alternate projection method for subspaces

Given two closed linear subspaces U,V of a Hilbert space H and a starting vector x0 ∈
H . Moreover given an accuracy parameter ε > 0 . This algorithm computes a sequence
x0, x1, , . . . , xN such that xN ∈ U, xN+1 ∈ V with �xN − xN−1� ≤ ε and �xN+1 − xN� ≤ ε;
see Theorem 6.1.

(1) k := 0; u := v := θ .

(2) xk+1 := PU(x
k) and xk+2 := PV(x

k+1) .

(3) If �xk+1 − u� ≤ ε and �xk+2 − v� ≤ ε set N := k− 1 and go to line (6).

(4) Set u := xk+1, v := xk+2 .

(5) Set k := k+ 1 and go to line (2).

(6) STOP with an approximation xN ∈ U, xN+1 ∈ V .

By the Theorem of Banach Steinhaus we conclude from Theorem 6.1 that limn(PUPV)
n

converges in norm to PV∩U . Since U∩V = V ∩U, by interchanging U and V in the proof
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of Theorem 6.1 we also have limn(PUPV)
n = PU∩V . That is, the projections can be applied

in either order.

It is straightforward to extend Theorem 6.1 to closed affine subspaces. The idea is
geometric: translate the affine spaces so they become subspaces, perform the method of
alternating projections and then reverse the tranlation.

Corollary 6.2. Let H be a Hilbert space space and let C,D be closed affine subspaces of
H such that C ∩D is nonempty. Then limn(PCPD)

nx = PC∩Dx for all x ∈ H .

Proof:
Let z ∈ C ∩D . Then U := C − z, V := D − z are closed subspaces. Applying Theorem
(6.1) twice we obtain for each x ∈ H

(PCPD)(x) = PC(PD(x)) = PC(PU(x−z)+z) = PV(PU(x−z)+z−z)+z = PV(PU(x−z))+z .

Continuing we obtain
(PCPD)

n(x) = (PUPV)
n(x− z)) + z .

By Theorem (6.1)

lim
n
(PCPD)

n(x) = lim
n
(PUPV)

n(x− z) + z = PC∩D(x) .

�

Theorem 6.3 (Halperin, 1962). Let H be a Hilbert space space and let U1, . . . , Um be
closed linear subspaces of H, let Pi := PUi

, i = 1, . . . ,m, and let U := ∩m
i=1Ui . Then

lim
n
(Pm · · ·P1)

nx = PUx for all x ∈ H .

Proof:
This result was proved by Halperin in [22]. We transfer the proof to the next chapter
when we consider some general results for nonexpansive mappings. �

The results of Theorem 6.3 and Corollary 6.2 are not attainable in the context of
Banach spaces since metric projections (when they exist) are not linear nonexpansive
orthogonal projections but we have an alternative result.

Theorem 6.4 (Bruck and Reich, 1977). Let X be a uniformly convex Banach space space
and let P1 . . . , Pm linear continuous mappings with

�Pi� = 1, PiPi = Pi, i = 1, . . . ,m .

Let T := Pm · · ·P1 . Then the sequence (Tn)n∈N converges to T∞ ∈ B(X ) where T∞ is a
projection onto ∩m

i=1ran(Pi) with norm 1.

Proof:
For the proof we refer to [12]. �

Remark 6.5. Theorem 6.4 holds true if we replace the uniformly convex Banach space X
by a uniformly smooth Banach space; see [4]. Remember the

”
duality“ concerning uniform

convexity and uniform smoothness; see Theorem 4.18. �
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6.3 Alternating projection method for subspaces:

order of convergence

Let H be a Hilbert space and let U1, . . . , Um be closed linear subspaces of H . As we know,
each metric projection Pi := PUi

is a linear orthogonal projection. Set U := ∩m
i=1Ui . From

Theorem 6.3 we know

lim
n
(Pm · · ·P1)

nx = PU(x) for all x ∈ H . (6.12)

It is important for applications to know how fast the algorithm of alternating projections
converges. This question can be analyzed in terms of the angle between linear subspaces
([20], [17]). Before we introduce these quantities, let us collect some results concerning
the interplay of two projections on subspaces.

Lemma 6.6. Let H be a Hilbert space and let V,W be closed linear subspaces of H . Let
PV, PW, PV∩W be the associated orthogonal projections. Then:

(1) PVPV∩W = PV∩W = PV∩WPV .

(2) PVP(V∩W)⊥ = PV∩(V∩W)⊥ = P(V∩W)⊥PV .

(3) PVPW = PWPV if and only if PVPW = PV∩W .

(4) PVPW = θ if and only if PWPV = θ .

(5) PVPW = PW if and only if PWPV = PW .

(6) PWPV − PV∩W = PWPVP(V∩)⊥ .

Proof:
Ad (1) We have V ∩ W ⊂ V . Then the result follows from the reduction principle; see
Theorem 3.4.
Ad (2) Since PVPV∩W = PV∩WPV (see (1)) and P(V∩W)⊥ = PV∩W we obtain PVP(V∩W)⊥ =
PV∩(V∩W)⊥ as follows: Let x ∈ H and z = PVP(V∩W)⊥(x) . Then z = PVP(V∩W)⊥(z) and

PV∩(V∩W)⊥(x) = PVP(V∩W)⊥PV∩(V∩W)⊥(x) = PVP(V∩W)⊥(x) = z

Ad (3) If z = PVPWx then z = PWPVz and we obtain z ∈ V ∩W, PV∩W(z) = z . Now, with
(a)

z = PV∩Wz = PV∩WPVPWx = PVPWPV∩Wx = PV∩Wx .

Conversely, if z = PV∩Wx then z ∈ V ∩W and therefore PVPWz = z . Then with (a)

z = PVPWz = PVPWPV∩Wx = PV∩Wx .

If PVPW = PV∩W then PWPV = (PVPW)∗ = (PV∩W)∗ = PV∩W = PVPW .

Ad (c), (d) It is enough to prove (d) .

PVPW = PW ⇐⇒ PWPV = (PVPW)∗ = (PW)∗ = PW .

�
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Definition 6.7 (Friederichs, 1937). Let U1,U2 be closed linear subspaces of a Hilbert
space H ; set U := U1 ∩ U2 . The Friedrichs-angle between the subspaces U1 and U2 is
defined to be the angle in [0,π/2] whose cosine is given by

c(U1,U2) := sup
�
�u, v� : u ∈ U1 ∩U⊥ ∩ B1, v ∈ U2 ∩U⊥ ∩ B1

�
.

�

Definition 6.8 (Diximier, 1949). Let U1,U2 be closed subspaces of a Hilbert space H .

The Dixmier-angle between the subspaces U1 and U2 is defined to be the angle in [0,π/2]
whose cosine is given by

c0(U1,U2) := sup
�
�u, v� : u ∈ U1 ∩ B1, v ∈ U2 ∩ B1

�
.

�

Lemma 6.9. Let U1,U2 be closed linear subspaces of a Hilbert space H ; set U := U1∩U2 .

Then we have:

(1) If U1 ∩U2 = {θ} then c0(U1,U2) = c(U1,U2) .

(2) 0 ≤ c(U1,U2) ≤ c0(U1,U2) ≤ 1 .

(3) c0(U1,U2) = c0(U2,U1) , c(U1,U2) = c(U2,U1) .

(4) c(U1,U2) = c0(U1 ∩U⊥, U2 ∩U⊥) .

(5) |�x, y�| ≤ c0(U1,U2)�x��y� , x ∈ U1, y ∈ U2 . (”
Cauchy Schwarz inequality“)

Proof:
These assertions are easy to verify. �

Lemma 6.10. Let U1,U2 be closed linear subspaces of a Hilbert space H ; set U := U1∩U2 .

Then we have:

(1) c0(U1,U2) = �PU1
PU2

� = �PU2
PU1

� = �PU2
PU1

PU2
� 1

2 = �PU1
PU2

PU1
� 1

2 .

(2) PU1
PU = PU2

PU = PU , PU1
PU⊥ = PU1∩U⊥ , PU2

PU⊥ = PU2∩U⊥ .

(3) PU2
PU1

− PU = PU2
PU1

PU⊥ .

(4) c(U1,U2) = �PU2
PU1

− PU� = �PU2
PU1

PU⊥� .
Proof:
Ad (1) We have

c0(U1,U2) = sup
�
�u, v� : u ∈ U1 ∩ B1, v ∈ U2 ∩ B1

�

= sup
�
�PU1

x, PU2
y� : x ∈ B1, y ∈ B1

�

= sup
�
�x, PU1

PU2
y� : x ∈ B1, y ∈ B1

�

= �PU1
PU2

� .

The second equality follows from

c0(U1,U2) = c0(U2,U1) = �PU2
PU1

� = �(PU2
PU1

)(PU2
PU1

)∗� 1
2 = �PU2

PU1
PU2

� 1
2 .
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Ad (9) Using (7),(8) we obtain

c(U1,U2) = c0(U1 ∩U⊥, U2 ∩U⊥) = �PU1∩U⊥PU2∩U⊥�
= �PU1

PU⊥PU2
PU⊥� = �PU1

PU2
PU⊥�

= �PU1
PU2

(I− PU)� = �PU1
PU2

− PU�
�

Corollary 6.11. Let U1,U2 be closed linear subspaces of a Hilbert space H ; set U :=
U1 ∩U2 . Then

�(PU2
PU1

)n − PU� = �(PU2
PU1

PU⊥)n� ≤ c(U1,U2)
n , n ∈ N. (6.13)

Proof:
It is enough to prove (PU2

PU1
)n − PU = (PU2

PU1
PU⊥)n, n ∈ N . We do this by induction.

The case n = 1 is already clear. Let the identity hold for n ∈ N . Then

(PU2
PU1

)n+1 − PU = (PU2
PU1

)n+1 − PU2
PU1

PU

= PU2
PU1

((PU2
PU1

)n − PU)

= PU2
PU1

(PU2
PU1

PU⊥)n

= (PU2
PU1

)(PU⊥)(PU2
PU1

PU⊥)n

= (PU2
PU1

PU⊥)n+1 .

In the third line we have used that PUi
and PU⊥ commute. �

The bound for the norm �(PU2
PU1

)n − PU� obtained in Corollary 6.11 is not sharp.

Theorem 6.12 (Aronszajn, 1955). Let H be a Hilbert space and let U1,U2 be closed
subspaces of H ;U := U1 ∩U2 . We set P1 := PU1

, P2 := PU2
. Then

�(P2P1)
n − PU� ≤ c(U1,U2)

2n−1 , n ∈ N . (6.14)

Proof:
See [2]. We omit the proof since we present immediately a result which shows that in
(6.14) equality holds. �
Theorem 6.13 (Kayalar and Weinert, 1965). Let H be a Hilbert space and let U1,U2 be
closed subspaces of H ;U := U1 ∩U2 . Then

�(P2P1)
n − PU� = c(U1,U2)

2n−1 , n ∈ N . (6.15)

Proof:
We set P1 := PU1

, P2 := PU2
andQi := PiPU⊥ , i = 1, 2 . ThenQi = PUi∩U⊥ = PU1∩U⊥PUi

, i =
1, 2, due to the reduction principle (Ui ∩U⊥ ⊂ Ui); see Theorem 3.4. From the proof of
Corollary 6.11 we know that (PU2

PU1
)n − PU = (PU2

PU1
PU⊥)n, n ∈ N , holds. Then for

n ∈ N

�(PU2
PU1

)n − PU�2 = �(PU2
PU1

PU⊥)n�2 = �(PU2
PU1

PU⊥)n((PU2
PU1

PU⊥)∗)n�
= �(Q2Q1)

n(Q1Q2)
n� = �(Q2Q1)

n((Q2Q1)
∗)n�

= �(Q2Q1Q2)
2n−1� = �(Q2Q1Q1Q2)

2n−1�
= �((Q2Q1)(Q2Q1)

∗)2n−1� = �Q2Q1�2(2n−1)

= c(U1,U2)
2(2n−1)
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�

From (6.15) we know that the sequence (P2P1)
n converges

”
quickly“ to P if c(U1,U2) <

1 ; the rate of convergence is then of a geometrical progression. Notice that we have the
following equivalences (see the Theorem 6.17 below):

c(U1,U2) < 1 ⇐⇒ U1 +U2 is closed ⇐⇒ U⊥
1 +U⊥

2 is closed . (6.16)

If U1 + U2 is not closed then the convergence of (P2P1)
n to P may be

”
arbitrary“ slow;

see [6].

Theorem 6.14. Let H be a Hilbert space and let U1,U2 be closed subspaces of H ;U :=
U1 ∩U2 . Then the following statements are equivalent:

(a) c(U1,U2) < 1 .

(b) U1 +U2 is closed.

(c) U1 ∩U⊥ +U2 ∩U⊥ is closed.

(d) U⊥
1 +U⊥

2 is closed.

Proof:
Ad (1) ⇐⇒ (2) Since c(U1,U2) = c0(U1 ∩U⊥, U2 ∩U⊥) and U1 ∩U⊥ ∩U2 ∩U⊥ = {θ},

it follows that c(U1,U2) < 1 holds if and only if U1 ∩U⊥ +U2 ∩U⊥ is closed.
Ad (2) ⇐⇒ (3) Let Y := U1∩U⊥ and Z := U2∩U⊥ . We must show that Y+Z is closed
if and only if U1 +U2 is closed.
Obviously, Y + Z ⊂ (U1 +U2) ∩U⊥ . Let x ∈ (U1 +U2) ∩U⊥ . Then x = y + z for some
y ∈ U1, z ∈ U2 . Since x ∈ U⊥ we have PUz = θ . Due to

x = x− PUx = y− PUy+ z− PUz

we have x ∈ U1 ∩U⊥ +U2 ∩U⊥ = Y + Z . Thus, we have shown

Y + Z = (U1 +U2) ∩U⊥ .

Obviously, Y + Z +U ⊂ U1 +U2 +U = U1 = U2 . Let x ∈ U1 +U2 . Then x = y + z for
some y ∈ U1, z ∈ U2, and

x = PUx+ PU⊥x = PUx+ PU⊥y+ PU⊥z = PUx+ (y− PUy) +U2 ∩U⊥ .

This shows x ∈ U+U1 ∩U⊥ +U2 ∩U⊥ = Y + Z+U1 +U . Thus, we have shown

U1 +U2 = Y + Z+U .

Now suppose Y + Z is closed. Then from U1 + U2 = Y + Z + U and the fact that
Y+Z ⊂ U⊥, it follows that U1+U2 is closed. Conversely, if U1+U2 is closed, the relation
Y + Z = (U1 +U2) ∩U⊥ implies that Y + Z is closed.
The proof of (3) ⇐⇒ (4) is left to the reader. �

Lemma 6.15. Let H be a Hilbert space and let V,W be closed linear subspaces of H . Let
PV, PW, PV∩W be the associated orthogonal projections. Then:
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(a) PVPW − PV∩W = PVPWP(V∩W)⊥ .

Proof:
Ad (b) We have P(V∩W)⊥PW = PWP(V∩W)⊥ if and only PV∩WPW = PWPV∩W . Since V∩W ⊂
W and W⊥ ⊂ (V ∩W)⊥ it is easy to see that PV∩WPW = PWPV∩W .

�

Lemma 6.16. Let H be a Hilbert space and let V,W be closed linear subspaces of H . Let
PV, PW, PV∩W be the associated orthogonal projections. Then:

(a) If V ⊂ W⊥ then V +W is closed and PV+W = PV + PW .

(b) If PVPW = PWPV then PV+W = PV + PW − PVPW .

Proof:
Ad (a) We have

�PVPWx|y� = �PWx|PVy� = 0 for all x, y ∈ H .

This implies PVPW = θ and PWPV = θ . We obtain (PV + PW)2 = P2
V + P2

W = PV + PW .

This shows that PV + PW is a projection.
Let x ∈ V, y ∈ W . Then x + y ∈ V +W and PVx = x, PWy = y, PVy = θ, PWy = y . We
conclude (PV + PW)(x+ y) = x+ y .

Let z ∈ (V +W)⊥ . Then

�(PV + PW)z|w� = �z|(PV + PW)w� = �z|PVw+ PW)w� for all w ∈ H .

Therefore, PV + PW)(z) = θ . Alltogether, we have that PV + PW = PV+W .

If (vn + wn)n∈N is a sequence in V + W (vn ∈ V,wn ∈ W,n ∈ N,) which converges to
z ∈ H then PV⊥(vn +wn) = PV⊥(wn) = wn since W ⊂ V⊥ . Therefore (wn)n∈N converges
to w := PV⊥z ∈ W and (vn)n∈N converges to z−w . Since V is closed, z−w ∈ V . �

Theorem 6.17. Let H be a Hilbert space and let V,W be closed subspaces of H . Then
the following statements are equivalent:

(a) c(V,W) < 1 .

(b) V +W is closed.

Proof:
We show that, without loss of generality, we may assume that V∩W = {θ} . If V∩W �= {θ}

then we may write
V = V1 ⊕ V ∩W , W = W1 ⊕ V ∩W

where

V1 := {u ∈ V : �u|z� = 0 for all z ∈ V ∩W} , W1 := {v ∈ W : �v|z� = 0 for all z ∈ V ∩W} .

Then
V +W = (V1 ⊕ V ∩W) +W1 ⊕ V ∩W = (V1 +W1)⊕ V ∩W .

Thus, V + W is closed if and only if V1 + W1 is closed, where V1 ∩ W1 = {θ} . Thus we
may prove the equivalence under the additional assumption that V ∩ W = {θ} . Then
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c(V,W) < 1 if and only if c0(V,W) < 1 .

Ad (a) =⇒ (b) Consider tha mapping

T : V ×W � (v,w) �−→ v+w ∈ V +W .

T is linear, surjective and injective since V ∩W = {θ} . We show that T is bounded.

V × W is a Banach space endowed with the norm �(v,w)� := (�v�2 + �w�2) 1
2 . Let

v ∈ V,w ∈ W . Then

�T(v,w)�2 = �v+w|v+w� = �v�2 + 2�v|w�+ �w�2
≤ �v�2 + 2�v��w�+ �w�2 ≤ �v�2 + �v�2 + �w�2 + �w�2
= 2�(v,w)�2

This shows T(v,w)� ≤
√
2�(v,w)� , (v,w) ∈ V ×W . By the open mapping theorem, T

has a bounded inverse, that is, there exists d > 0 such that

d�(v,w)� ≤ �T(v,w)� = �v+w� ≤
√
2�(v,w)� , v ∈ V,w ∈ W .

Consequentely,

d2(�v�2 + �w�2) = d2�(v,w)�2 ≤ �v+w�2 = 2�v�+ 2�v|w�+ �w�2 .

Hence,
(c2 − 1)(�v�2 + �w�2) ≤ 2�v|w� , v ∈ V,w ∈ W .

and
1

2
c2 − 1 ≤ �v|w� , v ∈ V ∩ B1,w ∈ W ∩ B1 .

This implies

1−
1

2
c2 ≥ �v,w� , v ∈ V ∩ B1,w ∈ W ∩ B1 .

Notice that W is a linear subspace. Then

c(V,W) ≤ 1−
1

2
c2 < 1 .

Ad (b) ⇐⇒ (a) We have c ∈ [0, 1) with

�v|w� ≤ c�v��w� , v ∈ V ∩ B1,w ∈ W ∩ B1 .

Then
−2c�v��w� ≤ 2�v|w� ≤ 2c�v��w� , v ∈ V ∩ B1,w ∈ W ∩ B1 . (6.17)

Since V,W are convex and closed these sets are weakly closed.
Let (vk)k∈N be a sequence in V, (wk)k∈N a sequence in W such that the sequence (zk)k∈N
with zk = vk + wk, k ∈ N, converges to some z ∈ H . We have to show that z can
decomposed as follows: z = v+w with v ∈ V,w ∈ W .

First we show that (vk)k∈N, (wk)k∈N are bounded sequnces. We have

�zk�2 = �vk +wk�2 = �vk�2 + �wk�2 + 2�vk|wk�
≥ �vk�2 + �wk�2 − 2c�vk��wk�
= (c�vk�− �wk�)2 + (1− c)�wk�2
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and therefore

�zk�2 = �vk +wk�2 ≥ (c�vk�− �wk�)2 + (1− c)�wk�2 .

Interchanging vk and wk we also obtain

�zk�2 = �vk +wk�2 ≥ (c�wk�− �vk�)2 + (1− c)�vk�2 .

We see from these inequalities that both sequences (vk)k∈N, (wk)k∈N must be bounded.
Since the unit ball is weakly sequential compact, passing to subsequences if necessary, we
may assume that there exist v ∈ V,w ∈ W with

v = w− lim vk , w = w− lim
k

wk .

Thus,
v+w = w− lim

k
(vk +wk) = w− lim

k
zk = lim

k
zk = z .

�

Theorem 6.18 (Smith, Solmon, and Wagner, 1984). Let H be a Hilbert space, let
U1, . . . , Um be closed subspaces, let U := ∩m

i=1, and let Pi := PUi
, i = 1, . . . ,m . Then

�(Pm · · ·P1)
nx− PUx� ≤ cn�x− PU(x)� , x ∈ H, n ∈ N (6.18)

where

c =

�
1−

m−1�

j=1

(1− c2j )

� 1
2

and ci = c(Ui,∩m
j=i+1Uj), i = 1, . . . ,m− 1 .

Proof:
Let T := Pm · · ·P1 . Let x ∈ H and y = PUx . We have to prove �Tnx− y�2 ≤ cn�x− y�2 .
We follow [19].
Since y ∈ U and T is the identity on U, the inequality to be proved can also be written
as

�Tnv�2 ≤ cn�v�2 , n ∈ N where v := x− y . (6.19)

Observe, v ∈ U⊥, Tnv ∈ U⊥, n ∈ N . Now, it is sufficient to prove

�Tv�2 ≤ c�v�2 for v ∈ U⊥ . (6.20)

In fact, if (6.20) holds, then it follows that

�Tnv�2 ≤ c�Tn−1v�2 ≤ c2�Tn−2v�2 ≤ · · · ≤ cn�v�2

and (6.19) holds. (6.20) will be proved by induction on m.

If m = 1 the conclusion is clear. Let U � := Um ∩ · · · ∩ U2 and T � := Pm · · ·P2 . For any
v ∈ U⊥ write v = w+v1 with w ∈ U1 and v1 ∈ U⊥

1 . Then PUv = T �w . Write w = w �+w ��

with w � ∈ U � and w �� ∈ U �⊥ . Then T �w = w � + T �w �� and since

�T �w ��|w �� = �w ��|P2 · · ·Pmw
�� = �w ��|w �� = 0,
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T �w �� and w � are orthogonal so that

�T �w�2 = �w ��2 + �T �w ���2 .

By the inductive hypothesis,

�T �w ���2 ≤
�
1−

m−1�

i=2

(1− c2i )
�
�w ���2 .

Now we obtain

�T �w�2 ≤ �w ��2 +
�
1−

m−1�

i=2

(1− c2i )
�
�w ���2

= �w ��2 +
�
1−

m−1�

i=2

(1− c2i )
�
(�w�2 − �w ��2)

=
�
1−

m−1�

i=2

(1− c2i )
�
�w�2 +

m−1�

i=2

(1− c2i )�w ��2 (6.21)

On the other hand, as w = v− v1 with v ∈ U⊥ and v1 ∈ U⊥
1 it follows that for z ∈ U

�w|z� = �v− v1|z� = �v|z�− �v1|z� = 0 .

This shows that w ∈ U1 is orthogonal to U = U1 ∩U � . Moreover, as w � = w −w �� with
w orthogonal to U = U1 ∩U � and w �� ∈ U �⊥, it follows that for z ∈ U

�w �|z� = �w−w ��|z� = �w|z�− �w ��|z� = 0 .

Hence, w � ∈ U � and w � is orthogonal to U = U1 ∩U � . Now, it follows that

�w ��2 = �w �|w �� = �w−w ��|w �� = �w|w �� ≤ c(U1,U
�)�w��w �� .

Thus, �w �� ≤ c21�w� . Replacing this last expression in (6.21) we have

�T �w�2 ≤
�
1−

m−1�

i=2

(1− c2i )
�
�w�2 +

m−1�

i=2

(1− c2i )c
2
1�w�2

=
�
1−

m−1�

i=1

(1− c2i )
�
�w�2

Finally, as Tv = T �w and �w� ≤ �v�, it follows that (6.20) holds. Now the proof is
complete. �

As we know, the rate of the alternate projection method on closed linear subspaces is
governed by the norm of the operator (Pm · · ·P1)

n − PU . Indeed,

�(Pm · · ·P1)
nx− PUx� ≤ dev(n,m)�x� for all x ∈ H, (6.22)

where
dev(n,m) := �(Pm · · ·P1)

n − PU� (6.23)
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is the smallest constant which works in (6.22). We have seen alternate useful ways of
expressing the constant dev(n,m):

dev(n,m) = �(Pm · · ·P1)
n − PU� = �(Pm · · ·P2P1PU⊥)n� = �(Qm · · ·Q1)

n� (6.24)

where Qi = PiPU⊥ , i = 1, . . . ,m . From these identities we obtain (crude) upper bounds
on dev(n,m):

dev(n,m) ≤ �Pm · · ·P2P1PU⊥�n = �Qm · · ·Q1�n . (6.25)

In particular, when m = 2, we see from this that

dev(n,m) ≤ �P2P1PU⊥�n = c(U1,U2)
n . (6.26)

But we know already that dev(n, 2) = c(U1,U2)
2n−1 (Kayalar,Weinert). From Theorem

6.13 we know for m ≥ 2

dev(n,m) ≤ cn where c =

�
1−

m−1�

i=1

(1− c2i

� 1
2

, ci := c(Ui,∩m
j=i+1, i = 1, . . . ,m− 1 .

(6.27)

In Theorem 6.18 the angle between two subspaces is used iteratively but it is possible
to define an angle for m subspaces. To motivate the definition of such an angle, let us
give an alternatively presentation of the Friedrichs angle.

Lemma 6.19. Let U1,U2 be closed subspaces of a Hilbert space H ; set U := U1 ∩ U2 .

Then the Friedrichs-angle c(U1,U2) between U1 and U2 is given by

c(U1,U2) = sup

�
2�u|v�

�u�2 + �v�2 : u ∈ U1 ∩U⊥, v ∈ U2 ∩U⊥, (u, v) �= (θ,θ)

�
.

Proof:
Let s denote the supremum in the identity above. For every admissible pair (u1, u2) with
�u1�2 + �u2�2 �= 0 we have

2�u1|u2�
�u1�2 + �u2�2

≤ �u1|u2�
�u1��u2�

≤ |�u1|u2�|
�u1��u2�

= c(U1,U2) .

Therefore s ≤ c(U1,U2) .
For the reverse inequality, let ε > 0 . Then there exist u1 ∈ U1 ∩ U⊥ ∩ B1 and u2 ∈
U2 ∩U⊥ ∩ B1 such that c(U1,U2) < |�u1|u2�|+ ε . We obtain

s ≥ 2�u1|u2�
�u1�2 + �u2�2

= |�u1|u2�| > c(U1,U2)− ε .

Since ε is arbitrary, we obtain s = c(U1,U2) . �
Definition 6.20. Let H be a Hilbert space and let U1, . . . , Um be closed subspaces of H;
set U := ∩m

i=1Ui . The Friedrichs number c(U1, . . . , Um) is defined as

c(U1, . . . , Um) =

sup
� 1

m− 1

�m
j,k=1,j�=k�uj|uk��m

j=1�uj|uj�
: ui ∈ Ui ∩U⊥, i = 1, . . . ,m,

�m

i=1
�ui�2 �= 0

�
.

�
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The analysis of the convergence of the projection methods on linear subspacesU1, . . . , Um

for m > 2 is ongoing. The focus of such investigations is on the decomposition of the
operator (PU1

. . . PU1
)n−P∩i=1,...,mUi

into a product of projections on certain combinations
of the subspaces Ui and relating this decomposition to certain angles. We have already
seen such a decomposion in the result of Kayalar and Weinert. A more elaborated de-
composition can be found in [14] and [5].

6.4 Acceleration techniques

In this section, we propose acceleration methods for projecting onto the intersection of
finitely many affine spaces. These strategies can be applied to general feasibility problems
where not only affine spaces are involved, as long as there is more than one affine space.

The observation which is the basis of the accelerating steps is that each projection onto
an affine subspace identifies a hyperplane of codimension 1 containing the intersection.

Let us begin with the description of an algorithm for the case of linear subspaces.
Let U1, . . . , Um be closed linear subspaces in the Hilbert space H and let U := ∩m

i=1Ui .

Suppose we have a current point x̂ . Then we produce the projection x̂+ := PUi
(x̂) . This

pair x̂, x̂+ identifies a hyperplane

Ĥ := {x ∈ H : �ŷ|x� = â} where ŷ := x̂− x̂+, â := �ŷ|ŷ� .

Clearly, when ŷ = θ then x̂+ = H and U ⊂ Ui ⊂ x̂+ . Otherwise

6.5 Alternating projection method and Fejér mono-

tone sequences

Let H be a Hilbert space and let C,D be nonempty closed convex subsets of H . Clearly,
C ∩D is a closed convex subset of H . We consider the alternate projection method

x2n+2 := PD(x
2n+1) , x2n+1 := PC(x

2n) , n ∈ N0 , x
0 := x ∈ X given . (6.28)

In this way we obtain a sequence (xn)n∈N in H .

A simple example using a halfspace and a line in R2 shows that the method of alter-
nating projections may not converge to the projection of the starting point onto on the
intersection of the sets. To analyze the behavior of the method (we follow mainly [9]) we
start from the following observation:

�xn+1 − u� ≤ �xn − u� for all n ∈ N, u ∈ C ∩D . (6.29)

Clearly, this result follows from the nonexpansivity of PC, PD .

Definition 6.21. Let H be a Hilbert space , let (xn)n∈N0
be a sequence in H and let F

be a nonempty closed convex subset of H . Then (xn)n∈N is called Fejér-montone with
respect to F if

�xn+1 − u� ≤ �xn − u� for all n ∈ N0 and all u ∈ F .

�
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Here is a huge list of properties of a Fejér monotone sequence. They are very helpful
to analyze the alternate projection methods.

Lemma 6.22. Let H be a Hilbert space and let F be a nonempty closed convex subset in
H . If (xn)n∈N0

is a Fejér monotone sequence with respect to F then the following hold:

(1) dist(xn+1, F) ≤ dist(xn, F) for all n ∈ N0 .

(2) For every u ∈ F, the sequences (�xn − u�)n∈N0
, (�xn�2 − 2�xn|u�)n∈N0

converge.

(3) The sequence (xn)n∈N0
is bounded and the set of strong cluster points of (xn)n∈N0

is
bounded.

(4) The sequence (PF(x
n))n∈N0

converges strongly to a point in F .

(5) If int(F) �= ∅, then (xn)n∈N0
converges strongly to a point in F .

(6) If w1,w2 are weak cluster points of (xn)n∈N0
then w1 −w2 ∈ (F− F)⊥ .

(7) The sequence (xn)n∈N0
has weak cluster points in H but it has at most one weak cluster

point in F .

(8) The sequence (xn)n∈N0
converges weakly to some point in F iff all weak cluster points

of (xn)n∈N0
belong to F .

(9) Every weak cluster point of (xn)n∈N0
that belongs to F must be limn PF(x

n) .

(10) If all weak cluster points of (xn)n∈N0
belong to F, then (xn)n∈N0

converges weakly to
limn PF(x

n) .

(11) If at least one strong cluster point x∗ of (xn)n∈N0
belongs to F then x∗ = limn x

n .

(12) If F is a closed affine subspace of H, then PF(x
n) = PF(x

0) for all n ∈ N0 .

(13) If F is a closed affine subspace of H and if every weak cluster point of (xn)n∈N0
belongs

to F then PF(x
0) = w− limn x

n .

Proof:
Ad (1) A trivial consequence of the defining property.
Ad (2) (�xn − u�)n∈N0

converges since it is a decreasing sequence for all u ∈ F . This
implies the convergence of (�xn�2 − 2�xn|u�)n∈N0

for all u ∈ F since �xn − u�2 = �xn�2 −
2�xn|u�+ �u�2
Ad (3) Let u ∈ F and r := �x0� + �u� . Clearly, xn ∈ Br for all n ∈ N0 ; see (2). Now, it
is clear that the set of strong cluster points is contained in Br too.
Ad (4) Let m,n ∈ N,m > n . Applying the parallelogram identity, using the best ap-
proximation property of PF and the defining Fejér property we obtain

�PF(x
m)− PF(x

n)�2 = 2�PF(x
m)− xm�2 + 2�PF(x

n)− xm�2

−4�1
2
(PF(x

m) + PF(x
n))− xm�2

≤ 2�PF(x
m)− xm�2 + 2�PF(x

n)− xm�2 − 4�PF(x
m)− xm�2

= 2�PF(x
n)− xm�2 − 2�PF(x

m)− xm�2
≤ 2�PF(x

n)− xn�2 − 2�PF(x
m)− xm�2

= 2(dist(xn, F)− dist(xm, F))
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Since dist(xn, F) − dist(xm, F) goes to zero as m,n go to ∞, (PF(x
n))n∈N is a Cauchy

sequence, hence it converges strongly to a point in F .

Ad (5) Suppose that Bt(u) ⊂ F for some u ∈ F, t > 0 . For any xn+1 with xn+1 �= xn, we
have

�xn+1 − (u− t(xn+1 − xn)�xn+1 − xn�−1)�2 ≤ �xn − (u− t(xn+1 − xn)�xn+1 − xn�−1)�2

and hence
2t�xn+1 − xn� ≤ �xn − u�2 − �xn+1 − u�2 .

This inequality holds also for the case xn+1 = xn . We obtain

2t�xm − xn� ≤ �xn − u�2 − �xm − u�2 , m,n ∈ N,m > n ,

and by (2) (xn)n∈N is a Cauchy sequence.
Ad (6) Let u1, u2 ∈ F . Then li := limn �xn − ui�, i = 1, 2, exist due to (2) . We have

�xn − u1�2 = �xn − u2�2 + �u1 − u2�2 + 2�xn − u2|u2 − u1� . (6.30)

Suppose that w1,w2 are weak cluster points (xn)n∈N . Then there exist subsequences
(xnk)k∈N, (xnl)l∈N such that w1 = w − limk x

nk , w2 = w − liml x
nl . Then from (6.30) we

obtain

l21 = l22 + �u1 − u2�2 + 2�w1 − u2|u2 − u1� , l21 = l22 + �u1 − u2�2 + 2�w2 − u2|u2 − u1� .

Subtracting these two equations yields 0 = �w2 −w1|u2 − u1� = �w2 −w1� .
Ad (7) Clearly, since the sequence (xn)n∈N is bounded it has weak cluster points. From
(6) we conclude that there is at most one weak cluster point in F .

Ad (8) If all sequential weak cluster points lie in F then (xn)n∈N converges weakly to a
point of F due to (7) . On the other hand, if (xn)n∈N converges to a point in F then all
weak cluster points of (xn)n∈N belong to F .

Ad (9) Let w = w − limk x
nk , w ∈ F . We know x̂ = limk PC(x

nk); see (4) . Then from
Kolmogorov’s criterion we obtain �xnk − PC(x

nk)|w − PC(x
nk)� ≤ 0 . Taking the limit

nk → ∞ we obtain �w− x̂|w− x̂� ≤ 0 . Hence w = x̂ = limn PC(x
n) .

Ad (10) See (8) and (9) .
Ad (11) Let w be a weak cluster point and let w = w − limk x

nk . Suppose that x is
another cluster point of (xn)n∈N, x �= w . Let x = liml x

nl . Let ε = 1
2
�w − x� > 0 . Then

there is a N ∈ N with �xnk −w� < ε, �xnl − x� < ε for all k, l ≥ N . Let nl > nk ≥ N .

Then
2ε = �x−w� ≤ �x− xnl�+ �xnl −w� < 2ε

due to the Fejéer monotonicity. This is a contradiction. Therefore (xn)n∈N converges to
w .

Ad (12) Let n ∈ N, t ∈ R . Set yt := tPC(x
0) + (1 − t)PC(x

n) . Since F is affine we have
yt ∈ F . Then

t2�PF(x
n)− PF(x

0)�2 = �PF(x
n)− yt�2

≤ �xn − PF(x
n)�2 + �PF(x

n)− yt�2
= �xn − yt�2 ≤ �x0 − yt�2
≤ �x0 − PF(x

0)�2 + �PF(x
0)− yt�2

= dist(x0, F)2 + (1− t)2�PF(x
n)− PF(x

0�2
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Therefore, (2t − 1)�PF(x
n) − PF(x

0)�2 ≤ dist(x0, F)2 . since t was arbitrary in R we have
�PF(x

n)− PF(x
0� = 0 .

Ad (13) From the assumption we conclude that there exists x with x = w− limn x
n ; since

F is weakly closed, x ∈ F . Then, since PF is weakly continuous (see (11) in Theorem 3.3),
x = PF(x) = w− limPF(x

n) = PF(x
0) . �

Theorem 6.23. Let H be a Hilbert space space and let C,D be nonempty closed convex
subsets of H . Let x0 ∈ H and let the sequence (xn)n∈N0

be defined by

x2n+2 := PD(x
2n+1) , x2n+1 := PC(x

2n) , n ∈ N0 , x
0 := x ∈ X given . (6.31)

We have:

(a) If C ∩D �= ∅ then the sequence (xn)n∈N0
converges weakly to a point of C ∩D .

(b) If int(C∩D) �= ∅ then the sequence (xn)n∈N0
converges strongly to a point of C∩D .

Proof:
Ad (a) Let y ∈ C ∩D . Then, for any x ∈ H, we have

�PC(x)− y� = �PC(x)− PC(y)� ≤ �x− y� , �PD(x)− y� = �PD(x)− PD(y)� ≤ �x− y� .

since xk+1 is either PC(x
k) or PD(x

k) we have �xk+1 −y� ≤ �xk −y� . This shows that the
sequence (xn)n∈N0

is Fejér monotone with respect to C ∩ D . By (3) in Lemma 6.22 the
sequence (xn)n∈N0

is bounded. Therefore, (xn)n∈N0
has weak cluster points.

Let x be such a weak cluster point and suppose that x = w − limk x
nk . Taking a sub-

sequence again if necessary we may assume that (xnk)k∈N belongs to either C or D . We
assume xnk ∈ C, k ∈ N . Then (PD(x

nk)k∈N converges weakly to x too. Indeed, we know
from (c) in Theorem 3.1

�PD(x
nk)− xnk�2 ≤ �xnk − u�2 − �PD(x

nk)− u�2 , k ∈ N ,

where U ∈ D . Hence with xnk+1 = PD(x
nk), k ∈ N,

�xnk+1 − xnk�2 ≤ ��xnk − u�2 − �xnk+1 − u�2 , k ∈ N ,

and since (xn)n∈N is Fejér monotone we may conclude limk(x
nk+1 − xnk = 0 . This implies

w− limk x
nk+1 = x . Since D is weakly closed we obtain x ∈ D . Now, we have x ∈ C∩D .

Thus, we have shown that all weak cluster points of (xn)n∈N0
belong to C ∩D .

since (xn)n∈N0
has at most one weak cluster point in C ∩ D by (4) in Lemma 6.22 the

sequence (xn)n∈N0
converges to a point of C ∩D .

Ad (b) When int(C ∩D) �= ∅ it follows from (7) in Lemma 6.22 that (xn)n∈N0
converges

in norm. �

The result in Theorem 6.23 is the result of Bregman in 1965; see [11]. In general,
we cannot expect that the sequence in (a) of Theorem 6.23 converges to a specific point
of C ∩ D . Notice that this is the case when C,D are affine subspaces with nonempty
intersection.

170



Example 6.24. Whether the alternating projection algorithm would converge in norm
under the assumption C∩D �= ∅ only, was a long-standing open problem. Recently Hundal
[25] constructed an example showing that this is not the case. Here is the formulation of
the example.
Consider in l2 the standard

”
basis“ {ek : k ∈ N} . Define v : [0,∞) −→ l2 by

v(r) := exp(−100r3)e1 + cos(
1

2
(r− [r])π)e[r]+2 + sin(

1

2
(r− [r])π)e[r]+3 , r ∈ [0,∞) ,

where [r] denotes the integer part of r . Further define

C := {e1}⊥ , D := co({v(r) : r ≥ 0}) .

Then we have C ∩D �= ∅ and the alternating projection algorithm constructs a sequence
starting from x0 := v(1) which does not converge in norm. The proof ot this fact is lengthly
and we omit the proof. �

6.6 Averaged midpoint projection method

We consider the following iteration:

Given x0 ∈ H set xn+1 :=
�1
2
PD +

1

2
PC

�
(xn) , n ∈ N0 . (6.32)

x0 is used as a starting point of the iteration. This method is called the averaged
midpoint iteration. We obtain two sequences: (un)n∈N with un := PC(x

n) ∈ C,n ∈ N
(wn)n∈N with wn := PD(x

n) ∈ D,n ∈ N .

This type of projection methods has been analyzed by A. Auslender [3] (weak conver-
gence) and S. Reich [28, 29]. In [7] the counterexample of Hundal is reformulated for the
case considered here.

Let us a more general situation. Let H be a Hilbert space space and let C1, . . . , Cm be
nonempty closed convex subsets of H . Here we use the trick to embed the problem in a
product space and to apply the theorem above.
Let

Hm := {(x = (x1, . . . , xm) : xi ∈ H, i = 1, . . . ,m}

be the product space of m copies of H . This is a Hilbert space with the inner product

�x|y� :=
m�

i=1

wi�xi|yi�

where the weigth numbers wi are all positive. Define

C := C1 × · · · × Cm , D := {(x1, . . . , xm) ∈ Hm : x1 = x2 = · · · = xm} .

Then C,D are nonempty closed convex subsets of Hm and

x ∈ ∩m
i=1Ci ⇐⇒ (x, . . . , x) ∈ C ∩D .
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Applying the projection algorithm to the sets C,D leads to the following method in the
product space .

xn+1 := (

m�

i=1

biPCi
)(xn) where bi =

wi

w
, , i = 1, . . . ,m ,w :=

m�

j=1

wj (6.33)

Theorem 6.25. Let H be a Hilbert space space and let F1, . . . , Fm be nonempty closed
convex subsets of H . Suppose that ∩m

i=1Fi �= ∅ . Let the sequence (xn)n∈N0
be defined by the

iteration (6.33). Then the sequence (xn)n∈N0
converges weakly to a point of ∩m

i=1Fi .

Proof:
Follows from Theorem 6.23. �

When the interior of ∩m
i=1Ci is nonempty we also have that the iteration (6.33) converges

in norm. However, since D does not have interior point this conclusion cannot be derived
from Theorem 6.23. Rather it has to be proved by directly showing that the approximation
sequence is Fejér monotone with respect to ∩m

i=1Ci .

Theorem 6.26. Let H be a Hilbert space space and let U1, . . . , Um be nonempty closed
convex subsets of H . Suppose that int(∩m

i=1Ui) �= ∅ . Let the sequence (xn)n∈N0
be defined by

the iteration (6.33). Then the sequence (xn)n∈N0
converges strongly to a point of ∩m

i=1Ui .

Proof:
Let y ∈ ∩m

i=1Ui . Then

�xk+1 − y� =

�����
� m�

i=1

biPUi

�
(xk)− y

����� =

�����
m�

i=1

bi(PUi
(xk)− PUi

(y))

�����

≤
m�

i=1

bi�PUi
(xk)− PUi

(y)� ≤
m�

i=1

bi�xk − y� = = �xk − y� .

Thus, the sequence (xn)n∈N0
is Fejér monotone with respect to ∩m

i=1Ui . Now, the result
follows from Theorem 6.23 and 6.25. �

6.7 Dykstra’s algorithm

In this section we want to solve the feasibility problem again:

Given subsets C,D of a Hilbert space H find a point in x ∈ C ∩D (6.34)

We describe the algorithm of Dykstra [18]2 to solve this problem. The basic idea is again
von Neumann’s iteration but more complex calculations are made. Here is Dykstra’s
algorithm:

2Do not confuse this algorihm with Dijkstra’s algorithm in graph theory
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Algorithm 6.2 Dyksta’s algorithm

Given subsets C,D of a Hilbert space H and a starting point x := x0 . This algo-
rithm computes a sequence (un)n∈N0

in C and a sequence (wn)n∈N0
in D and sequences

(pn)n∈N0
, (qn)n∈N0

as follows:

(1) p0 := q0 := θ, w0 := x , n := 1 .

(2) un := PC(w
n−1 + pn−1) , pn := wn−1 + pn−1 − un .

(3) wn := PD(u
n + qn−1) , qn := un + pqn− 1−wn .

(4) n := n+ 1 and go to line (2).

This method is calledDykstra’s algorithm. It was rediscovered by Han [23] applying
duality arguments. Dykstra [18] suggested an algorithm which solves the problem for
closed convex cones. Boyle and Dykstra [10]showed that Dykstra’s algorithm solves the
problem for general closed convex sets in a Hilbert space . In the specific situation
that C,D are closed subspaces this algorithm coincides with the alternating method von
Neumann. A parallel version of the algorithm was developed by Gaffke and Mathar [21].

Actually, we obtain four sequences from Algorithm 6.7. (un)n∈N with un ∈ C,n ∈ N
(wn)n∈N, with wn) ∈ D,n ∈ N, (pn)n∈N, (qn)n∈N . What we will observe in a first step
of the analysis of the algorithm is the fact that pn, qn, n ∈ N, are outer normals with
respect to C,D respectively: pn ∈ N(un,C), qn ∈ N(wn,D) .

There are two cases to consider:

Consistence C ∩D �= ∅ .

Inconsistence C ∩D = ∅ .

As we know, in the consistent case the alternating projection methods converges weakly
to a point of the intersection C ∩ D . If this intersection is no singleton this point is
no specific point of the intersection. The algorithm of Dykstra which is the alternate
projection method with some correction terms in each iteration step converges weakly to
a projection onto the intersection of the starting point of the iteration.

In the inconsistent case one may assume that the method of alternate projection con-
verges at least weakly to two points u ∈ C, v ∈ D which realize the distance dist(C,D)
between C and D .

In the following we use the following data for the problem (6.34):

• H is a Hilbert space (of dimension ≥ 2).

• C,D are nonempty closed convex subsets of H .

• v := PD−C(θ) .

• δ := dist(C,D) .

• C∗ := {u ∈ C : dist(u,D) = δ} , D∗ := {w ∈ D : dist(w,C) = δ} .
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Lemma 6.27.

(1) The infimum δ = infu∈C,w∈D �u−w� is attained iff v ∈ D− C .

(2) The infimum δ = infu∈C,w∈D �u−w� is attained if D− C is closed.

(3) �v�2 ≤ δ2 ≤ �v,w− u� for all u ∈ C,w ∈ D .

(4) C∗ = Fix(PC ◦ PD)D∗ = Fix(PD ◦ PC) .

(5) C∗, D∗ are closed convex sets.

(6) If δ is attained then C∗.D∗ are nonempty.

(7) If C∗ or D∗ is nonempty, then δ is attained and we have for u ∈ C∗, w ∈ D∗

PD(u) = u+ v, PC(w) = w− v, C∗ + v = D∗, C∗ = C ∩ (D− v), D∗ = (C+ v) ∩D .

(8) If δ is attained then

�u− u �|v� ≤ 0, u ∈ C,u � ∈ C∗, �w−w �|− v� ≤ 0,w ∈ D,w � ∈ D∗,

and
�u � − u ��|v� = �w � −w ��|v�, u �, u �� ∈ C∗, w

�, w �� ∈ D∗ .

(9) If δ is attained then PD∗(x) = PC∗(x) + v .

(10) If δ is attained and if C,D are affine closed sets then C∗, D∗ are also affine sets and
v ∈ C⊥ ∩D⊥ .

Proof:
Ad (1)

�

Lemma 6.28. Suppose that (un)n∈N, (wn)n∈N are sequences in C and D respectively and
assume that limn �un −wn� = δ . Then limn u

n −wn = v and every weak cluster point of
(un)n∈N, (wn)n∈N belong to C∗ and D∗ respectively. Consequentely, if δ is attained then
limn �un� = limn �wn� = ∞ .

Proof:

�

To explain how the algorithm works let us consider a small example.

Example 6.29. Consider in the euclidean space R2 the sets

C := {(x, y) : y ≤ 0} , D := {(x, y) : x+ y ≤ 0} .

With the starting vector z0 := w0 := (1, 1.5) the first two steps of the alterante projec-
tion method and the method of Dykstra produce identical iterates: u1 = (1, 0), w1 =
(0.5,−0.5) . The method of alternating projections stops with the vector z := w1 =
(0.5,−0.5) ∈ C ∩D . But we see that z �= PC∩D(z0) .

The method of Dykstra does not stop here. We compute
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Step 1 u1 = PC(w
0) = (1, 0), p1 = (0, 1.5), w1 = PD(u

1 + q0) = (0.5,−0.5), q1 =
(0.5, 0.5) .

Step 2 u2 = PC(w
1 + p1) = (0.5, 0), p2 = (0, 1), w2 = PD(u

2 + q1) = (0.25,−0.25), q2 =
(0.75, 1.25) .

Step 3 u3 = PC(w
2 + p2) = (0.25, 0), p3 = (0, 0.75), w3 = PD(u

2 + q1) = (xx, xx), q2 =
(xx, xx) .

One can see that the approximations un converge on the x-axis to (0, 0) and the approxi-
mations wn converge on the line x+ y = 0 to (0, 0) . Notice (0, 0) = PC∩D(z0) . �

Now we want to analyze the convergence properties of the algorithm, especially we
want to find a result which makes it possible to formulate a sound stopping rule. Here
is the main theorem concerning the

”
power“ of the algorithm.

Theorem 6.30. Let H be a Hilbert space , let C,D be nonempty closed convex subsets
of H and let x ∈ H . We set x0 := x, v := PD−C(θ), δ := dist(C,D) and C∗ := {u ∈ C :
dist(u,D) = δ}, D∗ := {w ∈ D : dist(w,C) = δ} . Let the sequences (un)n∈N0

, (wn)n∈N0
,

(pn)n∈N0
, (qn)n∈N0

constructed by the Algorithm 6.7. Then the following statements hold:

(a) v = limn w
n − un = limn w

n − un+1 where v := PD−C(θ) and �v� = dist(C,D) .

(b) limn
1
n
un = limn

1
n
wn = 0, limn

1
n
pn = v, limn

1
n
wn = −v .

(c) If dist(C,D) is not attained, then limn �un� = limn �wn� = ∞ .

(d) If dist(C,D) is attained, then limn u
n = PC∗(x), limn w

n = PD∗(x) where

C∗ := {u ∈ C : dist(u,D) = δ}, D∗ := {w ∈ D : dist(w,C) = δ}

are nonempty closed convex sets with C∗ + v = D∗ .

Now, the important information is a statement concerning the convergence of Dykstra’s
algorithm:

The case C ∩D �= ∅ each sequence (un)n∈N, (wn)n∈N converges strongly to a point in
C ∩D ; see [18].

The case that C,D are a cones each sequence (un)n∈N, (wn)n∈N converges strongly
to PC∩D(x0) ; see [18].

The case of two subspace s each sequence (un)n∈N, (wn)n∈N converges strongly to
PC∩D(x0) , as outer normal vectors we may use the null vector; see [10].

The case that C or D is a cone each sequence (un)n∈N, (wn)n∈N converges strongly
to PC∩D(x0) ; see [10].

The case C ∩D �= ∅ each sequence (un)n∈N, (wn)n∈N converges strongly to PC∩D(x0) ;
see [21].

The case C ∩D = ∅ The difference sequence (un−wn)n∈N converges strongly to dist(C,D)
and if dist(C,D) is attained then (un)n∈N, (wn)n∈N converge to u ∈ C and w ∈ D

respectively with limn �un −wn� = �v� = dist(C,D) where v ∈ PD−C(θ) ; see [8].
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6.8 The Douglas Rachford reflection method

Let K be a Hilbert space and let K1, K2 be nonempty closed convex subsets of K . Then the
reflector of K1, K2 is RK1

:= 2PK1
− I and RK2

:= 2PK2
− I respectively. These two mappings

are well defined and Fan be used to construct the Douglas Rachford reflection

TK2,K1
:=

1

2
(I+ PK2

PK1
).

since we want to study the relation of TK2,K1
with the problem to construct a point in

K1 ∩ K2 we present the following Lemma.

Lemma 6.31. Let K be a Hilbert space and let K1, K2 be nonempty closed convex subsets
of K . Then x ∈ Fix(TK2,K1

) if and only if PK1
(x) = PK1

PK2
(x) .

Proof:

x ∈ Fix(TK2,K1
) ⇐⇒ 2x = x+ PK2

PK1
(x) ⇐⇒ x = RK2

RK1
(x)

⇐⇒ x = 2PK2
RK1

(x)− RK1
(x) ⇐⇒ x = 2PK2

RK1
(x)− 2PK1

(x) + x

⇐⇒ PK1
(x) = PK2

RK1
(x)

�
From the result of Lemma 6.31 we conlude that x ∈ Fix(TK2,K1

) implies PK1
(x) ∈ K1 ∩

K2 . This is the key for developing an method to find points in K1 ∩K2 : if x ∈ Fix(TK2,K1
)

then PK1
(x) belongs to K1 ∩ K2 .

Using the above considerations we consider the following iteration:

Given x0 ∈ H set xn+1 := TD,C(x
n) =

1

2

�
I+ RDRC

�
(xn) , n ∈ N0 . (6.35)

x0 is used as a starting point of the iteration. This iteration is called the Douglas
Rachford reflection method. We obtain a sequence (un)n∈N in H . We hope that this
sequence converges to a fixed point of TD,C . Here are results concerning the convergence
poperties of the Douglas Rachford iteration.

The case C ∩D �= ∅ The sequence (un)n∈N converges weakly to a fixed point u of TD,C

and PC(u) ∈ C ∩D .

The case C ∩D = ∅ The sequence (un)n∈N diverges with limn�un� = ∞ .

The case of two subspaces The sequence (un)n∈N converges strongly to a fixed point
u of TD,C and PC(u) ∈ C ∩D .
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6.9 The averaged alternating reflection method

6.10 The Douglas Rachford reflection method:

order of convergence

6.11 The alternating projection method for

finding commom solutions of variational inequal-

ities

6.12 The ART-algorithm

6.13 Some variants of the projection method

6.14 Randomized alternate projection method

6.15 Appendix:

6.16 Conclusions and comments

6.17 Exercises

1.) Let H be a Hilbert space and let H be a hyperplane of H with θ ∈ H . Then the
reflector PH := 2PH− I is a surjective linear isometry and satisfies RH = R∗

H = P−1
H .

2.) Let H be a Hilbert space, let H be a hyperplane of H with θ ∈ H and let C be
a nonempty closed convex subset of H . Set D := RH(C) . Then the following hold
true:

(1) D is closed and convex.

(2) PD = RH ◦ PC ◦ RH .

(3) (PH ◦ PC)
��
H
= 1

2
(PC + PH) .

3.) Let H be a Hilbert space and let U1,U2 be closed subspace s of H . Show that
PU1

PU2
= PU2

PU1
if and only if PU1

PU2
= PU1∩U2

.

4.) Let H be a Hilbert space and let U1,U2 be closed subspace s of H . Show that
PU1

PU2
= θ if and only if U1⊥U2 .

5.) Let H be a Hilbert space and let U1,U2 be closed subspace s of H . Suppose
PU1

PU2
= PU2

PU1
. Show

PU1+U2
= PU1

+ PU2
− PU1

PU2
.

6.) Let H be a Hilbert space and let U1,U2 be closed subspace s of H . If U1 ⊂ U⊥
2

then U1 +U2 is closed and PU1+U2
= PU1

+ PU2
.
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7.) Let H be a Hilbert space and let U1,U2 be closed subspace s of H . Show that
PU1

PU2
= PU2

PU1
if and only if U1 = U1 ∩U2 +U1 ∩U⊥

2 .

8.) Let H be a Hilbert space and let U1,U2 be closed subspace s of H . Suppose
H = U1 ⊕U2 . Show:

H = U⊥
1 +U⊥

2 , c0(U1,U2) = c0(U
⊥
1 , U

⊥
2 ) < 1 .

9.) Find in H := R3 endowed with the l2-norm closed subspace s U1,U2 such that

c0(U1,U2) = 1 , c0(U1⊥, U⊥
2 ) = 0 .

10.) Let H be a Hilbert space and let U1,U2 be closed subspace s of H . Show that
c(U1,U2) = 0 if and only if PU1

PU2
= PU2

PU1
.

11.) Let R2 endowed with the l2-norm and let

C := S 1
2
:= {x = (x1, x2) ∈ R2 : |x1|

1
2 + |x2|

1
2 = 1} .

(Unit sphere in the space R2 endowed with the metriF

d((x1, x2), (y1, y2)) := |x1 − y1|
1
2 + |x2 − y2|

1
2 ) .

Compute for (u, v) ∈ A := [0, 1]× [0, 1] a best approximation PC(u, v) .

12.) Let X be a Banach space and let U,V closed linear subspace s of X .

(a) Show: If the dimension of U is finite then U+ V is closed.

(b) Now consider for X the space c0 of the real sequences converging to zero. c0
is endowed with the supremum norm. Let

U := {(xn)n∈N ∈ c0 : x
n = nxn−1, n even} ,

V := {(xn)n∈N ∈ c0 : x
n = 0, n odd} .

Show: U+ V is dense in c0, but not closed.

13.) Let H be a Hilbert space and let U,V be linear subspace s with U∩V = {θ} . We
say that a sharpened Cauchy Schwarz inequality holds if

�u|v� ≤ γ�u��v� , u ∈ U, v ∈ V,

with 0 ≤ γ < 1 is true. Then.

(a) A sharpened Cauchy Schwarz inequality holds if dimH < ∞ .

(b) If dimH = ∞ no sharpened Cauchy Schwarz inequality holds in general.

14.) Let H be a Hilbert space and let U1,U2 are closed linear subspace s; U := U1∩U2 .

Then the following conditions are equivalent:

(a) PU⊥
1
(U2) := {PU⊥

1
(v) : v ∈ U2} is closed.

(b) U1 +U2 is closed.

(c) PU⊥
2
(U2) := {PU⊥

2
(v) : v ∈ U1} is closed.

15.) Let H be a Hilbert space and let U1,U2 are closed linear subspace s. Set U :=
U1 ∩U2 . Then the following conditions are equivalent:

(a) U1 +U2 is closed.

(b) U1 ∩U⊥ +U2 ∩U⊥ is closed.

(c) U⊥
1 +U⊥

2 is closed.
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