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Abstract. We consider the pricing of a special kind of options, the so-called autocallables, which
may terminate prior to maturity due to a barrier condition on one or several underlyings. Standard
Monte Carlo (MC) algorithms work well for pricing these options but they do not behave stable with
respect to numerical differentiation. Hence, to calculate sensitivities, one would typically resort to
regularized differentiation schemes or derive an algorithm for directly calculating the derivative.

In this work we present an alternative solution and show how to adapt a MC algorithm in such
a way that its results can be stably differentiated by simple finite differences. Our main tool is the
one-step survival idea of Glasserman and Staum which we combine with a technique known as GHK
Importance Sampling for treating multiple underlyings.

Besides the stability with respect to differentiation our new algorithm also possesses a significantly
reduced variance and does not require evaluations of multivariate cumulative normal distributions.
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1. Introduction. The application of Monte Carlo (MC) simulation to option
pricing started with a paper by Boyle [4] who was the first to use MC to price Euro-
pean call options on dividend paying stocks as an extension to the analytical solution
for options on non-dividend paying stocks published in the seminal Black-Scholes pa-
per four years before [2]. Boyle already stressed the point that it is advisable to go
beyond the standard MC approach by applying techniques to effectively reduce the
variance, reasoning however ”that it is not possible to formulate general rules regard-
ing the selection and implementation of the most effective technique“ [4]. A variety of
techniques already known from areas other than option pricing have been successfully
adopted to improve the MC pricing for various types of uni- and multivariate options.
Some new techniques have been developed to price specific types of exotic options,
making use of distinct features of their respective payoffs. For an overview about the
various approaches we refer to the monograph by Glasserman [9].

Within this paper, we will consider MC pricing schemes for so-called autocallable
options. Autocallables have been traded intensely in particular in the market for
structured retail derivatives (certificates). As an example, autocallables, which are
known under the trade name of Express Certificates in the German market for retail
certificates made up for more than 30% of this market in 2008, see, e.g., Wegner
and Alm [1] for an overview. Most of the certificates of this type issued had one
underlying (Single Express Certificates), some had two underlyings (Duo Express
Certificates). Autocallables with one, resp., multiple underlyings are also called uni-,
resp., multivariate.

The name autocallable refers to the fact that, just as with a normal callable bond,
the autocallable can be terminated prior to its maturity. The difference, however, is
that the autocallable is called automatically as soon as a certain barrier condition is
fulfilled on one of some predefined observation dates, whereas a callable bond has to
be called by its issuer. More precisely, the idea of this type of financial instrument
is as follows (cf. figure 1.1): At specific points in time (the observation dates), it is
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Fig. 1.1. Payoff profile of an autocallable

checked whether the underlying (resp., a function of several underlyings) reaches a
certain barrier. If this is the case, the buyer of the autocallable gets a pre-defined
constant cash-flow (payoff) and the certificate terminates. Otherwise the instrument
continues to exist until the next observation date, and so forth. For those cases, where
the autocallable survives until maturity, a payoff depending on the underlying(s)
is generated at the maturity date. Autocallables can be considered as an exotic
type of barrier options, cf., e.g., Zhang [17], the so-called window-barrier knock-out
options with rebate, and with the number of windows corresponding to the number of
observation dates, and each window having zero length. They are, however, typically
treated as an option class of its own (see, e.g., Bouzoubaa and Osseiran [5]).

We consider the pricing of autocallables under the standard assumption that the
option price is described by the discounted expected payoff using (correlated) geo-
metric Brownian motion as the stochastic process for the underlyings, see, e.g. Hull
[13]. For specific types of autocallables, analytical (closed-form) solutions have been
derived in Reder [15]. However, these solutions require the evaluation of multivariate
cumulative normal distributions, with the dimension depending on the product of the
number of underlyings and the number of observation dates. Higher-variate cumula-
tive normal distributions require numerical methods (see, e.g., Genz and Bretz [7]) and
are typically evaluated by Monte Carlo simulations. Since, furthermore, autocallables
are an option class which involves a variety of possible payoffs [5], this suggests to
use Monte Carlo simulation as a generic way of pricing autocallables. However, it
is worth mentioning that closed-form solutions, even if they exist for certain special
cases only, may serve as a useful input to improve Monte Carlo simulations, e.g., by
using control-variate methods.

In this work, we derive an efficient Monte Carlo algorithm for pricing auto-
callables, and for calculating their sensitivities. In doing so, our goals are twofold.
First, we aim at obtaining reliable prices with as few MC paths as possible. Second,
we want to stably determine the option’s sensitivities such as Delta (derivative w.r.t.
the price of the underlying) and Vega (derivative w.r.t. the option’s implied volatility)
from the numerically calculated prices.

Note that the second goal is particularly ambitious. Differentiation is generally
unstable, as even the smallest numerical errors in the price may have arbitrarily large
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effects on the derivatives. In the mathematical literature this property is known
as ill-posedness, cf., e.g., Engl, Hanke and Neubauer [6], and, in general, requires
sophisticated regularization strategies, cf., e.g., Hanke and Scherzer [12]. Our aim in
this work is, however, to design a MC pricing strategy that allows stable differentiation
by simple finite differences.

For the univariate express certificate, both our goals can be achieved using the
ideas of one-step survival established by Glasserman and Staum [10]. The idea is
to restrict the Monte Carlo simulation to the survival zone (i.e., the area below the
barrier) and to treat the thus neglected contributions from the barrier analytically.
In other words, instead of sampling from the full normal distribution, a truncated
normal distribution excluding values above the barrier is used. This approach yields
a substantial variance reduction [10]. We will explain and numerically demonstrate
that this approach also allows for stable differentiation. The main reason for this
behaviour is that the discontinuity generated by any Monte Carlo path crossing the
barrier is avoided by construction.

The main new part of this paper is to extend Glasserman and Staum’s one-
step survival strategy to the multivariate case. The challenge of this extension is
how to sample from a truncated multivariate normal distribution without destroy-
ing the stability with respect to differentiation. In particular, as we explain in sec-
tion 2.2, acception-rejection strategies fail in this task. Our tools to solve this challenge
stem from a technique known as GHK Importance Sampling Simulator (named after
Geweke, Hajivassiliou and Keane, see [8, 11, 14], and the concise description in Shum
[16]). To the knowledge of the authors, this is the first time that the ideas of GHK
are being adapted to the pricing of options via Monte Carlo simulations.

Ultimately, we derive a Monte Carlo algorithm for multivariate autocallables that
allows stable differentiation by simple finite differences. We also numerically demon-
strate that combining finite differences with our new algorithm is more efficient than
directly calculating the option’s sensitivity with a likelihood ratio method. Moreover,
our numerical experiments also show that, compared to standard MC algorithms, the
new algorithm possesses a substantially reduced variance. Since no evaluations of
multivariate cumulative normal distributions are required, this variance reduction is
achieved at the cost of only a moderately increased computation time, which indicates
that our new algorithm is also an efficient way for pricing autocallables.

The outline of this work is as follows. In section 2 we derive our new Monte Carlo
pricing algorithm for the univariate and the multivariate case, and discuss its stability
with respect to differentiation. Then, we numerically demonstrate our algorithms’
stability and study its variance reduction properties in section 3. Section 4 contains
some concluding remarks.

2. Monte Carlo pricing of uni- and multivariate autocallable options.

In this section, we derive our Monte Carlo pricing algorithm for autocallable options.
Based on a combination of Glasserman and Staums’ one-step survival techniques [10]
and the GHK Importance Sampling [8], we will obtain a substantial variance reduction
effect as well as the possibility to stably differentiate the numerically calculated prices
by simple finite differences.

2.1. The univariate case. We start with the univariate case where the au-
tocallable option depends on only one underlying. This subsection is more of an
introductory nature as the univariate case can be treated with a straight-forward
application of the one-step survival techniques in [10] to our specific type of option.
We will, however, also use this subsection to elaborate on the estimator’s stability
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properties with respect to differentiation which will be a crucial point in the later
generalization to the multivariate case.

Let St describe the evolution of the underlying spot price and let (S1, . . . , Sm) be
a vector containing its evaluations at some fixed, chronologically sorted, observation
dates (t1, . . . , tm). We will only consider the Black-Scholes model, i.e., St is assumed
to follow a geometric Brownian motion,

dSt

St
= µdt+ σdWt,

where µ := r− b, r denotes the risk-free interest rate, b is the dividend yield, σ > 0 is
the volatility, and Wt is a standard Brownian motion. The extension of the following
results to the case of non-constant, but deterministic, parameters is obvious and it also
seems possible to extend them to stochastic parameters, cf. our concluding remarks
in section 4.

It is well known that this yields (for j = 0, . . . ,m− 1)

Sj+1 = Sj exp

((
µ− σ2

2

)
(tj+1 − tj) + σ

√
tj+1 − tjZj

)
, (2.1)

with independent standard normally distributed Zj. t0 and S0 = s0 are the current
time (w.l.o.g. t0 < t1) and underlying price.

The discounted payoff of a univariate autocallable option is given by (see again
figure 1.1)

Q(S1, . . . , Sm) (2.2)

=

{
e−r(tj−t0)Qj if Si/Sref < B ≤ Sj/Sref ∀i < j,

e−r(tm−t0)q(Sm/Sref) if Sj/Sref < B ∀j = 1, . . . ,m,

where Qj denotes the constant payoff that is paid if the performance Sj/Sref of the
underlying at time tj is, for the first time, greater than the barrier value B on an
observation date. The performance is measured relative to some reference value Sref

which is, e.g., the spot price at the issue date of the autocallable. If the performance
Sj/Sref stays below the barrier for all observation dates, then the holder of the option
receives a redemption payoff q depending on the final performance Sm/Sref (see sub-
section 2.3 for the necessary smoothness conditions of q). Note that all of the following
holds (with minor modifications) if the barrier level depends on the observation date.

The value PVt0 of such an autocallable option, at the current time t0, is given by
its expected discounted payoff

PVt0 = E [Q(S1, . . . , Sm)] .

The standard Monte Carlo estimator for PVt0 is calculated by sampling a se-
quence of possible realizations (s1,n, . . . , sm,n), n = 1, . . . , N , of the random variables
(S1, . . . , Sm) and approximating PVt0 by the average payoff

1

N

N∑

n=1

Q (s1,n, . . . , sm,n) . (2.3)

The sampling process is easily implemented by starting with the current underlying
price s0, and then using (2.1) to subsequently generate s1 up to sm. Obviously,

This is a preprint of an article that has appeared in The Journal of Computational Finance 17 (1), 43-70, 2013. 
http://www.risk.net/journal-of-computational-finance/journal/2292302/latest-issue-volume-17-issue-1-2013



A Monte Carlo pricing algorithm for autocallables that allows stable differentiation 5

in doing so, it is not necessary to calculate sj+1 if already sj/Sref ≥ B. Thus,
calculating each sample tuple (s1, . . . , sm) using (2.1) requires m or less samples zj
from the standard normally distributed variable Zj . These samples can be generated
by setting zj = Φ−1(uj), where uj is drawn from a uniform distribution over the
interval (0, 1), and Φ is the cumulative standard normal distribution.

The one-step survival technique of Glasserman and Staum [10] applied to the
univariate autocallable improves the above standard Monte Carlo scheme by sampling
only paths which stay below the barrier B for all observation dates tj , i.e., paths which
do not lead to an early payoff. For our case, this can be achieved by changing the last
step in the above description to

zj = Φ−1(pjuj) with pj := Φ

(
ln(BSref/sj)− (µ− σ2

2 )(tj+1 − tj)

σ
√
tj+1 − tj

)
, (2.4)

which corresponds to sampling the argument pjuj from a uniform distribution on the
restricted interval (0, pj).

Note that pj = P (Sj+1/Sref < B | Sj = sj) also describes the probability that
the underlying will stay below the barrier in the next step. As a consequence, the
sampling of the Zj is done from a truncated univariate standard normal distribution
for which

Zj <
ln(BSref/sj)− (µ− σ2

2 )(tj+1 − tj)

σ
√
tj+1 − tj

. (2.5)

Of course, this modification will bias the result unless we correct for the missing
barrier hits, which should have happened with a probability of 1 − pj. To make up
for this fact, an accordingly weighted (j + 1)-th premature payoff must be added to
the total payoff for this sample tuple, and all further payoffs for this sample must be
weighted by pj . Hence, we replace (2.3) by the estimator

P̂ Vt0 :=
1

N

N∑

n=1

Q̃ (s1,n, . . . , sm,n) , (2.6)

which is subsequently denoted as the one-step survival MC estimator. The tuple
(s1,n, . . . , sm,n) is sampled according to the one-step survival strategy explained above,

Q̃(s1, . . . , sm)

:= (1− p0) e
−r(t1−t0)Q1 + p0

[
(1− p1) e

−r(t2−t0)Q2 + p1

[
(1 − p2)e

−r(t3−t0)Q3

+ . . . + pm−2

[
(1− pm−1) e

−r(tm−t0)Qm +pm−1e
−r(tm−t0)q(sm/Sref)

]
. . .
]]

= Lme−r(tm−t0)q(sm/Sref) +
m−1∑

j=0

Lj (1− pj) e
−r(tj+1−t0)Qj+1 (2.7)

and Lj :=
∏j−1

i=0 pi.We summarize a possible implementation in Algorithm 1.
Mathematically, we can interpret the one-step survival strategy as an integral

splitting technique. We have that

PVt0(s0) = e−r(t1−t0)

∫

R

ϕ(z)PVt1(s1(z)) dz, (2.8)
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Algorithm 1 One-step survival MC estimator for a univariate autocallable option.

Initialize random seed
for n = 1, . . . , N do

Pn := 0, L := 1
for j = 0, . . . ,m− 1 do

p := Φ
((

ln(BSref/sj)− (µ− σ2/2)(tj+1 − tj)
)/

(σ
√
tj+1 − tj)

)

Pn := Pn + (1 − p)Le−r(tj+1−t0)Qj+1

L := pL
Sample uj ∼ U(0, 1)
sj+1 := sj exp

((
µ− σ2/2

)
(tj+1 − tj) + σ

√
tj+1 − tjΦ

−1(puj)
)

end for

Pn := Pn + Le−r(tm−t0)q(sm/Sref)
end for

return P̂ Vt0 := 1
N

∑N
n=1 Pn

where ϕ is the standard normal distribution,

s1(z) := s0 exp

((
µ− σ2

2

)
(t1 − t0) + σ

√
t1 − t0z

)
,

PVt1(s1) = Q1 for s1 ≥ B, and, for s1 < B, PVt1(s1) is given by an analog to (2.8).
Splitting the integration domain accordingly yields

PVt0(s0) = (1− p0)e
−r(t1−t0)Q1 + e−r(t1−t0)

∫

s1(z)<B

ϕ(z)PVt1(s1(z)) dz

with p0 :=
∫
s1(z)<B

ϕ(z) dz as in (2.4). Since ϕ is no longer a probability density on

the restricted integration domain, we normalize the remaining integral and write

PVt0(s0) = (1− p0)e
−r(t1−t0)Q1 + p0e

−r(t1−t0)

∫

R

ϕ(z)

p0
1s1(z)<BPVt1(s1(z)) dz

with the new properly normalized probability density ϕ(z)
p0

1s1(z)<B corresponding to
a sampling step with survival condition as explained above. This change to a new
probability density can also be interpreted as a special case of importance sampling,
with p0 being the corresponding likelihood ratio (importance sampling weight). By
iteratively splitting the integral expression for PVt1 , and the following observation
times until maturity, in an analogous manner, and then applying the Monte Carlo
technique to the remaining conditional densities, we obtain the estimator (2.6).

Glasserman and Staum prove in [10] that this estimator is unbiased and demon-
strate that it possesses a significantly reduced variance compared to the standard
estimator (at the price of only slightly increased computational effort).

Let us now turn to a point that has not been examined in [10]. It is well known
that the Black-Scholes model leads to a backward parabolic evolution, which smoothes

out the discontinuities arising from the autocallable structure. Consequently, the
option price PVt0 depends smoothly on the current underlying price s0.

To investigate the smoothness properties of the estimators in (2.3) and (2.6), let
us consider the case of a single sample N = 1 (and a fixed random seed). Varying
s0 for the standard MC estimator (2.3) may lead to discontinuities at those points
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s0, where one of the later values, s1 to sm, agrees with the barrier level, since an
arbitrarily small change in s0 may then cause or prevent the premature payoff. The
one-step survival estimator (2.6) does not have these discontinuities. All expressions
in (2.6) depend smoothly on s0 and u1, . . . , um. In subsection 2.3 we will show that
this smoothness property indeed yields stability with respect to finite differences.

Of course, for a high number of Monte Carlo samples N , also the discontinuities of
the standard MC estimator will be smoothed out and it will more and more resemble
a smooth function of s0. However, the process of differentiation amplifies even the
smallest discontinuities. In fact, we demonstrate in Section 3 that calculating the
derivative with respect to the price of the underlying (the option’s Delta) by standard
finite differences leads to completely unfeasible results for the standard MC estimator,
while giving stable results for the one-step survival estimator.

Let us finish this subsection with some more remarks. First of all, similar ar-
guments as above apply for the other parameters of our autocallable option and
consequently to the calculation of other option price sensitivities such as vega (sen-
sitivity w.r.t. the implied volatility). Also, it should be noted that the discontinuity
behaviour already occurs in the simple case of determining the sensitivity Delta of a
European binary (also called digital) option. Binary options mature with some fixed
payoff if the underlying value is above the strike and pay nothing otherwise. Also
there, combining finite differences with a standard Monte Carlo pricing routine leads
to unfeasibly oscillating results due to the discontinuity of the payoff function. The
one-step survival estimator, on the other hand, forces every Monte Carlo path to re-
turn zero, and adds the probability weighted payoff, which is already the exact price.
Hence, independently of N , it always returns the exact price and thus allows stable
differentiation.

Finally, let us comment on alternative ways to obtaining sensitivities of auto-
callables. First of all, one can differentiate the analytical pricing formulas mentioned
in the introduction. This involves computationally expensive evaluations of multivari-
ate cumulative normal distributions, and is also not a very flexible approach, as it is
restricted to specific payoffs. On the other hand, it is possible to directly simulate the
sensitivities of options also for discontinuous payoffs. The most prominent way to do
this is arguably the Likelihood Ratio Method (LRM), cf., e.g., Glasserman [9], which
relies on the fact, that a standard Monte Carlo estimator for the price can be turned
into an estimator for a sensitivity, by weighting the payoffs of each Monte Carlo path
with a special weight. For the sensitivity delta, this weight, z1(s0σ

√
t1 − t0)

−1, is
particularly simple and does not depend on the option’s payoff structure at all, which
makes the LRM a very flexible and generic method.

However, our numerical results in section 3 show that the combination of finite
differences with the one-step survival estimator yields clearly superior results com-
pared to the LRM. Furthermore, from a practical point of view, the finite difference
method has the advantage, that sensitivity calculations can be played back to the sim-
ulation of the option price. For this reason, it is frequently the method-of-choice in
dedicated risk systems used for front- or middle-office activities within financial insti-
tutions. Adapting the Monte Carlo pricing routines to allow for stable differentiation
eases the integration of new option types in such systems.

2.2. The multivariate case. We will now consider an autocallable option that
depends on multiple underlyings. To keep things simple, we restrict ourselves to two
underlyings and assume that the premature payoffs depend only on the maximum or
the minimum of the underlying prices. Actually, to the knowledge of the authors,
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almost every multivariate autocallable in the German market (the Duo Express Cer-
tificates mentioned in the introduction) has its premature payoff depending on the
minimum of two underlyings. We nevertheless treat the maximum case first to explain
the ideas of our new approach before turning to the more relevant, but also slightly
more complicated, minimum case. Let us also stress that the technique herein can
also be applied to a higher number of underlyings, more complicated premature pay-
off conditions, or non-constant parameters in the stochastic model, cf. our concluding
remarks in section 4.

Let (S
(1)
t , S

(2)
t ) describe the evolution of two underlying spot prices in a Black-

Scholes model, i.e., (S
(1)
t , S

(2)
t ) solves

dS
(1)
t

S
(1)
t

= µ1dt+ σ1dW
(1)
t and

dS
(2)
t

S
(2)
t

= µ2dt+ σ2dW
(2)
t ,

with µ1, µ2 ∈ R, σ1, σ2 > 0, and a two-dimensional Brownian motion (W
(1)
t ,W

(2)
t )

with zero drift and covariance matrix
(

1 ρ
ρ 1

)
. (2.9)

Similar to the univariate case in subsection 2.1, we denote by (S
(1)
1 , . . . , S

(1)
m ) and

(S
(2)
1 , . . . , S

(2)
m ) the vectors containing the underlying prices at some fixed chronolog-

ically sorted observation dates (t1, . . . , tm). They satisfy (for j = 0, . . . ,m− 1)

S
(1)
j+1 = S

(1)
j exp

((
µ1 −

σ2
1

2

)
(tj+1 − tj) + σ1

√
tj+1 − tjZ

(1)
j

)
, (2.10)

S
(2)
j+1 = S

(2)
j exp

((
µ2 −

σ2
2

2

)
(tj+1 − tj) + σ2

√
tj+1 − tjZ

(2)
j

)
, (2.11)

where (Z
(1)
j , Z

(2)
j ) are normally distributed with zero drift, and covariance matrix

(2.9). t0, S
(1)
0 = s

(1)
0 , and S

(2)
0 = s

(2)
0 are the current time (w.l.o.g. t0 < t1), and

underlying prices.

2.2.1. Early payoff depending on the maximum of the underlyings. We
first consider a multivariate autocallable option with the following (discounted) payoff

Q(S
(1)
1 , S

(2)
1 , . . .) (2.12)

=

{
e−r(tj−t0)Qj if Mi < B ≤ Mj ∀i < j,

e−r(tm−t0)q(S
(1)
m /S

(1)
ref , S

(2)
m /S

(2)
ref ) if Mj < B ∀j = 1, . . . ,m,

where Mj := max{S(1)
j /S

(1)
ref , S

(2)
j /S

(2)
ref }, and Qj is the constant payoff that is paid if

at time tj the performance of one of the underlyings is for the first time greater than
the barrier level B on an observation date. The case where the barrier depends on
the minimum of the underlyings poses some subtle additional difficulties and will be
treated further below. The redemption payoff q is assumed to be some function of
the final underlying prices (again we refer to subsection 2.3 for necessary smoothness
conditions on q).

There is an obvious generalization of the Glasserman-Staum survival techniques
explained for the one-dimensional case in section 2.1. Starting with the current prices
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(s
(1)
0 , s

(2)
0 ) we could subsequently generate samples (s

(1)
j , s

(2)
j ) of (S

(1)
j , S

(2)
j ) by using

(2.10), (2.11), and the additional survival condition that, both, S
(1)
j+1 < B and S

(2)
j+1 <

B. This boils down to sampling from a truncated multivariate normal distribution
with

Z
(k)
j < C

(k)
j :=

ln
(
BS

(k)
ref /s

(k)
j

)
−
(
µk − σ2

k

2

)
(tj+1 − tj)

σk

√
(tj+1 − tj)

, k = 1, 2,

and weighting payoffs according to the probability

P

(
max

{
S
(1)
j+1

S
(1)
ref

,
S
(2)
j+1

S
(2)
ref

}
< B

∣∣∣
(
S
(1)
j , S

(2)
j

)
=
(
s
(1)
j , s

(2)
j

))
= Φρ

(
C

(1)
j , C

(2)
j

)
,

where Φρ(·, ·) is the bivariate cumulative normal distribution with correlation ρ.
However, there are two problems with this obvious generalization. The first one is

that it is not clear how to sample from a truncated multivariate normal distribution
in a way that smoothly depends on all parameters, which is necessary to gain the
desired stability with respect to differentiation. In particular, acception-rejection
strategies as proposed in [10] do not have this property. The second problem is that
this approach requires the evaluation of a bivariate cumulative normal distribution
for every observation time and every MC sample, which is computationally expensive.
This argument holds even more for the case of autocallables with more than two assets.

Both problems can be solved by applying the ideas of GHK Importance Sampling
[8], which enable us to sample one dimension after the other. To explain this ap-
proach, we proceed in reverse order of section 2.1. We start with an integral splitting
argument, and, afterwards, interpret it as a one-step survival technique. We have
that

PVt0(s
(1)
0 , s

(2)
0 ) = e−r(t1−t0)

∫

R

2

ϕρ(z
(1), z(2))PVt1

(
s
(1)
1 (z(1)), s

(2)
1 (z(2))

)
d(z(1), z(2)),

(2.13)
where

s
(k)
1 (z(k)) = s

(k)
0 exp

((
µk −

σ2
k

2

)
(t1 − t0) + σk

√
t1 − t0z

(k)

)
, k = 1, 2,

ϕρ is the bivariate normal density with correlation ρ, PVt1 = Q1 forM(s
(1)
1 , s

(2)
1 ) ≥ B,

and, otherwise, PVt1 is given by an analog to (2.13).
We apply the standard transformation to uncorrelated normal distributions,

z(1) = y(1) and z(2) = ρy(1) +
√
1− ρ2y(2).

This yields

PVt0(s
(1)
0 , s

(2)
0 ) = e−r(t1−t0)

∫

R

ϕ(y(1))

∫

R

ϕ(y(2))PVt1

(
s
(1)
1 , s

(2)
1

)
dy(2) dy(1),

(2.14)

where now (with a slight abuse of notation) s
(k)
1 = s

(k)
1

(
y(1), y(2)

)
, k = 1, 2.

The survival conditionM(s
(1)
1 , s

(2)
1 ) = max{s(1)1 /S

(1)
ref , s

(2)
1 /S

(2)
ref } < B is equivalent

to

z(1) < C
(1)
1 and z(2) < C

(2)
1 ,
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Fig. 2.1. Survival zone before (left picture) and after (right picture) transformation to uncor-
related variables.

and thus equivalent to

y(1) < C
(1)
1 and y(2) <

C
(2)
1 − ρy(1)√

1− ρ2
,

see figure 2.1 for a sketch of these survival zones.
We accordingly split the one-dimensional integrals in (2.14) and obtain by an easy

calculation

PVt0(s
(1)
0 , s

(2)
0 ) = e−r(t1−t0)

∫ C
(1)
1

−∞

ϕ(y(1))

p
(1)
0





(
1− p

(1)
0 p

(2)
0

)
Q1

+ p
(1)
0 p

(2)
0

∫ C
(2)
1 −ρy(1)
√

1−ρ2

−∞

ϕ(y(2))

p
(2)
0

PVt1

(
s
(1)
1 , s

(2)
1

)
dy(2)





dy(1)

with

p
(1)
0 := Φ(C

(1)
1 ), and p

(2)
0 := Φ

(
C

(2)
1 − ρy(1)√

1− ρ2

)
.

This reformulation now contains two one-dimensional conditional probability den-
sities,

ϕ(y(1))

p
(1)
0

1
y(1)<C

(1)
1

and
ϕ(y(2))

p
(2)
0

1
y(2)<(C

(2)
1 −ρy(1))/

√
1−ρ2 ,

each of which is properly normalized, with the particularity that the normalization
of the second one depends on the first variable of integration y(1). After treating the
integral expression for PVt1 and subsequent observation times in an analogous manner,
this reformulation can be implemented as in the univariate case in section 2.1.

This leads to the following multivariate one-step survival strategy: For the (j+1)-

th observation time, we enforce survival by first sampling the first underlying s
(1)
j+1,

such that it is still possible to evade the barrier (by drawing y(1) from an appropriately

truncated normal distribution). Then, we sample the second underlying s
(2)
j+1, such

that the barrier is indeed evaded (by drawing y(2) from a normal distribution with

truncation condition depending on s
(1)
j+1). We account for the missing barrier hit by

adding the premature payoff with the weight 1−p
(1)
j p

(2)
j defined above (which depends

on s
(1)
j+1, resp. y

(1)) and weight all further payoffs with p
(1)
j p

(2)
j .
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A Monte Carlo pricing algorithm for autocallables that allows stable differentiation 11

We sum up the resulting implementation in algorithm 2. Note that it depends
smoothly on all parameters. In section 3, we will investigate an extension of this
algorithm numerically and demonstrate that the calculated values can indeed be stably
differentiated by simple finite differences.

Algorithm 2 One-step survival GHK-MC estimator for a multivariate autocallable
option (barrier on maximum).

Initialize random seed
for n = 1, . . . , N do

Pn := 0, L := 1
for j = 0, . . . ,m− 1 do

C(1) :=
(
ln(BS

(1)
ref /s

(1)
j )− (µ1 − σ2

1/2)(tj+1 − tj)
)/(

σ1

√
(tj+1 − tj)

)

C(2) :=
(
ln(BS

(2)
ref /s

(2)
j )− (µ2 − σ2

2/2)(tj+1 − tj)
)/(

σ2

√
(tj+1 − tj)

)

p(1) := Φ(C(1))
Sample u(1) ∼ U(0, 1). y(1) := Φ−1(p(1)u(1))

p(2) := Φ((C
(2)
1 − ρy(1))/

√
1− ρ2)

Sample u(2) ∼ U(0, 1). y(2) := Φ−1(p(2)u(2))
Pn := Pn + (1 − p(1)p(2))Le−r(tj+1−t0)Qj+1

L := p(1)p(2)L
z(1) := y(1), z(2) := ρy(1) +

√
1− ρ2y(2)

s
(1)
j+1 := s

(1)
j exp

((
µ1 − σ2

1

2

)
(tj+1 − tj) + σ1

√
tj+1 − tjz

(1)
)

s
(2)
j+1 := s

(2)
j exp

((
µ2 − σ2

2

2

)
(tj+1 − tj) + σ2

√
tj+1 − tjz

(2)
)

end for

Pn := Pn + Le−r(tm−t0)q(s
(1)
m /S

(1)
ref , s

(2)
m /S

(2)
ref )

end for

return P̂ Vt0 = 1
N

∑N
n=1 Pn

Before we turn to the case where the early payoff depends on the minimum of the
underlyings, let us stress again that the algorithm developed herein is not the obvious
generalization of the survival idea sketched in the beginning of this subsection. Evad-
ing the barrier by subsequently sampling first one, and then the other, underlying
is not the same as sampling them simultaneously from a truncated bivariate normal

distribution. Accordingly, p
(1)
j p

(2)
j is not the probability of the barrier hit, it is an im-

portance sampling weight depending on the sample of the first underlying. Note that
(besides allowing stable differentiation) this approach also has the major advantage
that it only requires one-dimensional truncated normal distributions.

2.2.2. Early payoff depending on the minimum of the underlyings.

Now we consider the practically more relevant case of a multivariate autocallable
option, where the premature payoff is paid when both of the underlyings are larger
than the barrier level, i.e., an option with the (discounted) payoff profile (2.12) and

Mj := min(S
(1)
j /S

(1)
ref , S

(2)
j /S

(2)
ref ). Now the survival zone, i.e., the region in which no

premature payoff happens, is no longer rectangular but L-shaped, see the left side of
figure 2.2.

Proceeding along the lines of subsection 2.2.1 leads to the sampling of the first
underlying with no additional condition (as it is always still possible to evade the
barrier). Depending on this sample, the second underlying is then sampled either
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Fig. 2.2. Survival zone before (left picture) and after (middle picture) transformation to un-
correlated variables, and after an additional rotation step (right picture).

with no additional condition (if the first underlying is under the barrier), or with the
additional condition that it has to stay below the barrier. More precisely, with the
notation from subsection 2.2.1, we have to draw y(1) from a standard normal distri-
bution and then draw y(2) from either an non-truncated standard normal distribution

(if y(1) < C(1)), or (otherwise) under the additional condition y(2) <
C

(2)
1 −ρy(1)√

1−ρ2
, see

the middle picture in figure 2.2 for a sketch of this domain.

This means that, depending on y(1), the truncation condition for y(2) abruptly
becomes active. The samples do no longer depend smoothly on the parameters that
control the domain bounds, and so the resulting algorithm will no longer have the
desired stability with respect to differentiation.

To alleviate this problem and obtain a (Lipschitz) continuous parameterization
of the bounds for the second sample with respect to the first one, we introduce an
additional rotation step and set

(
y(1)

y(2)

)
:=

(
cosα sinα
− sinα cosα

)(
x(1)

x(2)

)
.

The survival condition M(s
(1)
1 , s

(2)
1 ) = min(s

(1)
1 , s

(2)
1 ) < B is then equivalent to

x(2) < max

{
C

(1)
1 − x(1) cosα

sinα
,
C

(2)
1 − ρx(1) cosα+

√
1− ρ2x(1) sinα

ρ sinα+
√
1− ρ2 cosα

}
=: C1

(2.15)

see the right side of figure 2.2 for a sketch of this domain. A simple choice for α that
makes the right hand side of (2.15) a (Lipschitz) continuous function for all parameters
is to take half the angle between the two bounding lines,

α :=
1

2

(
π

2
− arctan

(
− ρ√

1− ρ2

))
.
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With this additional rotation step we proceed as in subsection 2.2.1, and obtain

PVt0(s
(1)
0 , s

(2)
0 ) = e−r(t1−t0)

∫

R

2

ϕρ(z
(1), z(2))PVt1

(
s
(1)
1 (z(1)), s

(2)
1 (z(2))

)
d(z(1), z(2))

= e−r(t1−t0)

∫

R

ϕ(x(1))

∫

R

ϕ(x(2))PVt1

(
s
(1)
1 , s

(2)
1

)
dx(2) dx(1)

= e−r(t1−t0)

∫

R

ϕ(x(1))

{
(1− p0)Q1

+ p0

∫ C1

−∞

ϕ(x(2))

Φ(C1)
PVt1

(
s
(1)
1 , s

(2)
1

)
dx(2)

}
dx(1),

(2.16)

with p0 := Φ(C1).
Again, this reformulation now contains only two one-dimensional conditional

probability densities and can be implemented as before. We sum up the resulting im-
plementation in algorithm 3. Note that, due to the additional rotation, the resulting
estimator is now a (Lipschitz) continuous, but not necessarily differentiable, function
of the parameters. In the next subsection we will show that this is sufficient to allow
stable first order differentiation by finite differences. In order to gain stability also
for higher order derivatives one may consider replacing the non-differentiable function
max(·, ·) in the definition of C by a smoothed approximate version, or splitting also
the outer integral in (2.16).

Algorithm 3 One-step survival GHK-MC estimator for a multivariate autocallable
option (barrier on minimum).

Initialize random seed
for n = 1, . . . , N do

Pn := 0, L := 1
for j = 0, . . . ,m− 1 do

C(1) :=
(
ln(BS

(1)
ref /s

(1)
j )− (µ1 − σ2

1/2)(tj+1 − tj)
)/(

σ1

√
(tj+1 − tj)

)

C(2) :=
(
ln(BS

(2)
ref /s

(2)
j )− (µ2 − σ2

2/2)(tj+1 − tj)
)/(

σ2

√
(tj+1 − tj)

)

Sample u(1) ∼ U(0, 1). x(1) := Φ−1(u(1))

C := max

{
C(1)−x(1) cosα

sinα ,
C(2)−ρx(1) cosα+

√
1−ρ2x(1) sinα

ρ sinα+
√

1−ρ2 cosα

}

p := Φ(C)
Pn := Pn + (1 − p)Le−r(tj+1−t0)Qj+1

L := pL
Sample u(2) ∼ U(0, 1). x(2) := Φ−1(pu(2))
y(1) := x(1) cosα+ x(2) sinα, y(2) := −x(1) sinα+ x(2) cosα
z(1) := y(1), z(2) := ρy(1) +

√
1− ρ2y(2)

s
(1)
j+1 := s

(1)
j exp

((
µ1 − σ2

1/2
)
(tj+1 − tj) + σ1

√
tj+1 − tjz

(1)
)

s
(2)
j+1 := s

(2)
j exp

((
µ2 − σ2

2/2
)
(tj+1 − tj) + σ2

√
tj+1 − tjz

(2)
)

end for

Pn := Pn + Le−r(tm−t0)q(s
(1)
m /S

(1)
ref , s

(2)
m /S

(1)
ref )

end for

return P̂ Vt0 = 1
N

∑N
n=1 Pn
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2.3. Smoothness and stability: the mathematical background. Intu-
itively, it seems clear that the Monte Carlo estimators should smoothly depend on
the parameters in order to allow stable differentiation (cf. the end of subsection 2.1).
We now briefly describe the mathematical background of this connection between
smoothness and stability, and summarize the stability properties of our algorithms.
A more in-depth discussion on the stability of calculating sensitivities can be found,
e.g., in the monograph of Glasserman [9].

To keep the mathematical formalism to a minimum, let us first observe that, in
all our cases, the stochastic process of the underlyings(s) can be described by some
parameters, and a number of independently uniformly distributed random variables on
the unit interval. The payoff function then depends on the prices of the underlying(s)
at the observation times and some more parameters. Now assume that we wish
to differentiate with respect to one parameter and keep all others fixed. To ease
presentation, we concentrate on the current underlying price s0; all other parameters
can be treated completely analogously.

Then, the true value PVt0 , and its Monte Carlo estimator P̂ V t0 , can be written
as a parameter-dependent integral (resp., sum)

PVt0(s0) :=

∫

(0,1)M
Q(s0, u) du ≈ 1

N

N∑

n=1

Q(s0, u·,n) =: P̂ V t0(s0), (2.17)

where Q(s0, u) denotes the (discounted) payoff according to the parameter value
s0 and random variable values u ∈ (0, 1)M , N is the number of samples, u·,n =
(u1,n, . . . , uM,n) are random draws from U(0, 1)M , and Q(s0, u·,n) is the (discounted)
Monte Carlo payoff according to this draw.

To be more precise, for the univariate case, the standard Monte Carlo estimator
can be written in the above form by setting

Quni
standard(s0, u) := Q(s1(s0, u), . . . , sm(s0, u)), u = (u1, . . . , um), (2.18)

with Q given by (2.2), M = m, and the sj(s0, u) are recursively defined by using (2.1)
with zj = Φ−1(uj).

The one-step survival estimator from section 2.1 can be written in the same form
by setting

Quni
oss (s0, u) := Q̃(s̃1(s0, u), . . . , s̃m(s0, u)), u = (u1, . . . , um), (2.19)

where now Q̃ from (2.7) is used, M = m, and the s̃j(s0, u) are recursively defined by
using (2.1) with zj = Φ−1(pjuj) and pj defined by (2.4). By the integral splitting
argument in section 2.1, it immediately follows that

PV uni
t0 (s0) =

∫

(0,1)M
Quni

standard(s0, u) du =

∫

(0,1)M
Quni

oss (s0, u) du,

so that the one-step survival estimator is unbiased by construction, cf. also Glasserman
and Staum [10].

Analogously, the standard and the one-step survival estimators for the bivariate
case with payoff depending on the minimum, resp., maximum from section 2.2 can be
written in the above form, yielding

PV max
t0 (s0) =

∫

(0,1)M
Qmax

standard(s0, u) du =

∫

(0,1)M
Qmax

oss (s0, u) du,
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A Monte Carlo pricing algorithm for autocallables that allows stable differentiation 15

resp.,

PV min
t0 (s0) =

∫

(0,1)M
Qmin

standard(s0, u) du =

∫

(0,1)M
Qmin

oss (s0, u) du.

Here, M = 2m, the definitions of Qmax
standard(s0, u) and Qmin

standard(s0, u) are obvious,
and the form of Qmax

oss (s0, u) and Qmin
oss (s0, u) is most easily derived from algorithm 2

and algorithm 3.
To study the stability of Monte Carlo estimators in the general form (2.17), let

us introduce the forward finite difference operator Dh, that operates with respect to
the parameter s0,

DhPVt0(s0) =
1

h
(PVt0(s0 + h)− PVt0(s0)) .

All of the following is easily extended to the case of backward or central finite differ-
ences. Now we can give a precise definition of stability.

Definition 2.1. We say that a Monte Carlo estimator allows stable differentia-

tion by finite differences if there exists C(h) > 0 such that

Var(DhP̂ V t0(s0)) ≤
1

N
C(h),

and C(h) stays bounded for h → 0.

Since DhPVt0(s0) → ∂
∂s0

PVt0(s0) for h → 0, and since, by linearity, DhP̂ V t0(s0)
is an unbiased estimator for DhPVt0(s0), stability means that applying finite differ-
ences to the estimator will yield a good approximation for the true sensitivity

DhP̂ V t0(s0) ≈
∂

∂s0
PVt0(s0),

whenever h is small and N is large. If the estimator does not allow stable differentia-
tion, i.e., C(h) → ∞, then, generally, for each fixed N , the error of the differentiated
Monte Carlo estimator will blow up for h → 0. In this case, one can still obtain
convergence by adequately balancing N and h, but more accurate finite differences
will then require increasingly infeasibly high numbers of Monte Carlo samples.

Theorem 2.2. If both, PVt0(s0) and the Monte Carlo payoff Q(s0, u), depend
Lipschitz continuously on s0, resp., (s0, u), then the estimator allows stable differen-

tiation.

Proof. For an estimator in the form (2.17) and U ∼ U(0, 1)M , we have that

Var
(
DhP̂ V t0(s0)

)
=

1

N
Var (DhQ(s0, U))

=
1

N

∫

(0,1)M
(DhQ(s0, u)−DhPVt0(s0))

2
du, (2.20)

When both, PVt0(s0) and Q(s0, u), are Lipschitz continuous, then the right hand side
of (2.20) is bounded by an h-independent constant which completes the proof.

In the preceeding subsections, we demonstrated how to switch from a discon-
tinuous Monte Carlo payoff to one that is (at least) Lipschitz continuous. For the
univariate autocallable, the standard Monte Carlo payoff Quni

standard(s0, u) defined in
(2.18) possesses the discontinuities of the autocallable’s original payoff function Q
given in (2.2). On the other hand, for the one-step survival estimator, it is easily
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checked by analyzing algorithm 1, that the dependance of the Monte Carlo payoff
Quni

oss (s0, u) from (s0, u) is a composition of infinitely often differentiable functions and
the redemption payoff function q.

The same holds for the bivariate autocallable in the case where the payoff depends
on the maximum of the underlyings, treated in subsection 2.2.1. We implement
the survival idea by subsequently sampling first one and then the other underlying.
In doing so, the bound on the second underlying depends smoothly on the sample
of the first one, cf. the survival zone in the right graph of figure 2.1. This yields
that the samples depend smoothly on all parameters, which is a general feature of
the underlying GHK Importance Sampling technique for convex polyhedrons, cf. [3].
Hence, we obtain by analyzing algorithm 2 that, again, the dependance of the Monte
Carlo payoff from (s0, u) is a composition of infinitely often differentiable functions
and the redemption payoff function q.

In the last case, where the payoff depends on the minimum of the underlyings
(cf. subsection 2.2.2), the survival zone is no longer convex but L-shaped, cf. 2.2,
which destroys the smoothness properties of the GHK samples. Nevertheless, with
our additional rotation step, we are able to ensure that the bound on the sampled
second underlying does depend Lipschitz continuously on the sample of the first one,
cf. figure 2.2. As a consequence, our estimator in algorithm 3 consists of a composition
of infinitely differentiable functions, the non-differentiable but Lipschitz continuous
maximum function, and the redemption payoff. Hence, in all three settings, we obtain
from theorem 2.2:

Corollary 2.3. If the redemption payoff q is Lipschitz continuous, then the

estimators in algorithm 1–3 allow stable differentiation.

Note that, by the above arguments, a higher regularity of the redemption payoff
will lead to a higher regularity for the estimators in algorithm 1 and 2, thus allowing
also higher order stable differentiation. For the last algorithm 3 this is not the case
due to the presence of the non-differentiable maximum function. Furthermore note
that also a piecewise smooth redemption payoff function can be handled in a smooth
way by applying the very same integral splitting, resp., importance sampling methods
that we used for the barriers.

3. Numerical Results. We now provide some numerical examples for the al-
gorithms developed in section 2. Let us first consider a simple univariate autocallable
with only one observation date before maturity. We used the parameters in table 3.1
as default values and, in each of the following plots, varied one of these parameters.
The example is fictitious but typical for univariate autocallables traded in the German
market.

The first column in figure 3.1 shows the estimated value of the autocallable as a
function of the underlying price. The results of the standard Monte Carlo estimator
and the one-step survival Monte Carlo estimator described in algorithm 1 are plotted
in a black dashed line, and in a gray solid line, respectively. The rows use N = 102,
N = 103, N = 104, and N = 105 Monte Carlo samples from top to bottom for our
new algorithm (see below for the standard algorithm), and, for each of these and the
following calculations, the same Monte Carlo random seed was used.

The second column shows the first derivative of the autocallable value with respect
to the underlying price (the Delta) calculated by applying forward finite differences

P̂ V t0(s0 + δs)− P̂ V t0(s0)

δs
with δs = 10.
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Table 3.1

Parameters of the univariate and the multivariate example.

Univariate Multivariate

Current time: t0 =0 t0 =0

Current underlying price(s): s0 =3500 s
(1)
0 =3500 s

(2)
0 =7000

Reference value(s): Sref =4000 S
(1)
ref =4000 S

(2)
ref =8000

Barrier: B=1 B=1

No. of observation dates: m=2 m=5

Observation dates: t1 =1 t1 =1 t3 =3 t5 =5
t2 =2 t2 =2 t4 =4

Premature payoffs: Q1 =110 Q1 =110 Q3 =130 Q5 =150
Q2 =120 Q2 =120 Q4 =140

Redemption payoff: q(s)= 100s q(s(1), s(2)) = 100min{s(1), s(2)}

Risk-free interest rate: r=4% r=4%

Dividend yield(s): b=0 b1 =0 b2 =0

Volatility(ies) and correlation σ=30% σ1 =30% σ2 =40% ρ=0.5

The third and fourth columns show analog plots for the autocallable’s value as a
function of the volatility, and for its derivative (the Vega) calculated with forward
finite differences using δσ = 5 · 10−4.

The gray solid line in figure 3.2 shows again the Delta calculated by applying
forward differences to our one-step survival algorithm and compares it to the results
of the Likelihood Ratio Method (black dashed line), cf. the end of subsection 2.1.

Each Monte Carlo sample in algorithm 1 requires slightly more time (less than
10% in the average for this numerical experiment) compared to the standard Monte
Carlo algorithm, and evaluating the finite differences requires estimating two prices.
Hence, figures 3.1 and 3.2 are runtime-adjusted : we used 1.10N samples for the
standard Monte Carlo algorithm and 2.20N samples for the Likelihood Ratio Method,
so that our new algorithm did not have a longer runtime than the others. Of course,
these factors introduce some ambiguity. They depend on our specific implementations
(which are, however, quite similar for all the considered algorithms). Moreover, in the
standard Monte Carlo algorithm, it is not necessary to continue paths after a barrier
hit, so that the runtime is greatly affected by the number of paths with premature
payoff. Nevertheless, we believe that these average factors allow a somewhat fair
comparison.

The plots clearly demonstrate the instability of the standard Monte Carlo estima-
tor with respect to numerical differentiation and the stability of the one-step survival
MC estimator as explained in subsection 2.1. They also clearly show that combining
finite differences with one-step survival Monte Carlo estimator yields superior results
when compared to the Likelihood Ratio Method.

Our second example is a multivariate autocallable with barrier depending on the
minimum of two underlyings, cf. subsection 2.2.2. The parameters are summarized in
table 3.1. Again, we used a fictitious but typical example. Note that the redemption
payoff is Lipschitz continuous, but not differentiable.

The first, resp., second column in Figure 3.3 shows the value of the autocallable
as a function of the two underlying prices calculated with a standard Monte Carlo
procedure, resp., with our new one-step survival GHK-MC estimator, cf. algorithm 3.
The third and the fourth row show the derivative with respect to the first underlying’s
price calculated by finite differences with δs(1) = 10. Again, the plots are runtime-
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Fig. 3.1. Value of the autocallable calculated with standard Monte Carlo (black dashed line)
and with the one-step survival estimator (gray solid line) as a function of the underlying’s price
(first column) and volatility (third column) using N = 102 to N = 105 Monte Carlo samples (from
top to bottom) for the one-step survival estimator. Second and fourth columns show the respective
first derivatives calculated by finite differences.
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Fig. 3.2. Delta of the autocallable calculated with the Likelihood Ratio Method (black dashed
line) and by applying finite differences on the one-step survival estimator (gray solid line) using
N = 102 to N = 105 Monte Carlo samples for the one-step survival estimator.

adjusted. We observed that the Monte Carlos samples in algorithm 3 required (in the
average) less than 50% more time than in the standard Monte Carlo algorithm, and
accordingly used N = 102 and N = 104 samples for algorithm 3, and 1.5N samples
for the standard method. The instability of the standard Monte Carlo estimator with
respect to numerical differentiation and the stability of our new estimator is clearly
visible.

The stability of our new algorithm with respect to other derivatives is demon-
strated in Figure 3.4. From left to right it shows (as a function of the underlying
prices): the derivative of the multivariate autocallable value with respect to the volatil-
ity of the first underlying, their correlation, the current time, and the risk-free interest
rate. The derivatives were calculated by applying algorithm 3 with N = 500 Monte
Carlo samples, and using forward finite differences with δσ1 = 0.03%, δρ = 5 · 10−4,
δt0 = 10−3, and δr = 4 · 10−3%. All plots show smooth functions with no signs of
oscillations that would indicate instability.
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Fig. 3.3. Value of a multivariate autocallable calculated with standard Monte Carlo (first
column) and with the new one-step survival GHK-MC estimator in algorithm 3 (second column) as
a function of the two underlying prices for N = 102 (upper row) and N = 104 Monte Carlo samples.
Third and fourth column show the respective derivatives with respect to the first underlying price
calculated by finite differences.

Fig. 3.4. From left to right: First derivative with respect to the volatility of the first underlying,
their correlation, the current time and the risk-free interest rate, calculated with the new one-step
survival GHK-MC estimator in algorithm 3 with N = 500 MC samples and finite differences.

We end this section with a quantitative study on the variance reduction effect of
our new algorithm. Table 3.2 shows the mean value, and the variance of the Monte
Carlo samples for the value of the multivariate autocallable, and for its derivative with
respect to the first underlying price (calculated by finite differences as above). We
used the parameters in table 3.1 and compared the standard Monte Carlo algorithm
with our new one-step survival GHK-MC estimator in algorithm 3. The table shows
that our new algorithm reduces the variance of the Monte Carlo samples by a factor of
three for the autocallable’s value and by a factor of more than 500 for the derivative.
Consequently, the accuracy of our new algorithm with N samples is comparable to
that of the standard algorithm with 3N , resp., 500N , samples.

Again, this clearly demonstrates the new algorithm’s stability with respect to
numerical differentiation. As mentioned above, our new algorithm required, for this
multivariate example, on average less than 50% more time than the standard Monte
Carlo algorithm. Hence, it requires only half the time to obtain the autocallable’s
value with the same precision.

At this point, let us stress again, that heuristic averaged runtime factors have to
be treated with caution, since the runtime of standard Monte Carlo algorithms for
autocallables is greatly affected by prematurely ending paths. Obviously, by taking
a large number of barriers and choosing the current underlying price so high, that
almost all paths hit the first barrier, one can construct examples where the standard
Monte Carlo algorithm is the most efficient one. However, for practically relevant
applications, our numerical examples indicate that the one-step survival GHK-MC
estimator does not only allow stable differentiation but it is also an efficient way of
pricing the autocallable.
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Table 3.2

Quantitative study of the variance reduction effect.

P̂ V t0
P̂V t0 (s

(1)
0 +δs(1))−P̂V t0 (s

(1)
0 )

δs(1)

MC Algo. 3 MC Algo. 3

N = 101
mean 73.10 66.87 1.130 · 10−3 9.735 · 10−3

variance 2240 629.4 1.277 · 10−5 4.641 · 10−5

N = 102
mean 74.96 70.53 2.303 · 10−3 9.664 · 10−3

variance 1567 499.3 2.558 · 10−5 9.163 · 10−5

N = 103
mean 68.89 66.34 −1.259 · 10−3 9.823 · 10−3

variance 1584 557.3 640.2 · 10−5 8.658 · 10−5

N = 104
mean 67.72 67.74 11.39 · 10−3 9.683 · 10−3

variance 1555 538.8 5035 · 10−5 8.472 · 10−5

N = 105
mean 67.37 67.60 9.167 · 10−3 9.712 · 10−3

variance 1576 542.7 4534 · 10−5 8.573 · 10−5

N = 106
mean 67.54 67.57 9.874 · 10−3 9.719 · 10−3

variance 1581 538.8 4801 · 10−5 8.559 · 10−5

4. Conclusions. We adapted the idea of one-step survival Monte Carlo simula-
tions suggested by Glasserman and Staum [10] to the pricing of uni- and multivariate
autocallable options. For the univariate case, this application is straightforward. It
leads to the variance reduction already discussed in [10], and, in addition, it has the
advantage that the calculated prices can be stably differentiated by simple finite dif-
ferences. From a practical point of view, this feature is particularly important for
calculating the risk of such options having only their prices at ones disposal.

The main aim of this paper was to demonstrate how to generalize the idea of
one-step survival to the multivariate case. Straightforward implementations using
acception-rejection strategies destroy the stability property. Using a new combina-
tion of GHK importance sampling with one-step survival, we were able to overcome
this problem, and derived a multivariate pricing algorithm that allows for stable dif-
ferentiation. Our new algorithm does not require evaluating any multivariate normal
distributions, but merely uses repeated draws from, properly truncated, univariate
standard normal distributions. Numerically, we observed a significant variance reduc-
tion at the price of only a moderately increased computation time, which makes the
algorithm also an efficient way for pricing autocallables.

To simplify the presentation and concentrate on the main ideas, we have described
our new algorithm only for uni- and bivariate autocallables within the classical Black-
Scholes setting with constant parameters. The extension to the case where the un-
derlyings follow an Itô-process with non-constant (but deterministic) parameters is
obvious: By using smaller time-steps for the Monte Carlo simulation, we can assume
that the parameters are constant in each step, and then apply our combination of
GHK sampling and one-step survival for those time steps, in which a barrier hit is
possible.

Stochastic parameters will lead to more complicated survival zones (where now
also the stochastic parameters play a role), but the ideas presented herein should be
applicable as well. The same is true for higher numbers of underlyings and more
complicated barrier conditions. In principle, this can be done along the lines outlined
in this work. However, care has to be taken to parameterize the survival zones in such
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a way that the samples depend smoothly on the parameters. We also believe that the
integral-splitting, resp., survival sampling, techniques presented in this work can be
adapted to other kinds of options with path-dependent, discontinuous payoffs.

Another possible extension of the method is to go beyond multivariate normal
increments, and use, e.g., multivariate student-t-increments. A corresponding gener-
alization of the GHK-algorithm to t-distributions is given in [8].

Finally, it should be mentioned that our approach can be combined with other
variance reduction methods, such as control variates or antithetic variables [10].
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