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In the last years, two new tools have been developed for an approach to the question whether
a given nonsingular projective algebraic curve over a number field has a Jacobian of CM type.
First, such curves can be characterized by the existence of Belyi functions or Grothendieck’s
dessins d’enfants ([Be], [Gr], [VS], [CIW], [JS3]) — for detailed definitions see Section 1. There
is some reasonable hope that dessins also encode deeper properties of curves which has already
been proved for places of bad reduction ([Fu], [Bec]), so one should try to read information about
the endomorphism algebra of the Jacobian also from combinatorial properties of dessins. We will
mainly consider regular dessins or equivalently, Riemann surfaces with many automorphisms.
The reduction to this particular case is described in Section 2.
Second, there has been considerable progress in transcendence. A classical criterion due to Th.
Schneider says that an elliptic curve defined over Q̄ has complex multiplication if and only if the
period quotient is algebraic. From Wüstholz’ analytic subgroup theorem follows a generalization
to abelian varieties and their period quotients in the Siegel upper half space ([Coh], [SW], see
Theorem 3) and has applications in particular to curves with many automorphisms (Sections 4
and 7).
The key in joining both tools is the use of the canonical representation of the automorphism
group G of the curve X on the space of holomorphic differentials. The Jacobian of X is isogenous
to a direct product

Ak1

1 × . . . × Akm
m

of simple, pairwise non–isogenous abelian varieties Aν , ν = 1, . . . ,m , and among others it will
be shown that

1. irreducible subspaces U of this representation belong to isotypic components of JacX ,
i.e. consist of pullbacks of differentials on the factors Akν

ν (they can even built up from
EndAν–invariant subspaces of H0(Ω, Aν) , see Section 7),

2. dimU = 1 implies that Aν has complex multiplication (Theorem 4, Section 4),

3. large representation degrees dimU indicate high multiplicity kν of Aν and/or that EndAν

has large degree over its center (Theorems 8 and 9).
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1 TRIANGLE GROUPS AND DESSINS 2

These canonical representations — which can be effectively constructed as subrepresentations
of the regular representation of G ([St1], [St2]) — can also be used to determine the period
quotient, hence to apply Theorem 3, but this will be an object of further research ([St3]). In the
present paper, the simpler criteria for JacX to be of CM type (Theorem 4, Remark 3) turn out
to give only another look to the well–known fact that Fermat curves and their quotients have
Jacobians of CM type ([KR], [Ao]). More interesting is the fact that ‘many automorphisms’ do
not imply ‘CM’, explained in Section 5 using certain subvarieties of the Siegel upper half space.
Surprisingly, even Hurwitz curves (for which the maximal number 84(g − 1) of automorphisms
is attained) do not always have Jacobians of CM type, as is shown in Section 6.5 for Macbeath’s
curve in genus 7. Since in every genus there is only a finite number of curves with many auto-
morphisms, Section 6 includes a detailed discussion of all such curves for genera < 5 . It turns
out that only one (hyperelliptic) curve in genus 3 and two curves in genus 4 have Jacobians not
of CM type.

The main new results of the present paper are contained in Sections 4, 5 and 7. The other
Sections collect material of which a good part is known to experts but often not presented in
the literature in a form we need here. I hope that e.g. Theorem 2 about the regularization of
dessins or the examples of Section 6 may be useful in other contexts also.

The first attempt to the question treated in this paper emerged from discussions with Claude Itzykson in 1993.

On the financial side, it has been generously supported by a PROCOPE grant, then profited by a stay at ETH

Zürich in 1995. Later, I learned many things by discussions with Manfred Streit, Gareth Jones, David Singerman

and Antoine Coste.— I am indebted to Thomas A. Schmidt for the elimination of a long series of linguistic errors.

1 Triangle groups and dessins

Let Y denote a compact Riemann surface or equivalently a complex nonsingular projective
algebraic curve. We are looking for properties of JacY and may therefore suppose that the
genus of Y is g > 0 . A simple complex polarized abelian varietyA has complex multiplication
if its endomorphism algebra

End0A := Q ⊗Z EndA

is a number field K of degree
[K : Q] = 2 dimA .

Then, K is necessarily a CM field, i.e. a totally imaginary quadratic extension of a totally real
field of degree dimA . If the polarized complex abelian variety A is not simple, it is isogenous
to a direct product of simple abelian varieties. Then, A is said to be of CM type if the simple
factors have complex multiplication. Abelian varieties with complex multiplication and hence
abelian varieties of CM type are C–isomorphic to abelian varieties defined over number fields
[ST]. In short: they may be defined over number fields. Since curves and their Jacobians may
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be defined over the same field [Mi], we can restrict to curves which may be defined over number
fields. The corresponding Riemann surfaces given by their complex points can be characterized
in a reformulation of Bely̆ı’s theorem as quotients Γ\H of the upper half plane H by a subgroup
Γ of finite index in some cocompact Fuchsian triangle group ∆ ([Wo1], [CIW]). Therefore one
has

Theorem 1 Let Y be a compact Riemann surface of genus g > 0 with a Jacobian JacY of
CM type. Then Y is isomorphic to Γ\H for some subgroup Γ of finite index in a cocompact
Fuchsian triangle group ∆ .

In this theorem, ∆ and Γ are not uniquely defined. They are constructed by means of a Belyi
function β : Y → P1(C) ramified at most above 0, 1 and ∞ ∈ P1 . If we identify Y with Γ\H ,
the Belyi function β is the canonical projection

β : Γ\H → ∆\H ∼= P1(C) (1)

ramified only over the orbits of the three fixed points of ∆ of order p, q and r . The ∆–orbits
of these fixed points may be identified with 0, 1 and ∞ ∈ P1 , and p, q, r must be multiples
of the respective ramification orders of β over 0, 1,∞ . But this is the only condition imposed
upon the signature of ∆ ; we may and will normalize ∆ by a minimal choice of the signature,
i.e. by assuming that p, q, r are the least common multiples of all ramification orders of β above
0, 1,∞ respectively. Under this normalization, the groups ∆ and Γ are uniquely determined by
Y and β up to conjugation in PSL2R (assuming they are Fuchsian groups, see below). Such a
pair (Γ,∆) will be called minimal. In very special cases these minimal pairs are not pairs of
Fuchsian, but of euclidean groups acting on C instead of H . The euclidean triangle groups have
signature < 2, 3, 6 > , < 3, 3, 3 > or < 2, 4, 4 > , therefore the Riemann surfaces Y are elliptic
curves C/Γ , in these cases isogenous to elliptic curves with fixed points of order 3 or 4 induced
by the action of ∆ , hence with complex multiplication. They are treated in detail in [SSy]; in
most cases, we will take no notice of them in the present paper. The restriction to minimal pairs
is useful by the following reason.

Lemma 1 Let Γ be a cocompact Fuchsian group, contained with finite index in a triangle group
∆ . Suppose that the genus of Γ\H is > 0 and that the pair (Γ,∆) is minimal. There is a
maximal subgroup N of Γ which is normal and of finite index in ∆ . This group N is torsion–
free, hence the universal covering group of X := N\H .

The subgroup N can be constructed by taking the intersection of all ∆–conjugates of Γ . That
the index [∆ : N ] is finite, may be seen either by group–theoretic arguments or by the fact
that N\H → ∆\H is the normalization of the covering Γ\H → ∆\H . Since we have a
normal covering, all ramification orders above the respective ∆–fixed point are the same; on
the other hand, they must be common multiples of the respective ramification orders of the
covering Γ\H → ∆\H . (It will turn out that they are even the least common multiples, but



1 TRIANGLE GROUPS AND DESSINS 4

we do not need this fact.) Now, by minimality, these ramification orders are multiples of the
orders occurring in the signature of ∆ . If N had an elliptic element γ , its fixed point would
be a ∆–fixed point of order p , say; but in this fixed point — or rather in its image on X —,
the normal covering map would be ramified with order p/ ord γ , a proper divisor instead of a
multiple of p in contradiction to our assumption.

The Riemann surfaces X found in this Lemma are of special interest: a Riemann surface of genus
g > 1 is said to have many automorphisms ([Rau], [Po]) if it corresponds to a point x of the
moduli space Mg of all compact Riemann surfaces of genus g with the following property: There
is a neighbourhood U = U(x) in the complex topology of Mg such that to any z ∈ U , z 6= x ,
corresponds a Riemann surface Z with strictly fewer automorphisms then X . Using rigidity
properties of triangle groups one proves easily [Wo2] the

Lemma 2 The compact Riemann surface X of genus g > 1 has many automorphisms if and
only if it is isomorphic to a quotient N\H of the upper half plane by a torsion–free normal
subgroup N of a cocompact Fuchsian triangle group ∆ .

Remark 1. The notion many automorphisms extends to genus g = 1 if one divides out the
obvious automorphism subgroup induced by the translations on C . Then, elliptic curves with
many automorphisms are precisely those with fixed points of order 3 or 4 already mentioned
above.

Remark 2. Shabat and Voevodsky were the first having made more explicit Grothendieck’s ideas
about the use of Bely̆ı’s theorem for algebraic curves, see [Gr] and [SV]. In [SV] the reader can
find a lot of nice low genus examples of Riemann surfaces with many automorphisms and their
dessins. In their paper, dessins are the inverse images of the real interval [0, 1] under clean Belyi
functions, i.e. Belyi functions ramifying with order 2 in all preimages of 1 . In the language of
the present paper, this means a restriction to triangle groups of signature < s, 2, t > . For some
purposes, this is no loss of generality because we can pass from an arbitrary Belyi function β to
a clean one taking

β′ := 4β (1 − β) .

In other words, smooth projective algebraic curves defined over number fields can always be
written as Γ′\H with subgroups Γ′ of finite index of triangle groups ∆′ =< s, 2, t > , see The-
orem 2.2.1 of [SV] from which one can derive our Theorem 1 as well. Also, a special case of our
Lemma 1 can be found in [SV] as Theorem 2.2.2. (Balanced dessins in [SV] lead to torsion–free
subgroups Γ′ of ∆′ and Galois dessins to normal subgroups). Moreover, in section 2.3.4 [SV]
states without proof a result comparable to our Lemma 2. However, this statement should be
handled with care: On the one hand, curves with many automorphisms in genus 2 do not always
correspond to isolated singularities of the moduli space (classified by Igusa), see also [Po]. On
the other hand, Theorem 2.3.4 of [SV] fails for higher genera because it omits those curves with
many automorphisms whose universal covering groups Γ are normal torsion–free subgroups of
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triangle groups of more general signature than < s, 2, t > ; see the examples (11), (16), (19),
(20), (21) in Section 6. The passage from arbitrary to clean Belyi functions described above does
in general not replace normal torsion–free subgroups Γ of ∆ by normal torsion–free subgroups
Γ′ of ∆′ . Therefore, curves with many automorphisms (equivalently: isolated fixed points of the
Teichmüller modular group) cannot always be represented by Galois dessins as defined in [SV].

One can overcome this difficulty for not necessarily clean Belyi functions β by using a more
general definition of dessins as (oriented) hypermaps or bipartite graphs with white vertices
(the points of β−1{0} ) and black vertices (the points of β−1{1} ); the (open) edges are the
connected components of β−1]0, 1[ . For other definitions of hypermaps better reflecting the tri-
ality between β−1{0} , β−1{1} and β−1{∞} , see [JS3]. Finite index subgroups Γ of arbitrary
triangle groups ∆ correspond via (1) to such more general dessins, and normal subgroups N
correspond to regular dessins, i.e. whose automorphism group (∼= ∆/N ∼= the covering group
of β — a normal covering in that case) acts transitively on the edges.

2 From dessins to regular dessins

We will restrict the considerations of this article mainly to these regular dessins or equivalently,
their Riemann surfaces with many automorphisms. Often, a solution of the problem in this
special case gives an answer to the question for arbitrary Riemann surfaces by the following
reason.

Lemma 3 Let ∆ be a cocompact Fuchsian triangle group, Γ a subgroup of finite index and genus
g > 0 , N the maximal subgroup of Γ which is normal in ∆ . For the Riemann surfaces

Y := Γ\H and X := N\H

we have: JacY is of CM type if JacX is of CM type, and JacX has CM factors if JacY is
of CM type.

Proof. Since the covering map X → Y induces a surjective morphism of Jacobians, JacY is
a homomorphic image, hence isogenous to a factor of JacX .
In many cases one can prove even more. Consider G = ∆/N as an automorphism group of
X (in fact, it is the automorphism group of X if ∆ is the normalizer of N in PSL2R , which is
true at least if ∆ is a maximal triangle group; the possible inclusions among triangle groups are
well known by [Si2]). Then Y ∼= H\X for the subgroup H = Γ/N of G . Now the vector space
H0(X,Ω) of holomorphic differentials on X contains a subspace of differentials lifted from Y .
This subspace may be identified with H0(Y,Ω) and consists of the H–invariant differentials
under the canonical representation

Φ : G → GL(H0(X,Ω)) ; Φ(α) : ω 7→ ω ◦ α−1 (2)
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for all α ∈ G , ω ∈ H0(X,Ω) . We can identify H0(X,Ω) with H0(JacX,Ω) , H0(Y,Ω) with
H0(JacY,Ω) and G with the group of automorphisms induced on JacX . Since every α ∈ G
maps Y onto an isomorphic Riemann surface α(Y ) = αHα−1\X , it sends the factor JacY of
JacX onto an isomorphic factor. Now recall that factors of abelian varieties are isogenous to
abelian subvarieties. Taking the sum B of all these abelian subvarieties isogenous to JacY we
obtain

Lemma 4 Under the hypotheses of Lemma 3, let V be the smallest Φ(G)–invariant subspace
of H0(JacX,Ω) containing H0(JacY,Ω) . Then

1. V is generated by Φ(G)H0(JacY,Ω) .

2. An irreducible Φ(G)–invariant subspace U is contained in V if and only if

U ∩ H0(JacY,Ω) 6= 0 ,

i.e. if its corresponding irreducible subrepresentation Ψ has the property that Ψ|H contains
the trivial representation 1H .

3. There is an abelian subvariety B of JacX with V ∼= H0(B,Ω) .

4. Every simple factor of B is a simple factor of JacY .

5. If JacY is of CM type, so is B .

6. In particular, we can take B = JacX if H0(X,Ω) is generated by Φ(G)H0(Y,Ω) , i.e.
if for every irreducible subrepresentation Ψ of Φ , the restriction Ψ|H contains the trivial
representation 1H .

The hypothesis of the last point is not always satisfied what can be seen by examples given in
[StW] (Thm. 3.5 and Cor. 4.2 with Y = Um

n,t,v , X = Xn,t,v ). In the last section we will give
some more material on the interplay between the decomposition of Φ and the decomposition of
JacX , making possible an explicit construction of B by means of point 2 of the Lemma.

For the convenience of the reader, we will describe how X or N can be explicitely constructed
from the data Γ ⊂ ∆ for Y or equivalently from β or its corresponding dessin. To do so, the
following inclusion criteria for Fuchsian groups developed by Singerman [Si1] turn out to be
crucial. We restrict our attention to cocompact Fuchsian groups Γ0 and recall that these are of
signature

< g ; m1, . . . ,mr > ,

where g denotes the genus of the quotient space Γ0\H and the mj denote the orders of elliptic
elements γj which generate a maximal system of elliptic elements in the following sense: every
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elliptic γ ∈ Γ0 is Γ0–conjugate to a power of precisely one γj . The positivity of the normalized
covolume

M(Γ0) := 2g − 2 +
r

∑

j=1

(1 − 1

mj
) > 0

is the only restriction on the possible signatures. For triangle groups, we continue to write simply
< p, q, r > instead of < 0 ; p, q, r > . Subgroups Γ1 of finite index s in Γ0 are again cocompact.
The elliptic generators of Γ1 are powers of conjugates of the γj , therefore the signature of Γ1

may be arranged in the form

< g1 ; n11, . . . , n1ρ1
, . . . , nr1, . . . , nrρr

> ,

where the orders nji belong to generators of Γ1 conjugated in Γ0 to powers of γj . Clearly,
nji | mj for all i and j . If Γ1 contains no element 6= id being Γ0–conjugated to a power of γj ,
we put ρj = s/mj and nji = 1 for all i . Now [Si1] tells us

Lemma 5 The cocompact Fuchsian group Γ0 of signature < g ; m1, . . . ,mr > contains a sub-
group Γ1 of index s with Γ1 of signature

< g1 ; n11, . . . , n1ρ1
, . . . , nr1, . . . , nrρr

>

if and only if 1)

s =
M(Γ1)

M(Γ0)

and 2) there is a transitive permutation group G of s objects and an epimorphism Θ : Γ0 → G
sending each elliptic generator γj of Γ0 onto a product of ρj disjoint cycles of length

mj

nj1
, . . . ,

mj

njρj

(the cases nji = mj are counted as cycles of length 1 ), and for each j = 1, . . . , r the sum of
all these lengths must give s . The subgroup Γ1 can be taken as a normal subgroup of Γ0 if one
can take G as a group of order s and if

n11 = . . . = n1ρ1
, . . . , nr1 = . . . = nrρr

,

s = ρj ·
mj

nji
for all j = 1, . . . , r , i = 1, . . . , ρj .

In this case, Γ1 is the kernel of Θ and we can identify G with Γ0/Γ1 . In particular, Γ1 can be
taken as normal and torsion–free subgroup of Γ0 if G ∼= Θ(Γ0) ∼= Γ0/Γ1 and Θ preserves the
orders of the elliptic generators of Γ0 .
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The last conclusions on normal torsion–free subgroups follow from the general case by the action
of G on itself by left multiplication. Then G acts on s objects as a transitive permutation group
of order s = [Γ0 : Γ1] and all Θ(γj) are products of s/mj cycles of length mj .

The permutation group G is the monodromy group of the covering

Γ1\H → Γ0\H .

One may imagine that it permutes the sheets of the covering. In the special case of a triangle
group ∆ = Γ0 and a finite index subgroup Γ = Γ1 , the permutation group G and the ho-
momorphism Θ have nice combinatorial interpretations in terms of the dessin belonging to the
Belyi function β as given in (1). By [JS1] or [BI], G is the well–known hypermap group or (in
the special case of triangle groups < p, 2, r > ) the cartographic group and can be defined as
follows. Represent the edges of the dessin β−1[0, 1] by the numbers 1, . . . , s = [∆ : Γ] and
recall that ∆ is presented by

∆ = < γ0, γ1, γ∞ | γp
0 = γq

1 = γr
∞

= 1 = γ0γ1γ∞ > .

We may suppose that the white vertices of the dessin, i.e. the points of β−1{0} , are the ∆–
images of the fixpoint of γ0 (mod Γ of course) and the black points (β−1{1}) the ∆–images
of the fixed point of γ1 . Let g0 permute the edges joining any white vertex in cyclic conter–
clockwise order; note that this is well–defined since every edge joins a unique white and a unique
black vertex. In the same way, define g1 as permuting the edges joining any black vertex in cyclic
counterclockwise order. Then g0 and g1 generate a permutation group G ⊆ Ss of the s edges
— transitive because the dessin is connected. Note that g∞ := (g0g1)

−1 decomposes into cyclic
counterclockwise permutations of (half of the) edges around each face of the dessin, i.e. the
connected components of Y − β−1[0, 1] . By construction, the valencies of the dessin in the
white and black vertices divide p and q respectively, and the number of edges bounding any face
divides 2r : note that each face contains precisely one point of β−1{∞} . Therefore,

γ0 7→ g0 , γ1 7→ g1 , γ∞ 7→ g∞

defines a homomorphism Θ : ∆ → G as required in Lemma 5.

The subgroup Bx of the monodromy group G stabilizing one edge x of this dessin on Y = Γ\H
is of particular interest: The group of (orientation preserving) automorphisms of the dessin is
the centralizer of G in the full permutation group Ss of all edges. It is isomorphic to N(Bx)/Bx

where N(Bx) denotes the normalizer of Bx in G (see e.g. [JS1] or Prop. 3 of [BI] for the
special case of cartographic groups, i.e. for clean Belyi functions or ord γ1 = 2 ; the proof for
monodromy groups of general Belyi functions is almost the same, using a bijection between
edges and residue classes of G/Bx ). Note that for any other edge y the stabilizer group By is
conjugate to Bx , and that {(1)} is the common intersection of all By . The automorphism group
of the dessin is isomorphic to a group of (conformal) automorphisms of the Riemann surface,
and the dessin is regular if and only if Bx = {(1)} . This case occurs precisely if Γ = N is a
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normal subgroup of ∆ , and then G ∼= ∆/N is itself isomorphic to the automorphism group of
the dessin. Then the Belyi function (1) is a normal covering Y → P1(C) and, following Section
1, we can replace (Γ,∆) by a minimal pair in which (by Lemma 1) Γ = N is torsion–free,
whence Y has many automorphisms.

In the general case, the monodromy group G of the Belyi function (1) allows one to construct
a regular dessin on the covering surface X of Lemma 1 as in [JS1] (or Prop. 4 of [BI] for the
special case of cartographic groups):

Theorem 2 Let ∆ be a cocompact Fuchsian triangle group, Γ ⊂ ∆ a subgroup of finite index, let
x be an edge of the corresponding dessin on Y := Γ\H . Let N be the kernel of the homomorphism
Θ of ∆ onto the monodromy group G of

β : Γ\H = Y → ∆\H ∼= P1(C) .

Then

1. N is the maximal normal subgroup of ∆ contained in Γ ,

2. N is torsion–free if (Γ,∆) is a minimal pair,

3. G ∼= ∆/N acts as group of automorphisms of the covering surface X = N\H ,

4. and also as automorphism group of the regular dessin obtained by lifting the dessin from
Y to X .

5. Further, G is isomorphic to the monodromy group and to the covering group of the (normal)
covering Belyi function

X → ∆\H = P1(C) .

6. The covering group H ⊆ G of the covering

X → Y ∼= H\X

is isomorphic to the stabilizer Bx .

7. The permutations Θ(γ) , γ ∈ G , of the sheets of β correspond to the action of γ on G/H
by left multiplication.

For the proof consider G not only as permutation group of the sheets of Y → P1(C) but also
as permutation group operating on itself by left translation, i.e. on |G| = ordG objects. Then
the same Θ : ∆ → G serves as homomorphism of Lemma 5 for the inclusion ∆ ⊃ Γ and for
the inclusion ∆ ⊃ N : If G is seen as permutation group operating on itself by left translation,
every Θ(γj) is a product of |G|/ ord γj cycles of length mj = ord γj . Then for X := N\H
parts 3 and 5 of the Theorem are obvious. For part 4 observe that there is a bijection

γΓ 7→ Θ(γ)Bx
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of the set of residue classes ∆/Γ with the sheets of the covering β , with the edges of the
corresponding dessin, and with the residue classes G/Bx . By construction, the ∆–action on
∆/Γ is mapped via Θ to the G–action on the edges. This shows in particular that N ⊆ Γ ⊂ ∆
whence the dessin on X is a (regular) covering of that on Y . The same argument shows parts 6
and 7 by H ∼= Γ/N ∼= Bx . Part 1 is a consequence of

⋂

g∈G g
−1Bxg = {(1)} mentioned above,

now giving
⋂

γ∈∆ γ
−1Γγ = N . With Lemma 1, this also implies part 2.

3 Transcendence

The endomorphism algebra of an abelian variety A defined over Q̄ acts on the vector space
H0(A,ΩQ̄) of holomorphic differentials defined over Q̄ and on the homology H1(A,Z) as
well. These actions imply Q̄–linear relations between the periods (of first kind)

∫

γ ω , ω ∈
H0(A,ΩQ̄) , γ ∈ H1(A,Z) . By Wüstholz’ analytic subgroup theorem it is in fact known that all
Q̄–linear relations between such periods are induced by these actions of EndA . This section
gives a report on this principle and shows how the endomorphism algebra End0A is visible on
the Q̄–vector space generated in C by the periods of the holomorphic differentials defined over
Q̄ . Since we are ultimately interested in Jacobians, we will assume that all abelian varieties are
principally polarized, but most results given here do not depend on the specific polarization,
so we do not introduce an extra notation for it. The proofs of the Lemmas 6 to 8 and some
remarks on the history can be found in [SW] (Prop. 1, 2, 3 and their Corollaries); Lemma 9 is
a very special case of the Main Theorem of [SW] giving the corresponding result for all analytic
families of polarized abelian varieties. For a more modern version, see [Coh].

Lemma 6 Let A be an abelian variety defined over Q̄ , isogenous to the direct product

Ak1

1 × . . . × Akm
m

of simple, pairwise non–isogenous abelian varieties Aν , ν = 1, . . . ,m of complex dimension nν ,
and let VA be the Q̄–vector subspace of C generated by all periods of the first kind

∫

γ
ω , ω ∈ H0(A,ΩQ̄) , γ ∈ H1(A,Z) .

Then

dimQ̄ VA =
m

∑

ν=1

2n2
ν

dimQ End0Aν
.

If in particular A is simple and U is a Q̄–vector subspace of H0(A,ΩQ̄) invariant under the
action of End0A , the periods

∫

γ ω , ω ∈ U , γ ∈ H1(A,Z) generate a Q̄–vector space of dimen-
sion

2 (dimQ̄ U) (dimCA)

dimQ End0A
.
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Lemma 7 A simple abelian variety A defined over Q̄ has complex multiplication if and only if
a differential ω 6= 0 of the first kind defined over Q̄ exists on A such that all periods of ω are
algebraic multiples of each other.

In Prop. 3 of [SW] the ‘only if’ part of this Lemma is given, but the ‘if’ part is easily proved
taking any eigendifferential of the CM field K = End0A . The same remark applies to

Lemma 8 Let A be an abelian variety defined over Q̄ .

1. A has a factor with complex multiplication if and only if a nonzero differential
ω ∈ H0(A,ΩQ̄) exists all of whose periods are algebraic multiples of one another.

2. A is of CM type if and only if there is a basis ω1, . . . , ωn of H0(A,ΩQ̄) with the property
that for all ων , ν = 1, . . . , n , all periods

∫

γ
ων , γ ∈ H1(A,Z) ,

lie in a one–dimensional Q̄–vector space Vν ⊂ C .

In principle, Lemma 8 already gives a necessary and sufficient condition for abelian varieties and
hence of Jacobians to be of CM type, but the explicit use of it presents a nontrivial problem,
see the next sections. The same is true for the next Lemma; for its preparation, recall that
every principally polarized complex abelian variety A of dimension n is isomorphic to an abelian
variety whose underlying complex torus is

AZ := Cn/(Zn ⊕ ZZn) , Z ∈ Hn ,

where Hn denotes the Siegel upper half space of symmetric complex n×n–matrices with positive
definite imaginary part. For principally polarized abelian varieties, Z is uniquely determined
by A up to transformations under the Siegel modular group Γn := Sp(2n,Z) . In particular,
the property whether or not Z is an algebraic point of Hn , i.e. if the matrix Z has algebraic
entries depends only on the complex isomorphism class of A . We call Z a period quotient or
a normalized period matrix of A . In this terminology, we have

Lemma 9 The complex abelian variety A defined over Q̄ and of dimension n is of CM type if
and only if its period quotient Z is an algebraic point of the Siegel upper half space Hn .

The way from a smooth complex projective curve or compact Riemann surface X of genus g = n
to these period quotients is well known: Take a basis ω1, . . . , ωn of the holomorphic differentials
and a symplectic basis γ1, . . . , γ2n of the homology of X , i.e. with intersection matrix

J :=

(

0 E
−E 0

)

, E the n× n unit matrix
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and form the (n× 2n)–period matrix

(Ω1,Ω2) := (

∫

γj

ωi ) , i = 1, . . . , n , j = 1, . . . , 2n

with n × n–matrices Ω1 and Ω2 . Then Z := Ω−1
2 Ω1 is called period quotient for X since

it is a period quotient for JacX . Note that Z is independent of the choice of the basis of the
differentials and that another choice of the symplectic basis of the cycles gives another point
of the orbit of Z under the action of Γn . By Lemma 9, an obvious criterion for our original
problem is the following

Theorem 3 Let C be a nonsingular complex projective curve defined over Q̄ . Its Jacobian is
of CM type if and only if its period quotient is an algebraic point of the Siegel upper half space.

4 Integration on regular dessins

Let X be a Riemann surface with many automorphisms of genus g > 1 , given as quotient N\H
where N denotes its universal covering group, given as normal subgroup of a Fuchsian triangle
group ∆ =< p, q, r > . As we saw in Sections 1 and 2, this inclusion N � ∆ provides X
with a regular dessin and a corresponding Belyi function whose monodromy group (∼= covering
group) is isomorphic to an automorphism group G — an automorphism group of X and of the
dessin as well —; it is in fact the automorphism group of X if ∆ is maximal among the triangle
groups containing N as normal subgroup. We fix one edge δ of the dessin. Recall that the
edges are the images under the canonical projection H → X of the ∆–orbit of one side of some
hyperbolic triangle forming one half of a fundamental domain of ∆ , and that by regularity, G
acts transitively on the set of all edges of the dessin. As already mentioned in Section 1, X is
isomorphic to the Riemann surface consisting of the complex points of a curve C defined over a
number field. We can therefore speak of the differentials ω of the first kind on X defined over
Q̄ . They form the Q̄–vector space H0(X,ΩQ̄) which we identify tacitely with H0(JacX,ΩQ̄) .
Recall that JacX is a principally polarized abelian variety defined over Q̄ . As in Section 2,

Φ(α) : ω 7→ ω ◦ α−1 , α ∈ G ,

defines the canonical representation Φ of G on H0(X,ΩQ̄) : since X ∼= C(C) has only finitely
many automorphisms, an easy deformation argument shows that α : C → C is defined over Q̄ .
Let U be a G–invariant subspace of H0(X,ΩQ̄) and define the Q̄–vector space

V (U) := {
∫

δ
ω | ω ∈ U } ⊂ C .

Then we have

Lemma 10 1. dimQ̄ V (U) ≤ dimQ̄ U ;



4 INTEGRATION ON REGULAR DESSINS 13

2. V (U) is independent of the choice of δ ;

3. The Q̄–vector space VU generated by the set of periods {
∫

γ ω | ω ∈ U , γ ∈ H1(X,Z) } is

contained in V (U) ;

4. dimQ̄ VJac X ≤ g = dimC JacX .

(Notice that in the terminologies introduced in Lemma 6 and Lemma 10.3, VJac X = VH0(X,Ω
Q
) .)

The first property is evident. The second follows from the substitution rule
∫

α(δ)
ω =

∫

δ
ω ◦ α , α ∈ G ,

and the facts that G acts transitively on the set of edges and that U is G–invariant. For the
third point remember that the faces of the dessin are simply connected whence any cycle γ on X
has a representative composed by edges; the orientations of the cycles and edges do not matter.
By the same argument as in the proof of 2., all periods of all ω ∈ U are Q̄–linear combinations
of integrals in V (U) . For the fourth point we use the well known identification of the periods
on X and on JacX — always with differentials defined over Q̄ — and the points 1. and 3. for
the whole space U = H0(X,ΩQ̄) of dimension g .
If we compare the last point of Lemma 10 with the dimension formula for VA given in Lemma
6, we see how far these Jacobians are from generic abelian varieties, i.e. simple ones with
End0A = Q , where one obtains dimQ̄ VA = 2g2 with g = dimC VA . For our original problem
we can draw immediately the following conclusion.

Theorem 4 Let X be a compact Riemann surface of genus g > 1 with many automorphisms,
let G ⊆ AutX be isomorphic to the automorphism group of a regular dessin on X , and Φ its
canonical representation on the space of differentials of the first kind on X .

1. If Φ has a one–dimensional invariant subspace, JacX has a factor with complex multipli-
cation.

2. If Φ splits into one–dimensional subrepresentations, JacX is of CM type.

3. If G is abelian, JacX is of CM type.

Proof. Let ω generate a one–dimensional G–invariant subspace U of Φ . Lemma 10.1 and 10.3
show that the periods of ω on X or JacX lie in a one–dimensional Q̄–vector space in C whence
Lemma 8 applies and gives the first two points of the theorem. Since all representations of
abelian groups split into one–dimensional subrepresentations, the last point is obvious.

Remark 3. We will see in the last section that the representation Φ plays in fact a crucial role for
the structure of the endomorphism algebra of JacX , but Theorem 4 is only a new look on the
fact that Fermat curves of exponent n have Jacobians of CM type what is well–known by [KR].
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On the one hand, their universal covering groups N are the commutator subgroups [∆,∆] of
∆ =< n, n, n > ([Wo1], [CIW], [JS3]); for the exponent n = 3 we obtain an elliptic curve with
complex multiplication as remarked already after Theorem 1. On the other hand — as pointed
out to me by Gareth Jones and David Singerman — every CM factor detected by Theorem 4 is
a factor of a Jacobian of some Fermat curve what can be seen as follows. Suppose that Φ has a
one–dimensional subrepresentation with invariant subspace generated by some ω 6= 0 . It is not
the unit representation since otherwise ω would be a differential lifted by the canonical Belyi
function

β : X = N\H → ∆\H ∼= P1(C)

from a differential on P1 , hence ω = 0 . Therefore we have a homomorphism of G = ∆/N
onto a nontrivial abelian group. Now suppose ∆ =< p, q, r > and let n be the least common
multiple of p, q, r . Then we can replace ∆ by ∆1 =< n, n, n > and N by some N1 �∆1 which
is no longer torsion–free but still satisfies X ∼= N1\H , see the remarks after Theorem 1 about
the possible choices of the signature of ∆ for a given β . On ∆1 , we have a homomorphism
onto a nontrivial abelian group whose kernel K contains both N1 and the commutator subgroup
[∆1,∆1] . Therefore, the quotient K\H is a common quotient of X and of the Fermat curve of
exponent n , and ω is a lift of a differential on this quotient.

5 Shimura families and the Jacobi locus

LetX be a compact Riemann surface of genus g > 1 with many automorphisms and letG denote
its automorphism group. Since every automorphism of X induces a unique automorphism of
JacX , we can consider G as subgroup of the (polarization preserving) automorphism group GJ

of JacX . It is known (see e.g. [Ba], p.375 or Lemma 1 and 2 in [Po]) that

Lemma 11 1. GJ = G if X is hyperelliptic,

2. [GJ : G] = 2 if X is not hyperelliptic.

Let Z be a fixed period quotient for X and JacX in the Siegel upper half space Hg , and let L
be the algebra End0 JacX . Fixing a symplectic basis of the homology of X we obtain not only
a fixed Z but also a rational representation of L . For an explicit version of this representation
see Section 2 of [Ru]. Here we consider therefore L as subalgebra of the matrix algebra M2g(Q) .
The action of GJ on a symplectic basis of the homology of X gives

Lemma 12 The automorphism group GJ is isomorphic to the stabilizer subgroup

ΣJ := { γ ∈ Γg | γ(Z) = Z }

of Z in the Siegel modular group Γg = Sp2gZ .
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A different choice of Z induced by some other choice of the homology basis on X gives a Γg–
conjugate stabilizer and a Γg–conjugate rational representation of the endomorphism algebra as
well. If we fix Z , hence ΣJ , we can linearize the analytic subset

SG := {W ∈ Hg | γ(W ) = W for all γ ∈ ΣJ } (3)

of the Siegel upper half space by a generalized Cayley transform (see e.g. [Go]) to see that SG

is in fact a submanifold. By definition, Z ∈ SG . Since we consider G as a subgroup of L ,
SG contains a complex submanifold H(L) of Hg parametrizing a Shimura family of princi-
pally polarized complex abelian varieties AW , W ∈ H(L) , containing L in their endomorphism
algebras — always considered as subalgebra of M2g(Q) in a fixed rational representation. For
explicit equations defining H(L) see Sections 2 and 3 of [Ru], in particular Runge’s Lemma 2
and the following definitions. The submanifold H(L) is a complex symmetric domain; we will
call it the Shimura domain for Z or for X , suppressing in this notation the dependence on
the chosen rational representation. The dimension of H(L) is well known and depends on the
type of L only ([Sh], [Ru]). In particular we have

Lemma 13 dim H(L) = 0 , i. e. H(L) = {Z } if and only if JacX is of CM type.

The period quotients of all Jacobians of compact Riemann surfaces of genus g form another
locally analytic set Jg ⊆ Hg of complex dimension 3g− 3 , the Jacobi locus. By definition of
‘many automorphisms’, X has no deformation preserving the automorphism group G , whence
JacX has no deformation as a Jacobian preserving its automorphism group with the following
exception: it is possible that X is hyperelliptic with an automorphism group G = GJ and has
non–hyperelliptic deformations X ′ whose automorphism group G′ is isomorphic to an index two
subgroup of G and such that G′

J
∼= G (recall that the hyperelliptic involution gives the matrix

−E ∈ Sp2gZ hence the identity in PSp2g ). Then, SG = SG′ — for an example see Section 6.3.
Since the hyperelliptic involution generates a cyclic group C2 central in G , we have G ∼= G′×C2

in these cases. In all other cases, SG intersects Jg in isolated points. A fortiori, we obtain

Theorem 5 Let X be a Riemann surface with many automorphisms. If X is hyperelliptic and
g ≥ 3 , we suppose further that the hyperelliptic involution does not generate a direct factor of
the automorphism group. Then its period quotient Z is an isolated point of the intersection
H(L) ∩ Jg of its Shimura domain and the Jacobi locus.

Because J2 , J3 are open and dense in H2 , H3 respectively, Z is in these cases an isolated
point of H(L) , hence dim H(L) = 0 . Lemma 13 implies that JacX is of CM type, hence

Theorem 6 All compact Riemann surfaces with many automorphisms of genus 2 and all non–
hyperelliptic Riemann surfaces with many automorphism of genus 3 have Jacobians of CM type.
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Clearly, these arguments are not extendable to higher genus, see also the examples in Section
6. We can however draw some more conclusions on End0 JacX in the case of higher genus
from Theorem 5 and the results of the last section. For example, in the genus 4 case J4 has
codimension 1 in H4 . Since the period quotient Z of a non–hyperelliptic Riemann surface X
of genus 4 with many automorphisms is an isolated point of the intersection H(L) ∩ J4 , its
Shimura family can be at most complex 1–dimensional. Then, H(L) ∼= H ∼= H1 , and from [Sh]
or [Ru] one knows the possibilities for L . Lemma 10.4 combined with Lemma 6 and Theorem
4.1 gives further restrictions on the endomorphism algebras of the simple factors of JacX which
imply finally

Theorem 7 Let X be a compact Riemann surface of genus 4 and with many automorphisms.
If JacX is not of CM type, then up to isogeny and up to CM factors C , there are only the
possibilities

1. JacX = Ek × C , E an elliptic curve without complex multiplication, with multiplicity
k = 2, 3 or 4 , or

2. JacX = A2 or A × C , A an abelian variety of dimension 2 whose endomorphism
algebra is isomorphic to an indefinite quaternion algebra B over Q .

3. X is hyperelliptic.

We omit the details of the proof since in Section 6, we will give a complete classification of the
genus 4 Riemann surfaces with many automorphisms showing that only the first case occurs.—
Ries [Ri] gives more examples of groups G with 1–dimensional fixmanifolds SG in higher genera,
in particular for some simple Hurwitz groups, see also the last example of the next section.

6 Examples

6.1 Fermat curves and their quotients

We have already seen in Remark 3 that the Fermat curves and their quotients fall under the
applications of Theorem 4. That these Jacobians are of CM type can be derived from Theorem
3 as well. In fact, the period quotients of curves with many automorphisms are calculated in the
literature surprisingly often, see e.g. Bolza [Bo], Schindler [Sr1], [Sr2], Kuusalo and Näätänen
[KN]. Examples are given by the affine equations

y2 = x2g+2 − 1

y2 = x2g+2 − x

y2 = x2g+1 − x .
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All these curves are quotients of Fermat curves what can be seen directly or with Remark 3.
Up to finitely many exceptions, they form all hyperelliptic curves with many automorphisms:
the hyperelliptic involution commutes with all automorphisms whence the automorphism group
induces an automorphism group of P1 acting on the ramification points of the hyperelliptic
covering map, and the cyclic and the dihedral groups form the only infinite families of finite
automorphism groups of P1 . For examples not belonging to these infinite families, see equations
(10) and (16) below.

For most other cases, an efficient way to calculate the period quotient is not to calculate all
periods but to calculate the fixed point set SG (see (3), Section 5) by means of the symplectic
representation of the automorphism group G in the Siegel modular group Γg — in the hope
that SG is an isolated point, hence algebraic. This symplectic representation can be effectively
constructed as a subrepresentation of the regular representation [St2].

6.2 Genus 2

For genus 2 and 3 we know already by Theorem 6 that up to possible hyperelliptic exceptions all
curves with many automorphisms have Jacobians of CM type. For the convenience of the reader,
we include a list of isomorphism classes of such curves in genus < 5 . The classification is based
in part on the classification of regular maps given in [CM], [Ga] and [Sk], i.e. the classification of
all normal torsion–free subgroups of triangle groups < 2, q, r > , and in part on a classification
of canonical representations by Kuribayashi/Kuribayashi [KK] and the references given there.
All informations below can be obtained by a case–by–case application of Singerman’s Theorem
(Lemma 5), supported by Takeuchi’s inclusion relations [Ta], and in many cases the equations
are easy to guess by the ramification data of the Belyi functions.— For g = 2 one obtains three
nonisomorphic curves X with many automorphisms (hyperelliptic, of course) with affine models

y2 = x6 − x (4)

y2 = x6 − 1 (5)

y2 = x5 − x . (6)

Their covering groups N are normal subgroups of the triangle groups < p, q, r > which are
listed in the following table — for g = 2 , all these groups are arithmetically defined. The
quotient < p, q, r > /N ⊆ AutX is clearly = AutX for the maximal choice of < p, q, r > .

As always, Cm denotes the cyclic group of order m . In the automorphism group of the curve
(5) G ∼=< 2, 4, 6 > /N , the generator β of the last factor C2 acts on the generator α of C3 by
β−1αβ = α−1 and exchanges the two other C2–factors.
For the curve (6), the isomorphism G ∼=< 2, 3, 8 > /N ∼= GL2F3 is provided by

g0 =

(−1 0

1 1

)

, g1 =

(

1 1

0 1

)

, g∞ =

(

1 − 1

1 1

)

,
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equation p q r < p, q, r > /N Ord < p, q, r > /N

4 2 5 10 C10 10
5 5 5 C5 5

5 2 4 6 (C3 × C2 × C2) ⋊ C2 24
2 6 6 C3 × C2 × C2 12
3 6 6 C3 × C2 6
3 4 4 C3 ⋊ C4 12

6 2 3 8 GL2F3
∼= Q⋊ S3 48

3 3 4 SL2F3
∼= Q⋊ C3 24

2 4 8 Q⋊ C2
∼= C8 ⋊ C2 16

2 8 8 C8 8
4 4 4 Q 8

where as in Section 2 we denote the generators of G induced by the generators of ∆ by g0, g1, g∞ .
For the other presentation, Q denotes the quaternion group generated by i, j, k with

i2 = j2 = k2 = −1 and ijk = 1 ,

and the action of S3 on Q is defined by

(12) : i 7→ j , j 7→ i , k 7→ −k

(23) : i 7→ −i , j 7→ k , k 7→ j .

The center of G is Z ∼= C2 generated by the hyperelliptic involution g4
∞

, and the factor group
G/Z is isomorphic to S4

∼= PGL2F3 acting on P1
∼= X/Z . The fixed points of g∞ become in

fact the face-centers of a regular cube or the vertices of a regular octahedron in P1 .

6.3 Genus 3

Here we have eight nonisomorphic curves with many automorphisms which can be described by
the models

y2 = x8 − x (7)

y2 = x7 − x (8)

y2 = x8 − 1 (9)

y2 = x8 − 14x4 + 1 (10)

y3 = x (x3 − 1) (11)

y4 + x3 = 1 (12)

y4 + x4 = 1 (13)

x3y + y3z + z3x = 0 (14)
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equation p q r < p, q, r > /N Ord < p, q, r > /N remarks

7 2 7 14 C14 14 h
7 7 7 C7 7

8 2 4 12 S3 × C4 24 h
2 12 12 C12 12
4 4 6 C3 ⋊ C4 12

9 2 4 8 (C8 × C2) ⋊ C2 32 h
2 8 8 C8 × C2 16
4 8 8 C8 8
4 4 4 C4 ⋊ C4 16

10 2 4 6 S4 × C2 48 h , ncm
2 6 6 A4 × C2 24
3 4 4 S4 24

11 3 9 9 C9 9 na

12 2 3 12 (SL2F3 × C4)/ < (−I, t2) > 48
3 3 6 SL2F3 24
3 4 12 C12 12

13 2 3 8 (C4 × C4) ⋊ S3 96
3 3 4 (C4 × C4) ⋊ C3 48
2 4 8 (C4 × C4) ⋊ C2 32
4 4 4 C4 × C4 16
2 8 8 C8 ⋊ C2 16
4 8 8 C8 8

14 2 3 7 PSL2F7 168
3 3 7 C7 ⋊ C3 21
7 7 7 C7 7

Their universal covering groups N are normal subgroups of the triangle groups < p, q, r > listed
with their quotients and their indices in the table of the last page. The last column indicates if
the curve is hyperelliptic, if the covering group is non–arithmetic and if the Jacobian is not of
CM type by the abbreviations h, na, ncm . By Dm we denote the dihedral group of order 2m .
The other semidirect products are explained in the comments below.

Comments. For the curve (8), < 4, 4, 6 > /N ∼= C3 ⋊ C4 is isomorphic to the group
< 3, 4, 4 > /N in case (5), but with different generators.
If in the case of the curve (9) the generators of the factors of G =< 2, 4, 8 > /N of respective
orders 8, 2, 2 are denoted by α, β, γ , where γ acts on the normal subgroup by

γ−1αγ = α−1β , γ−1βγ = β ,

we may choose g0 = γ , g1 = αγ , g∞ = βα . Then, < 4, 4, 4 > /N is generated by α2 and αγ .
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The curve (10) plays an exceptional role in several respects. The polynomial on the right hand
side of (10) has to be constructed in such a way that the zeros form the vertices of a regular cube
or the centers of the faces of a regular octahedron inside the Riemann sphere. Using Lemma 5
and Theorem 2, X can be seen to be a 2–fold cover of several isomorphic elliptic curves, e.g.
H\X where H is the subgroup

{ ((1), 1) , ((12)(34), 1) } of S4 × C2 .

Its equation is
y2 = x4 − 14x2 + 1

whose right hand side vanishes at
√

2 +
√

3 and its algebraic conjugates. A fractional linear
transformation maps these zeros to 0, 1,∞ and λ = 4/3 , so the j–invariant of the elliptic curve
becomes

j = 44 (1 − λ+ λ2)3

λ2(1 − λ)2
=

16 · 133

9
.

Since it is not an integer, the elliptic curve has no complex multiplication and by Lemma 3,
the Jacobian of (10) is not of CM type. Apparently, (10) is an example for the hyperelliptic
exception mentioned in Theorems 5 and 6. With the index 2 factor G′ = S4 of G there is a
complex 1–dimensional family of curves Xτ of genus 3 with automorphism group AutXτ ⊇ G′

and Aut JacXτ ⊇ G′

J
∼= G . The existence of this family can be deduced from the fact that the

Fuchsian (genus 0 ) quadrangle groups of signature < 2, 2, 2, 3 > form a complex 1–dimensional
family and N is contained in such a quadrangle group. By Singerman’s theorem (Lemma 5)
every member of this quadrangle group family contains a normal torsion–free genus 3 subgroup
with quotient ∼= S4 , so we have a 1–dimensional Shimura family of Jacobians parametrized by
a complex submanifold H(L) ∼= H of the Siegel upper half space H3 . All these Jacobians are
isogenous to a third power of an elliptic curve, and H(L) intersects the subset of H3 of period
quotients for hyperelliptic curves just in the (transcendental) period quotient for the curve (10).
With the curve (13) we will meet another (but algebraic) point of this family H(L) .

In the notation for the automorphism group G ∼=< 2, 3, 12 > /N of the curve (12), I denotes
the identity matrix of SL2F3 and t a generator of C4 . The center Z of G is of order 4 , generated
by g3

∞
and with quotient G/Z ∼= A4 . In G we have the index 2 subgroup

< 3, 3, 6 > /N ∼= SL2F3 via g0 =

(−1 − 1

1 0

)

, g1 =

(

1 0

1 1

)

, g∞ =

(

0 1

−1 1

)

(recall that the center is ∼= C2 with quotient PSL2F3
∼= A4 ).

For the automorphism group of the Fermat curve (13) imagine that C4 is written additively,
C4 × C4 given by

{ (ξ, η, ζ) ∈ C3
4 | ξ + η + ζ = 0 }

on which S3 acts by permutation of the coordinates. The symmetric group S4 is contained in G
in form of (C2×C2)⋊S3 , and the corresponding subgroup of < 2, 3, 8 > is again a quadrangle
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group of signature < 2, 2, 2, 3 > as announced in the discussion of equation (10). For the
quotients of the other triangle groups we mention only the presentation

< 2, 8, 8 > /N ∼= C8 ⋊ C2 = < g0, g1 | g2
0 = g8

1 = 1 , g0g1g0 = g5
1 > .

Finally, (14) is Klein’s quartic. From the last quotient of the table < 7, 7, 7 > /N ∼= C7 =< α >
we can derive

y7 = x (x− 1)2

as another useful model and the (known) conclusion that it is a quotient of the Fermat curve
of exponent 7 . By [KR], the Jacobian is isogenous to the third power of an elliptic curve with
complex multiplication by Q(

√
−7) . The generators

g0 = α , g1 = α2 , g∞ = α4

for C7 used for this model of (14) cannot be transformed by an automorphism of C7 into those

g0 = α , g1 = α , g∞ = α5

for the curve (7), hence both epimorphisms < 7, 7, 7 > → C7 have different (and even not
PSL2R–conjugate) kernels.

6.4 Genus 4

Here we have eleven isomorphism classes of curves with many automorphisms given by the
models

y2 = x9 − 1 (15)

y2 = x (3x4 + 1) (3x4 + 6x2 − 1) (16)

y2 = x9 − x (17)

y2 = x10 − 1 (18)

y10 = x2 (x− 1) (19)

y12 = x3 (x− 1)2 (20)

y15 = x5 (x− 1)3 (21)

y3 = 1 − x6 (22)

y12 = x4 − x5 (23)

4

27

(x2 − x+ 1)3

x2(x− 1)2
+

4

27

(y2 − y + 1)3

y2(y − 1)2
= 1 (24)

xn
1 + . . . + xn

5 = 0 for n = 1 , 2 , 3 . (25)
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equation p q r < p, q, r > /N Ord < p, q, r > /N remarks

15 2 9 18 C18 18 h
9 9 9 C9 9

16 3 4 6 SL2F3 24 h

17 2 4 16 C16 ⋊ C2 32 h , na
2 16 16 C16 16
4 4 8 C8 ⋊C2

C4 16

18 2 4 10 (C10 × C2) ⋊ C2 40 h
2 10 10 C10 × C2 20
5 10 10 C10 10
4 4 5 C5 ⋊ C4 20

19 5 10 10 C10 10

20 4 6 12 C12 12 na

21 3 5 15 C15 15 na

22 2 6 6 S3 × C6 36
3 6 6 C3 × C6 18
3 6 6 S3 × C3 18

23 2 3 12 C3 × ((C2 × C2) ⋊ S3) 72
3 3 6 C3 × ((C2 × C2) ⋊ C3) 36
2 6 12 C3 ×D4 24
3 12 12 C12 12
6 6 6 C3 × C2 × C2 12

24 2 4 6 (S3 × S3) ⋊ C2 72 ncm
2 6 6 S3 × S3 36
3 6 6 C3 × S3 18
3 4 4 ker χψφ 36

25 2 4 5 S5 120 ncm
2 5 5 A5 60
4 4 5 C5 ⋊ C4 20

With the same notations as in genus 3 we give the corresponding table of triangle groups
containing their universal covering groups N as normal subgroups of genus 4.

Comment. For (16), the point ∞ and the zeros of the right hand side form the vertices and the
midpoints of the edges of a regular tetrahedron. Therefore, the automorphism group must have
a quotient ∼= A4 .

< 3, 4, 6 > /N ∼= SL2F3 via g0 =

(

1 1

0 1

)

, g1 =

(

0 − 1

1 0

)

, g∞ =

(

0 1

−1 1

)

— recall again that PSL2F3
∼= A4 . Schindler [Sr1] calculated an algebraic period quotient for

(16) (his equation is easily transformed into ours), so its Jacobian is of CM type by Theorem 3.
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For more information see Remark 9 at the end of the next section.
For (17), the generator β of C2 acts on the generator α of C16 by β−1αβ = α7 . The group in
the third line denotes an amalgamated product.
For (18), denote the generators of the factors of AutX ∼= (C10×C2)⋊C2 by α, β, γ of respective
orders 10, 2, 2 . Then γ acts on the normal subgroup by

γ−1αγ = α−1β , γ−1βγ = β .

Observe that δ = αγ is of order 4 and acts on λ = α2 = (αβ)2 by δ−1λδ = λ−1 . This
gives the definition of < 4, 4, 5 > /N = C5 ⋊ C4 (not isomorphic to that one for the curve
(25)!). The group < 5, 10, 10 > /N ∼= C10 =< α > is isomorphic to the automorphism
group of (19), but here with generators g0 = α8 , g1 = g∞ = α and for (19) with generators
g0 = α6 , g1 = α , g∞ = α3 .
The curve (22) is a 3–fold cover of the curve described in equation (5). Between N and
< 2, 6, 6 > there are two triangle groups of type < 3, 6, 6 > , conjugate in < 2, 4, 6 > but not
in < 2, 6, 6 > .
In the automorphism group of (23), S3 acts on C2 × C2 by permutation of the elements 6= 1 .

The order of the automorphism group of (24) is also 72 but AutX is a wreath product, i.e.
C2 acts on the normal subgroup by exchanging the two factors S3 . If the non–trivial quadratic
characters of the three factors are denoted by χ, ψ, φ , we get the definition of the subgroup
< 3, 4, 4 > /N given in the table. Manfred Streit determined as a model the affine equation (24)
using the facts that the quotient of X by both factors S3 has genus 0 and that one can easily
determine the Belyi functions on both quotients induced by the triangle group < 2, 6, 6 > . This
triangle group has a genus 1 subgroup of signature < 1; 2, 2 > . Via its dessin Streit determined
the equation

y2 = (z − 1) (27z3 − 27z − 4)

of the corresponding elliptic curve E . It has non–integral j–invariant, hence no complex multi-
plication. At the end of the next section we will see that JacX is in fact isogenous to E4 .

Finally, there is Bring’s curve (25), given by three projective equations in P4 . Here, the sub-
group < 4, 4, 5 > /N of the automorphism group is generated e.g. by the permutations
α = (12345) , β = (2354) such that

β−1αβ = α−2 ,

defining therefore a semidirect product C5 ⋊ C4 different from that for the curve (18). There
are several possible proofs ([RR], Section 8.3.2 of [Se]) that the Jacobian of Bring’s curve is
isogenous to a fourth power E4 of an elliptic curve of invariant

j(E) = − 25

2
.

Since it is not integral, E has no complex multiplication whence the Jacobian is again not of CM
type: the first case of Theorem 7 occurs or, in the terminology of Theorem 5, dim H(L) = 1 .
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It is remarkable that all these low–genera–curves X with many automorphisms are uniquely
determined up to isomorphism by ∆ and AutX . According to [Br], this observation remains
true for g = 5 and 6 and fails first for g = 7 .

6.5 Macbeath’s curve

Macbeath’s curve X of genus g = 7 is still uniquely determined by its automorphism group of
order 504 , according to Hurwitz the maximal possible order 84(g − 1) for compact Riemann
surfaces of genus g > 1 . The automorphism group AutX is the simple group

PSL2F8 = G ∼= ∆/N for ∆ = < 2, 3, 7 > ,

and by work of Macbeath, his student Jennifer Whitworth and Berry and Tretkoff [BT] it is
known that X = N\H has a Jacobian isogenous to a product of elliptic curves E described by
a model

y2 = (x− 1)(ζx− 1)(ζ2x− 1)(ζ4x− 1) with ζ = e2πi/7 .

As already indicated in [BT], the question of whether JacX has CM type and if its period quo-
tient matrix gives therefore an algebraic point of the Siegel upper half space (see the Sections 3
and 5) reduces to the question ‘does E have complex multiplication?’. The usual transformation
into a cubic equation (replace 1/(x− 1) by x and y/( 4

√
−7(x− 1)2) by y ) leads to

y2 = (x− β1)(x− β2)(x− β4) with βk :=
ζk

1 − ζk
.

The calculation of the coefficients of the cubic can be done by taking traces and norms because
the zeros βk are Galois–conjugated. A lengthy calculation gives the Weierstrass model and the
invariant of E

j = 28 · 7 = 1792 .

This invariant does not belong to the list of 13 rational invariants of elliptic curves with complex
multiplication (see e.g. [Cr]), whence E has no complex multiplication and the Jacobian of
Macbeath’s curve X is not of CM type.

7 G–invariant and endomorphism–invariant subspaces

The previous section shows that general results will be more complicated than for g = 2 and
3 . In the present section we will further develop the ideas of Section 4. Recall that Φ is the
canonical representation of the group ∆/Γ ⊆ AutX on the Q̄–vector space of differential of
the first kind on X (or on its Jacobian, both defined over Q̄ : as always, we identify X with the
complex points of a nonsingular projective algebraic curve defined over Q̄ ).
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Lemma 14 Let JacX be defined over Q̄ and isogenous to the direct product

Ak1

1 × . . . × Akm
m

of simple, pairwise non–isogenous abelian varieties Aν , ν = 1, . . . ,m and let Uν , ν = 1, . . . , N,
denote the pullback of H0(Akν

ν ,ΩQ̄) in the space of differentials of the first kind on JacX ,
defined over Q̄ . Then every Uν is an invariant subspace for the representation Φ .

For the proof of the Lemma recall that the action of G on X induces an action on JacX such
that all α ∈ G map simple subvarieties of JacX onto isomorphic simple subvarieties. Consider
the isotypic components Iν ⊆ JacX isogenous to the factors Akν

ν which may be constructed
as identity component of the intersection of the kernels of all projections JacX → Aµ onto
other factors, µ 6= ν . Clearly, Iν is G–invariant with Uν

∼= H0(Iν ,ΩQ̄) and all the factors, the
isogenies and the projections can be defined over Q̄ .

As a consequence, we may suppose without loss of generality that in the decomposition of the
representation Φ into irreducible factors, any factor is contained in some Uν whence we can use
the decomposition of JacX into isotypic components for the decomposition of Φ as follows.

Lemma 15 Identify the subspace Uν ⊆ H0(JacX,ΩQ̄) with the space of differentials

H0(Akν
ν ,ΩQ̄) on Akν

ν . With the notation of Lemma 14, denote Dν := End0Aν and use further
the isomorphisms

H0(Aν ,ΩQ̄)kν ∼= H0(Akν
ν ,ΩQ̄) ∼= Uν

as identifications. Decompose H0(Aν ,ΩQ̄) into a direct sum of Dν–invariant and Dν–irreducible
subspaces Uνµ , µ = 1, . . . ,mν . Then we may identify Uν with a direct sum

mν
∑

µ=1

(Uνµ)kν .

The components (Uνµ)kν are Φ(G)–invariant, i.e. invariant subspaces for the representation Φ .
In particular, there is a decomposition of H0(JacX,ΩQ̄) into Φ–irreducible subspaces U such

that any U is contained in some (Uνµ)kν .

The proof of the isomorphisms is obvious, so it remains to prove the G–invariance of the spaces
(Uνµ)kν . This can be done by using the obvious morphism of the group algebra Z[G] into
End0 JacX . The representation Φ of G restricted to Uν is then embedded into the complex
representation of End0A

kν
ν

∼= Mkν
(Dν) and has at least the same decomposition into invariant

subspaces. A second possibility is given by the transcendence tools explained in Section 3 and
the substitution rule

∫

α(γ)
ω =

∫

γ
ω ◦ α
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for all ω ∈ (Uνµ)kν , all α ∈ G , and all γ ∈ H1(JacX,Z) . They indicate that the periods of all
differentials ω ◦ α ∈ Φ(G)(Uνµ)kν already lie in the Q̄–vector space generated by

{
∫

γ
ω | γ ∈ H1(A

kν
ν ,Z) , ω ∈ Ukν

νµ } ,

hence in the Q̄–vector space VUνµ
generated by

{
∫

γ
ω | γ ∈ H1(Aν ,Z) , ω ∈ Uνµ }

and of dimension
2 dimQ̄ Uνµ dimCAν

dimQDν
=: dνµ ,

see Lemma 6. Since

H0(Aν ,ΩQ̄) =
∑

µ

Uνµ with
∑

µ

dimQ̄ Uνµ = dimCAν

is a direct sum and, again by Lemma 6,

dimQ̄ VAν
=

2 (dimCAν)
2

dimQDν
=

∑

µ

dνµ ,

the corresponding decomposition of the space of periods

VAν
=

∑

µ

VUνµ

is also a direct sum. Therefore, a bijection exists between the set of subspaces Uνµ and the
set of period spaces VUνµ

. In particular, since we know the corresponding property for their
periods, no

ω ◦ α , ω ∈ (Uνµ)kν , α ∈ G ,

can have a component outside (Uνµ)kν .

Remark 4. It should be emphasized that the decomposition of H0(Aν ,ΩQ̄) is in general not
unique since Dν–irreducible subspaces may occur with some multiplicity, say vνλ where λ runs
over the isomorphism classes of complex representations of Dν . The first proof given above can
be easily extended to see that any irreducible representation of G corresponding to a G–invariant
subspace U ⊆ (Uνµ)kν occurs also at least with multiplicity vνλ in Φ .

We will see that the dimensions dνµ are of particular interest. First, Lemma 10 gives lower
bounds for the degrees of the irreducible subrepresentations of Φ :

dimU ≥ dimV (U) ≥ dimVU
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Second, this last dimension equals the dimension dνµ of the period vector space VUνµ
by the

following reason: again by the substitution rule
∫

α(γ) ω0 =
∫

γ ω0 ◦ α , but this time with

ω0 ∈ Uνµ , γ ∈ H1(Aν ,Z) and α ∈ EndAν , any Q̄–vector space generated by all periods of
some differential ω0 coincides with the Q̄–vector space generated by all periods of all Dν–images
of ω0 , i.e. with VUνµ

if ω0 6= 0 . Since for the evaluation of the periods we can replace any
nonzero ω ∈ U by a suitable nonzero ω0 ∈ Uνµ we get finally

Lemma 16 Let U be a Φ–irreducible subspace of (Uνµ)kν . The period vector spaces VU and
VUνµ

coincide and satisfy
dνµ ≤ dimU .

The dimensions dνµ can be made more explicit using classical facts about the classification of
simple abelian varieties and their endomorphism algebras ([A], [Sh]). Omitting the index we
denote the simple abelian variety by A and its endomorphism algebra by D with center K . The
polarization defines an involution ρ of D . The numbers in K fixed by ρ form a totally real field
F . Then, D falls under the following four types:

1. D = F

2. D is a totally indefinite quaternion algebra over F

3. D is a totally definite quaternion algebra over F

4. K is a totally imaginary quadratic extension of F and D is a central simple algebra over
K with

[D : K] = q2 , q ∈ N .

If we define q = 1 for type 1 and q = 2 for the types 2 and 3, this number q is the degree of
D over a maximal commutative subfield L of D , and the action of D on H0(A,ΩQ̄) splits this
space into irreducible subspaces of dimension q (generate these subspaces by L–eigendifferentials
and their D–images or use results of [Sh]). For types 1 to 3, all irreducible representations of D
occur with the same multiplicity v = (dimCA)/(q[F : Q]) whence the number vνλ in Remark
4 does in fact not depend on λ with the possible exception of type 4 factors.— Collecting the
essentials of the last lemmas we can summarize our results as

Theorem 8 Let X = Γ\H be a Riemann surface with many automorphisms of genus g > 1 ,
Γ be a normal torsion free subgroup of a Fuchsian triangle group ∆ , let G = ∆/Γ ⊆ AutX be
the monodromy group of its Belyi function X → ∆\H , let Φ be the canonical representation of
G on the space of differentials of the first kind on X .
For any irreducible subspace U of Φ there is a simple factor Aν of JacX occurring with multi-
plicity kν and with endomorphism algebra Dν of dimension q2ν over its center such that

2 qν dimCAν

dimQDν
≤ dimQ̄ U ≤ kν qν .
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In particular, the endomorphism algebra satisfies

2 dimCAν ≤ kν dimQDν .

Remark 5. dimQDν is always a divisor of 2 dimCAν , and the left hand side of the first inequality
equals 1 if and only if Aν has complex multiplication whence Theorem 8 contains Theorem 4 as
a special case.
Remark 6. The decomposition of the representation Φ+Φ̄ depends on Θ : ∆ → G only: recent
work of M. Streit ([St1], Prop. 1 and 2, [St2]) gives effective group–theoretic algorithms for this
decomposition giving in particular all dimensions dimQ̄ U in question.

Remark 7. There is a further restriction on the possible representations of G on H0(Akν
ν ,ΩQ̄)

coming from the fact that on Q ⊗H1(A
kν
ν ,Z) the representation Φ + Φ̄ acts as a rational one.

Remark 8. Theorem 8 gives an instructive second look on the examples of the last section. With
the representation matrices found in [KK] it is easy to see that the canonical representation is
irreducible e.g. for the curves (10), (24) and (25) which give Jacobians not of CM type. Since
the curves are covers of elliptic curves it is now clear that their Jacobians are isogenous to powers
of these elliptic curves. The (finite!) list of all curves with many automorphisms and irreducible
representation Φ has been established recently by Breuer [Br]. Forthcoming work of Streit will
show that the Schur indicator of Φ provides a sufficient criterion for their Jacobian being of
CM type [St3]. As an example how Theorem 8 works we mention the following consequence on
curves with irreducible representation.

Theorem 9 Under the hypotheses of Theorem 8 let Φ be irreducible. Then JacX is isogenous
to a power Ak of a simple abelian variety A , and the endomorphism algebra End0A acts
irreducibly on H0(A,Ω) . Moreover,

1. either g = k , i.e. A is an elliptic curve,

2. or g = 2k , dimA = 2 , and End0A is an indefinite quaternion algebra B over Q .

Proof. The first sentence follows directly from Theorem 8 with U = H0(JacX,Ω) . Now,
dimU = k dimA implies dimA ≤ q if the endomorphism algebra D = End0A has degree q2

over its center F or K , compare the list of possible endomorphism algebras above. For type 4
algebras, Remark 5 gives

[K : Q] · q2 = dimQD | 2 dimA ≤ 2q

and therefore q = 1 , dimA = 1 as claimed. For the other possible types of D , the same
reasoning gives F = Q . A classical result of Shimura ([Sh], Prop. 15) says that in this case
endomorphism algebras of type 3 cannot occur, so we are left with the cases mentioned in the
Theorem.

Remark 9. For the curve (16), all intermediate groups between the covering group and its nor-
malizer < 3, 4, 6 > have genus 0 and give therefore no hint on possible factors of the Jacobian.
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According to [KK] the canonical representation splits into two non–equivalent irreducible repre-
sentations of degree 2 . So Theorem 8 says that each simple factor of the Jacobian (of CM type
by [Sr1] and Theorem 3, hence with qν = 1 ) occurs at least twice. Schindler’s period matrix
shows that the period lattice of (16) is contained in K4 ⊂ C4 where K denotes the CM field
Q(

√
−3,

√
−6) . But there is no simple abelian variety with CM by this field: by [Sch], abelian

varieties with complex multiplication by this biquadratic field are always isogenous to squares
of elliptic curves with CM by either Q(

√
−3) or Q(

√
−6) . Therefore, the Jacobian is isogenous

to a product of elliptic curves with complex multiplication by one or two of these imaginary
quadratic fields.
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