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1 Riemann surfaces with many automorphisms

The present paper is concerned with the classification of all Riemann surfaces with many auto-
morphisms whose automorphism groups are semidirect products of two cyclic groups of prime
order, with the action of the absolute Galois group on them, their Galois invariants, their field
of definition and so on. We may restrict ourselves to compact Riemann surfaces X of genus
g > 1. Recall that the property that X has many automorphisms may be defined in several
equivalent ways [Wol].

1.

Every proper local deformation X, of X (corresponding to a point P(X.) in a small
punctured neighbourhood of P(X) in the moduli space M, ) has an automorphism group
which is strictly smaller than Aut X .

. The universal covering group N C PSL3(R) of X is a normal subgroup of a Fuchsian

triangle group A (and Aut X 2 A/N =:G if A is maximal with that property).

. There exists a Belyi function B : X — P! (i.e. meromorphic with ramifications at

most over 0,1,00) defining a normal covering, given by the canonical projection N\H —
A\H = G\ X where we denote the upper half plane by # and identify the target quotient
space with P! and the fixed point orbits of A with 0,1, 00 respectively.

. The conformal structure on X is characterized by a regular dessin given by the inverse

image B~'[0,1] of the real interval [0, 1] under the canonical projection B (for the use of
the word canonical, compare Remark 1 at the end of Section 4).

. At least for genus g > 3 the corresponding point P(X) of the moduli space is an isolated

singularity of M, in the sense of Zariski [Po] (not to be confused with the more restricted
notion of topologically isolated points of the set of singular points in M, as considered by

Kulkarni [K]).
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In the present paper, the most important characterizations are those given in 2. and 3.— As
Felix Klein did, we may think of Riemann surfaces with many automorphisms as higher genus
generalizations of the Platonic solids. In any case they are Belyi surfaces, i.e. equipped with
a Belyi function or equivalently, with a dessin d’enfant in the sense of Grothendieck, or — by
Belyi’s theorem — as algebraic curves defined over number fields.

For reasons to be explained in the following section, we study in the present paper all Riemann
surfaces with many automorphisms whose automorphism groups are semidirect products

G = 7Z,x7,

of the multiplicative cyclic groups of prime order ¢ and p = 1 mod ¢. For simplicity we will
suppose both primes to be > 3 and ¢ # 7. We will further suppose that 7, acts on 7, by

b~ lab = o

where a and b are generators of Z, and Z, respectively and u denotes a fixed prime residue class
of order ¢ in (Z/pZ)*.

Gareth Jones and David Singerman gave us some important hints. The second author thanks Chiba University
and the Japan Society for the Promotion of Science for their hospitality in March 1998 when a first draft of this

paper was written.

2 Introductory remarks about Galois actions

One of the main problems in the theory of Grothendieck’s dessins d’enfants is to understand
the action of the absolute Galois group Gal Q/Q on them. This action is defined by the Galois
action on the set of the corresponding Belyi surfaces, more precisely on the nonsingular projective
algebraic curves via the action on the points and on the coefficients of their defining equations.
For basic material on dessins, Belyi functions and Galois actions the reader may consult [JS]
or [Wo] and the references quoted there. Every dessin has a regular dessin as a finite cover or
equivalently, every Belyi surface Y is covered by a Riemann surface with many automorphisms
X taking the normalization of the covering given by the original Belyi function 8:Y — P'. The
resulting normal covering map B : X — P' is again a Belyi function whose dessin B~'[0, 1]
gives the regular covering of the original dessin $7'[0,1]. Tts automorphism group G, i.e. the
covering group of B, is isomorphic to its hypermap group ( = monodromy group of B) and
also to the hypermap group of the original dessin 371[0, 1], namely the monodromy group of
[, and can also be identified with a subgroup of the automorphism group of the Belyi surface
X . For more details about this regularization of dessins, see Theorem 2 of [Wo2]. Now Galois
conjugations of Y (more precisely of the coefficients of the defining equations if we consider YV
as an algebraic curve, and of the coefficients of the rational function § as well) induce Galois
conjugations of X , therefore the problem of understanding these Galois actions can be divided
into two parts.
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e Describe the action of GalQ/Q on Belyi surfaces with many automorphisms X . In
particular, determine the subgroup H of all Galois conjugations ¢ sending X to an iso-
morphic Belyi surface X7, and the fixed field M (X) of H, the moduli field of X . By a
result essentially due to Coombes and Harbater ([Wol], [DE]) a Belyi surface with many
automorphisms X has a model defined over its moduli field.

e Describe the action of H on the intermediate coverings of B : X — P!, i.e. on all quotients
of X by subgroups of GG.

The second problem is connected to the theory of G—coverings and will not be the main point
of interest here because in the examples treated below this action will be rather trivial.

For the first problem it is easy to see that if X has many automorphisms then so has X7 for
any Galois conjugation o, that G is o—conjugate to an automorphism group G? of X7, and the
canonical Belyi function

B:X = G\X 2P to B : X7 = G\X° =2 P!

which is again a canonical Belyi function, with the same ramification orders as B (canonical
means that B is uniquely determined by X and G which is Aut X in most cases — up to auto-
morphisms of P! possibly permuting 0,1,00). For an account of the actually known invariants
of dessins under the action of GalQ/Q (monodromy and cartographic groups of Belyi functions)
see [JSt]. Unfortunately these known invariants do not form a complete list of Galois invariants
in general. They are sufficient to characterize Galois orbits in some important special cases such
as elliptic curves with complex multiplication and uniform dessins (Singerman/Syddall [SSy]) or
Hurwitz curves with automorphism groups PSL;F, over a finite field F, (Streit [St2]). They
are also trivially sufficient for curves X with many automorphisms in small genera ¢, 1 < g < 5
since X is uniquely determined by its automorphism group Aut X in these cases. (Then, by the
way, M(X) = Q,so X may be defined over the rationals). As far as we know, historically the
first examples where these invariants were known to be insufficient are ‘Leila’s flowers’, see p.71
of [Sps]. The most reasonable way to gain more insight into such Galois actions seems to be the
study of more nontrivial examples. For this reason, we consider in the following all Belyi surfaces
with many automorphisms whose automorphism groups G are semidirect products 7, X Z, as
introduced at the end of Section 1. In the Theorems 1 and 3 we will see that the isomorphism
classes of these Belyi surfaces form

1. one GalQ/Q-orbit of length (¢ —1)/2,

2. one GalQ/Q-orbit of length (¢ —1)/3 if ¢=1mod 3,

3. (¢—1)/6 GalQ/Q-orbits of length ¢ —1 if ¢ =1mod 3,
4. (¢q+1)/6 GalQ/Q-orbits of length ¢ —1 if ¢=—1mod 3.
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We will moreover determine their fields of moduli (in these cases also their minimal fields of
definition, as explained above). They are Q(e?"/?) or their subfields of degree (¢ —1)/2 or
(¢ — 1)/3, respectively. As a byproduct we see that Hilbert’s irreducibility argument fails to
produce these groups as Galois groups over Q by specializing extensions of function fields ramified
above three points only. On the way we will obtain a lot of further interesting information about
the curves in question such as

e the decomposition of their Jacobians,

e the decomposition of the representation of G on the space of holomorphic differentials on
X or

e properties of their canonical model.

3 Preliminaries concerning groups

As already introduced at the end of Section 1, let G denote the semidirect product of the cyclic
normal subgroup 7, of order p and with generator a and of the cyclic group 7, of order ¢ and
with generator b. Let p and ¢ # 7 be primes > 3, p = 1 mod ¢ and let u € (Z/pZ)* be of
order ¢. Then the action of Z;, on Z, is well defined by

b~ tab = a*.

This is in fact the essential part of the presentation, as we can see in the first point of the
following Lemma (1., 3. and 6. are taken from Section 25 of [JL], the others are obvious).

Lemma 1 1. G is presented by the generators a and b and the relations
a = b =1, b lab = a".
2. Forall n,m,j €N ‘ ‘
b=l a™b™h = o™ b™ .

3. Denote by S the subgroup generated by u in the group (Z/pZ)* and denote by v;, 1 =
1,...,r:=(p—1)/q a system of representatives of (Z/pZ)* mod S. Then G splits into
the r 4+ q conjugacy classes

{1}, {a"} = {a"|jeB/pL},i=1,...r

and
{a™b" |m € Z/pZ}, n # 0 mod ¢ .
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4. The only nontrivial subgroups of G are the commutator subgroup
G' =%, =<a>

and the p conjugate cyclic subgroups of order q generated respectively by a™b, m € Z/pZ.
These subgroups form a partition of G .

5. G can be generated by any two elements taken from two different cyclic subgroups of order

porq.
6. G has q linear characters x, , n € Z/qZ, defined by
Xn (a7BY) = e2miny/q
and r irreducible characters ¢; of degree q defined by
¢j(a"b’) = 0 if y#0modgq

¢J(ax) — Z eQTriUJwa:/p )

weS

For the next lemma recall that a triangle group A with signature < p,q,r >, p,q,r € N, is
presented by generators and relations

Yo, V1 Yoo 3 Vo = = Vo = YoM Vee = 1

and that all elements of finite order in A are conjugate in A to powers of these generators.
Therefore a homomorphism h : A — G has a torsion free kernel if and only if the generators of
A are mapped to elements of the same order in G. These homomorphisms are easy to classify
since they are uniquely determined by the images of two generators.

Lemma 2 Suppose G defined as above, and suppose that
h: A= G

is a homomorphism with torsion free kernel. Then there are two possibilities for the signature

of A.

1. A =< p,q,q>. In this case there are p(p—1)(q — 1) different homomorphisms with
torsion free kernel according to the choice of

h(o) = ™, h(n) = a6, m € (Z/pZ)", n € Z/pL, s € (Z/qZ)" .
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2. A =<4q,q,q> . In this case there are p(p — 1)(q — 1)(q — 2) different homomorphisms
with torsion free kernel according to the choice of

h(’)/O) = a™b" 3 h(71) = asbt , M, S € Z/pZ, nat € (Z/qZ)*a

and a™b” | a®b® neither lying in the same cyclic subgroup of G' nor having a product in
Zy =< a> (equivalent to n Z —t mod ¢ ).

The proof is obvious, only the last point deserves to be mentioned: h(7y) can be chosen freely
among the p(¢ — 1) elements of order ¢ in G, and for the choice of (1) one has to avoid the
q—1 nontrivial powers of h(v) and the p—1 possibilities leading to an h(yso) = (h(v0)h(y1)) ™!
of order p. For the reformulation with exponents, observe that 6"a®b’ = a"b"b' for some
vEL[PL.

Lemma 3 The automorphism group of G is isomorphic to the semidirect product
AGLy(p) =2 (Z/pZ)* x Z/pZ . The automorphisms are determined by

a — ke (Z/pZ), b~ a™b, meL/pT.

Proof. Preserving the orders, every automorphism must satisfy
a — a¥ ke (Z/pR)*, b a™V, meL/pL, ne (L/qL)*.

Since the defining conjugation relation has to be preserved, we also have

i}

auk — b—na—makambn — gt k7
see Lemma 1. But uk = u"k mod p implies «"~! =1 mod p, hence n =1 mod ¢.

Corollary 1 1. There are ¢ — 1 different normal subgroups Ng of A=< p,q,q >,
s € (Z/qZ)*, with quotient A/Ns; = G .

2. There are (¢q—1)(q—2) different normal subgroups N, ;, of A =< q,q,q > with quotient
A/Nypt0 22 G where n,t,v € (Z/qZ)* satisfy the condition n +t+v=0mod q.

Proof and comment. It is easy to see that two homomorphisms hy,hy : A — G have the
same kernel if and only if there is an automorphism « of G with hy = a o hy. Therefore
the respective number of different normal subgroups with quotient G follows directly from the
preceding lemmas. By combining the homomorphisms with suitable automorphisms, we can
moreover normalize the homomorphisms in question in the following way.

For A =< p,q,q> we may assume h =: hy with

h(yo) = a, h(n) = b’
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for some s € (Z/qZ)* uniquely determining the kernel.
For A =< ¢q,q,q> we may assume h =: hy;, with

h(”)/o) = bn’ h(")/l) = abt’ h(,-)/oo) — a—utbv

with n,t,v € (Z/qZ)*, n+t+ v =0 mod ¢ following from v9y17ec = 1. We observe that the
condition n # —t mod ¢ is automatically satisfied and that the normal subgroups of A with
quotient G are uniquely characterized by the triples (n,t,v) as the kernels of these normalized
homomorphisms.

Lemma 4 For these normal subgroups N,< < p,q,q> and Ny;,< < q,q,q > we have:

1. A=<p,q,q> isthe normalizer of N5 in PSLy(R).

2. A=<yq,q,q> is the normalizer of Ny, in PSLy(R) if n,t,v € (Z/qZ)* are pairwise
distinct. If not, only two of the indices can coincide, and then the normalizer is a triangle

group A =< 2q,q,2 > containing A with index 2 .

Proof. In any case, the normalizer is a Fuchsian group containing A . It is known that triangle
groups have only triangle groups as possible supergroups, and using Singerman’s list of inclusions
[Si], one may see that the only possibilities in our situation are

<pigg> QA <2p,q,2>

<q,q,9> 4 <2¢,¢,2>,<¢3,3>C<2¢3,2> .

(We excluded the case ¢ = 7 since < 7,7,7 > is exceptionally a non—normal subgroup of
<2,3,7>.)

1. Suppose that N, is a normal subgroup not only of < p,q,q > but also of < 2p,q,2>. We
may present the larger triangle group A by generators and relations

a,y,8; @ =4l =8 =aypd =1

and relate it to the generators of A =< p,q,q > by

a? = o s 5_1715 = Yoo -

So, if we had a quotient G = A/N, extending G with index 2, there would be an automorphism
of G sending

h(FYl) = b to h(")/oo) = (h(ﬁ)/o)h(p)/l))—l — b_s(l,_l — a_usb_s’

see Lemma 1. According to Lemma 3 this would imply s = —s mod ¢ what is clearly impossible.
2. In the case N,;, <A =< g¢q,q,q> we first note that n =¢ = v mod ¢ is impossible by our
assumptions n,t,v € (Z/qZ)*, n+t+ v = 0 mod ¢. Consequently, there is no automorphism
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of G giving a cyclic permutation of the generators h(v;) (see Lemma 3) whence N, ;, is never
a normal subgroup of < ¢,3,3 > or < 2¢,3,2 > by arguments quite similar to the first case.
The same arguments show that N, ;, is not a normal subgroup of A=<2q,q2> if n,t,v
are pairwise distinct. However, the groups N, ;; (say) are in fact normal subgroups of A what
we may see as follows. Since the order of u in (Z/pZ)* is odd (= ¢), it is a quadratic residue
mod p . Therefore a w € (Z/qZ)* exists satisfying

w? = u and hence w? = —1 mod ¢ .

There is a supergroup G of G of index 2 presented by
G=<a,c;a® =c*"=1,cac=a" >

containing G by ¢ = b. As above, let A be generated by «,7;,4 of the respective orders
2q,q,2 and with a? =79, 6 '916 = 7o . Then one can check by a straightforward but lengthy
calculation — playing with the relations and with n 4+ 2t = 0 mod ¢ — that

—t
a "y = oabt, 5 aT !
defines a homomorphism A — G which restricts on A to the original homomorphism A with

kernel N, ;.

Different normal subgroups N, or N, ¢, can be conjugate in PSLy(R) only by elements of a
group containing A with finite index, i.e. by elements of the respective maximal triangle group.
Looking at the effect on the generators we can therefore deduce the

Corollary 2 1. Among the normal subgroups Ns of A =< p,q,q > there are (q—1)/2
PS Ly(R)-conjugacy classes. For all s € (Z/qZ)*, Ny is conjugated to N_;.

2. The normal subgroups Ny, and Np, ., of A =< q,q,q > are PSLy(R)-conjugated if
and only if (n,t,v) is a permutation of (m,s,w). There are ¢ — 1 conjugacy classes
of groups Ny 4 and (¢ — 1)(¢ — 5)/6 conjugacy classes of groups N ;, with pairwise
different indices.

4 The Riemann surfaces with p—ramification

In the last point of the following theorem a Belyi pair means a pair (U, ) of a Belyi surface U
with a Belyi function 3 on it. Two Belyi pairs (U, 3) and (V,¢) are called isomorphic, if there
are isomorphisms

f:U —=V,u:P' 5 P with ¢of = pop

(weakly isomorphic in the terminology of [CG]). As in the definition of moduli fields of Belyi
surfaces, let H be the subgroup of GalQ/Q consisting of all ¢ which conjugate the Belyi pair
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(U, ) into an isomorphic Belyi pair (U?,3%). Then call the fixed field M (U,3) of H the
moduli field of (U, (). It is automatically contained in every common field of definition of U

and .

Theorem 1 Let A =< p,q,q > ,G and Ns,s € (Z/qZ)*, be defined as in the first case of
the last section, i.e. let N be the kernel of the homomorphism

hs : A = G givenby ~vg — a, vy — b°.

Then

1. the quotient spaces N\H , s € (Z/qZ)*, form (q— 1)/2 non-isomorphic compact Belyi
surfaces X with Xy =2 X_; for all s.

2. The genus of all X, is

3. Their automorphism group is Aut X, = G .

4. Let ¢ denote a fized q-th root of unity # 1 and choose an integer u representing its
residue class mod p. Then, as an algebraic curve, X, has the (affine, singular) model
(with $s =1 mod ¢ )

q
v = I (e = ¢
k=1

5. The curves X5, s € (Z/qZ)* (or: their reqular dessins) form an orbit for the action of
GalQ(¢)/Q.

6. Their moduli field (or: minimal field of definition) is Q(¢+ (') .

7. The triangle group A has a normal subgroup ' of index q containing all subgroups N as
normal subgroups of index p. With the homomorphisms hs, it can be described as the
preimage

I = k(%) = hi'(<a>)

or as the kernel of the homomorphism
h : A= Z, givenby v — 1,y = b, 70 — b=t .

Its quotient surface Y = I'\H is of genus 0 and the covering Y — A\H is normal and
cyclic of order q . It is ramified at and above two points.
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8. Between A and every N, lie p intermediate Fuchsian groups ®, ., , m € Z/pZ with indices
(A:®sm) =p, (Psm:Ns) =gq

whose quotient surfaces U, = @, \H are all of genus (p—1)(¢—2)/2q . The projections
Bsm : Usm — P! . S,z = Az

are Belyi functions. The Belyi pairs (Usm, Bsm) and (Usy, Brn) are isomorphic if and
only if s = £t mod ¢ . The different isomorphism classes form an Galois orbit under the

action of GalQ(¢)/Q, and their moduli field is again Q(¢+¢71).

Proof. 1. follows by Corollary 1.1 and Corollary 2.1.
2. follows by the index (A : N;) = pg (and the usual comparison of the volumes of the involved

fundamental domains) as
pq 1 2
g=1+70----).
5 =57
3. follows by Lemma 4.1 and A/N; =G .
7. The existence of I' and its properties follow from isomorphism theorems of group theory.

Note that all possible homomorphisms
he = h : A = Z, givenby v — 1, v = b°, yoo — b7°

have the same kernel, so I' is independent of s. The genus of ¥ may be computed in different
ways. Since it is clear that the covering Y — A\H = P' is cyclic of order ¢ and ramified of
order ¢ precisely above 1 and oo — recall the identification of 0, 1, 00 with the fixed point orbits
of A given in Section 1 — we have also Y = P!. If we denote the respective function fields of
Y and A\H by C(z) and C(t), the covering map (of course a Belyi function) can be explicitly
given by

= a2? =1-1.

4. The function field of X is a Galois extension of C(t) with Galois group anti-isomorphic to
G, and C(z) is the normal intermediate field fixed by the normal subgroup Z, generated by a .
As a cyclic extension of C(z) of order p, we may therefore write the function field of X in the
form C(z,y) where y? is a rational function of z , uniquely determined up to taking powers with
exponents prime to p and up to multiplication with p-th powers in C(z). Moreover we may
assume that the Belyi function Xy — P! is given by (z,y) +— 2? = 1 — ¢ ramifying precisely
above t = 0 with order p, i.e. in the points with z = (¥, k € Z/qZ. Therefore we can assume

that
q

v =[] (@ —¢h)*
k=1
with some integers ¢ not divisible by p. In fact, the cyclic extension only depends on the residue
classes ¢; mod p and is invariant under multiplication with a common factor ¢ € (Z/pZ)*, so
it corresponds to some point

(c1,- - yer) € BI7(E,)
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in a projective space over the finite field with p elements. According to Kummer theory (see
e.g. [L]), this point is uniquely determined by the extension. Which point?

To decide this question we fix the g—th root of unity ¢ and an (also primitive) p—th root of unity
7 such that the action of G = Aut X on the functions satisfies

a(y) == yoa ' =ny, az) =zo0a”' =2, blz)i=z0b"" = (.
Now the action of b on the equation for y? induces a cyclic shift on the place of the exponents
(to simplify the argument, we can assume that all ¢z =1 mod ¢, hence ) ¢ divisible by ¢)

H (C:v — Ck)ck — H (m B Ck—l)ck — H (:U _Ck)ckH )
k=1

kmodg kmodgq

Since b(y) is also a p—th root generating the field extension C(z,y)/C(z), the shift of exponents
gives the same point in P?7'(F,), hence

(e1y..vyeq) = (1,e,¢% ..., et

for some ¢ € Fj of order ¢. We can moreover conclude that for a suitable integer representing
the exponent, b(y) = y°g(z) with a rational function ¢g. Using ab = ba" we get even ¢ = u
(again a choice of an integer representing » mod p, w.l.o.g. u = 1 mod ¢), and following the
defining equation for y? we may determine g(z) explicitly by

o z—1 IR
g(m) - (;r—l)“q ( 1)

(recall that 1 —w? is divisible by p). Note also that > «* is divisible by p whence the covering
map X; — Y is unramified over z = 0.

Finally one can replace ¢ by any other primitive ¢—th root of unity ¢® corresponding to other
choices of the generator of Z, or to other choices of the homomorphism A; .

5. follows from the equation given in 4.

6. may be seen using X, = X_; or also by a more direct argument involving the equations
given in 4.: recall that " u* = pN for an integer N and that we can assume u = 1 mod ¢ and
therefore > 5ku* =0 mod ¢ . Now write the equation for X_; as

o= TLe=-¢™" = oV L -

x

k

and write again  for 1/z and y for +y/z" to deduce the equation for Xj.

8. Define ®,,, as the inverse image of the cyclic subgroup < a™b > under the homomorphism
hs : A — G2 A/N,;. Computing the indices is an exercise in group theory. Every automorph-
ism of X, of order ¢ has two fixed points of order ¢, so the genus of the surfaces Uy, can be
computed using the Riemann—-Hurwitz formula and the genus of X .

For s fixed, the different ®,,, are conjugated in A and ®;,,, P_,, are conjugated in A
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Let K, ,, be the function field of the Belyi surface Us,,. Then the function field extension
C(z,y)/C(t) belonging to the covering X/P' is the normalization of Kj,,/C(t) whence they
give non-isomorphic extensions for different s € (Z/qZ)*/+1. This implies the assertions about
the possible isomorphisms among the different (Us, Bsm ), and the assertions on the Galois
action easily follow from the action on the X, taking the respective quotients.

Warning. M (Us ., Bsm) = Q(C+¢™!) does not mean that Uy ,, and S, can be defined over
that field. Also it is possible that much more isomorphisms exist between the different Us ,,, but
then not compatible with the respective Belyi functions.

Remarks. 1. We take the opportunity to point out a possible misunderstanding in Remark 4 of
[Wol]. For a Riemann surface with many automorphisms N\# = X, N a normal subgroup of
a triangle group A, and its Belyi function B : X — P' = A\# it is true that the moduli fields
M (X) and M (X, B) coincide if they are defined as at the beginning of this section, and that X
can be defined over M (X). But this is possibly not true for B because B is unique (canonical)
only up to automorphisms of P! exchanging 0,1,00. In cases where A is not maximal, i.e. if
the same order occurs at non—equivalent fixed points it may happen that a Galois conjugation
in GalQ/M (X) exchanges the fixed points of A, hence B # B? (in the terminology of [CG],
the Belyi pairs are not strongly isomorphic). In that case, B can only be defined over a field
containing M (X') with index 2,3 or 6. This phenomenon occurs precisely for our Belyi surfaces
X where the isomorphism to X_; corresponds to an exchange of 1 and cc.

2. For Theorem 1 the primes ¢ =3 and 7 are admitted, but for ¢ = 3 we obtain curves which
will be treated in the next section under the name Y; ;2 (the other prime here called p will be
there called ¢).

5 A well-known normal subcovering

Now we will concentrate on those cases where GG is a quotient of A =< ¢,¢,¢ > . In this section
we consider the normal subcovering of /Yn7t7U/P1 coming from the Fuchsian group I',;, =
h;;,u(zp) where h,, ;, denotes the normalized homomorphism A — G introduced in the proof

of Corollary 1.2. As always, n,t,v € (Z/qZ)* with n+t+v =0 mod ¢. We already know that
the isomorphism classes of X, ;, depend on n,t,v up to permutation only.

Lemma 5 As n,t,v let m,s,w € (Z/qZ)* with m + s+ w =0 mod ¢ and call
(n,t,v) ~ (m,s,w)

if and only if these triples coincide up to permutation and multiplication by a common factor
c € (Z/qZ)*. This is an equivalence relation. We denote the equivalence classes by [n,t,v].
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1. The only homomorphisms of A = < q,q,q > onto Z; =< b > with torsion—free kernel
are given by
fage ©v0 = 0", = bt,’yoo — b

with n,t,v € (Z/qZ)*, n+1t+v=0mod q.
2. The kernel of fn 1, is Iy, .

3. There is a bijection between the PSLy(R)-conjugacy classes of Ty, and the equivalence
classes [n,t,v].

4. The normalizer of Uy is PSLy(R) is A =< 2q,q,2 > . If there is a t € (Z/qZ)* of
order 3 and with 1+t+1* = 0 mod ¢ (what happens if and only if ¢ =1 mod 3 ) then the
normalizer of I'y 42 is A =<q,3,3> containing A as normal subgroup of index 3. In
all other cases A is the normalizer of I'y ;. .

Proof. 1. follows from the relation between the generators of A .

2. The homomorphism f,;, is a combination of h,, with the canonical projection of GG onto
the factor group G/7, =2 7, =< b > .

3. If ¢ € (Z/qZ)*, fenetev 18 frpn, followed by the automorphism 7, — 7, given by b —
b¢, whence the kernels are invariant under multiplication of the indices with common factors.
The invariance of the PSLy(R)—conjugacy class under permutations of the indices follows as
in Corollary 2.2 by the fact that the generators of A can be permuted under the action of
A =< 2¢,3,2 >. The assumptions on p and ¢ guarantee that no other conjugations between
the I'y ;, are possible.

4. If t = v the homomorphism f,;, clearly extends to a homomorphism of < 2¢,¢,2 > onto
a group 7y, containing 7, =< b > (exercise).

In the second case mentioned, there is an index 3 extension H of Z, containing 7, as normal
subgroup and a non-normal subgroup < d > of order 3 acting on Z, via

d='bd = b'.

Then f ;4 is extendable to a homomorphism of < ¢,3,3 > onto this semidirect product
Zy, ¥ Zs. Observe that the conjugation by one of the generators of A permutes the generators
of A.

It is easy to check that not both cases can occur at the same time, therefore A is the normalizer
in all other cases.

Theorem 2 Let n,t,v be as above and define Yy ;. := 'y ,\H . Then we have

1. Yuio is a Belyi surface of genus (¢ — 1)/2 and with many automorphisms. Its Belyi
function
Yoiw — A\H = P!

is a normal cyclic covering of degree q and with ramifications above 0,1,00 of order q.
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2. The automorphism group is
AutY,,, = Z, if n,t,v are pairwise distinct and not
equivalent to (1,t,t%) with t* =1, 1+t +¢*=0mod ¢, and in these cases we have
AutYy,p = Z, XM 73,

Aut Ynﬂfﬂf = ZQ X Zq .
The surfaces Y, ;; are hyperelliptic.

3. Yotw & Yosw if and only if (n,t,v) ~ (m,s, w).
4. Yniw has the (affine, singular) model over Q

y! = 2" (2 - 1)".

Proof. 1., 2. and 3. follow almost directly from Lemma 5. The genus can be again computed by
Riemann—Hurwitz, and in the ¢ = v case one can see that in fact Y, ;;/Zs = P! or transform
the equation of part 4. into an equation u? = .... The shape of the equation can be guessed
as follows. The function field C(y,z) of Y, is a cyclic extension of the function field C(z)
of P!, and the ramification shows that we can assume y? = x*(z — 1)”. To find the correct
exponents, choose y such that b(y) = (y, ¢ the primitive g—th root of unity for which v, acts
in its fixed points on local branches of ¥z like multiplication by ¢, and so on for ¥1,veo -

Remarks. 3. The preceding proof follows a suggestion of Gareth Jones. Another possibil-
ity to distinguish the different non-isomorphic surfaces Y, s, is the fact that their Jacobians
have complex multiplication by the cyclotomic field Q(¢) but that their isogeny class can be
distinguished by the CM type. Moreover, the different CM types correspond bijectively to the
equivalence classes [n,t,v], see [KR], so we can apply Torelli’s theorem to distinguish the curves.
4. In particular, this gives the following additional information. Non-isomorphic surfaces Y, ¢,
are not Galois—conjugate, but the automorphism groups (or: hypermap groups for their canon-
ical regular dessin) coincide — at least in general for ¢ > 17, see below — so they are incomplete
as Galois invariants. However, here the curves may be distinguished by representation theory:
if we consider the usual representation

pia— (w—woal) acZ,,

on the vector space of holomorphic differentials on Y, s, , then the non-isomorphic surfaces can
be distinguished by the trace of p(b). We will come back to this question in Section 7.

5. For ¢ = 5, there is only one equivalence class of triples corresponding to the well-known
hyperelliptic curve y° = z(z — 1) or u? = v® — 1. For ¢ = 11, there is one hyperelliptic and
one ordinary triple. For ¢ = 13, there are three inequivalent triples of all types, namely

[1,6,6], [1,2,10], [1,3,9] (g =6)
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The Jacobian of Y; 39 is a product of three isogenous abelian varieties of dimension 2, and the
curve is a cover of another curve of genus 2, obtained by taking the quotient by the factor Z3 of
the automorphism group. First for ¢ = 17 we have two ordinary triples (and one hyperelliptic,
of course), namely

[1,8,8], [1,2,14], [1,3,13] (g =8).

6. Let us shed some light on the excluded case ¢ = 7. Here we are in genus 3 and have a
hyperelliptic curve Y} 33 and a non-hyperelliptic curve Y; 5 4. By the techniques going back to
Shimura and Taniyama and extensively used by Koblitz and Rohrlich [KR], the Jacobian of the
latter curve is isogenous to a cube of an elliptic curve with complex multiplication by Q(y/~7).
But here Z7 or /7 x /3 are far from being the true automorphism group. As a consequence of
the exceptional situation < 7,7,7 > C < 2,3,7 >, the full automorphism group is PSLy(F7)
and the curve is isomorphic to Klein’s quartic.

6 The Riemann surfaces without p—ramification

Theorem 3 Let A=< gq,q,q>,G and Ny, be defined as in the second case of Section 3,
i.e. with n,t,v € (Z/qZ)*, n+t+v=0mod q, Ny, the kernel of the homomorphism

hn’t’v =h deﬁnEd by h(70) = bna h(71) = abt, h(7oo) = a_utby .
Then

1. the quotient spaces Ny 4,\H are compact Belyi surfaces X, ;, of genus

g =1+ %p(q—3)-
Xt is isomorphic to Xy, 5. if and only if (n,t,v) is a permutation of (m,s,w).
2. Their automorphism group is
G if the indices are pairwise distinct

é = Zp A qu fOT‘ Xn,t,t
(for the definition of G see the proof of Lemma /).

3. For (n,t,v) fized, the surfaces Xy st.v, S € (Z/qZ)*, form the orbit under the action of
GalQ/Q. More precisely, for (= e*™/1 and o(¢) = ¢, 535 =1 mod ¢, we have

o A~
X - Xsn,st,su .

n,t,w

4. Under the Galois action, the isomorphism classes form
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e one orbit consisting of all ¢ — 1 surfaces X, 14, all with moduli field ( = minimal
field of definition) Q((),

e one orbit consisting of all (q—1)/3 non-isomorphic surfaces X  y» if ¢=1mod 3
and t* =1mod q, 1+t +t>=0mod q. In this case, their moduli field is the fized
field K of 7:¢w— (' in the cyclotomic field Q(() -

o All other orbits are of length ¢ — 1 and consist of surfaces Xy 5150, 5 € (Z/qZ)*.
Here the moduli field is again Q(() .

5. Between A and N,y , lie the unique torsion—free subgroup 1', ¢, treated in Section 5 and
p A-conjugate subgroups @, ., m € Z/pZ with

n,t,w
(A : @th’v) =p, ((b;n’t’,u : Nn,t,v) = (q

giving p isomorphic Belyi pairs (U}, ., By ,) where

n,t,v!

Ty =00 \H and B, Uy, — A\ ~ pl

7t7U

is the canonical projection. The genus is

g(Um,,) = %@—1) (¢-3).

The Belyi pairs (U ., Br,) and (Ulz,s,wvﬁj ) are isomorphic if and only if (k,s, w)

k,s,w
is a permutation of (n,t,v). Their moduli field is M(X,;,) as above.

6. The cartographic group of the dessin on X, 4, induced by the Belyi function B : X, ;, —
A\H is the monodromy group of

B :=4B(B-1): Xputw — A\H where A =<2q,¢,2> .

This cartographic group is

[ J G fOT Xn,t,t
o the wreath product (G x G) x Sy if n,t,v are pairwise distinct.

Proof. 1. is clear by the definition of the normal torsion—free subgroups N, ;, and a genus
computation analogous to that of Theorem 1:
Pq 3

— 14+ 222y,
g + 5 ( q)

The isomorphisms between the different Belyi surfaces of this type are determined by Corollary
2.2.

2. follows from Lemma 4.2 and its proof.
3. If X, and X, 5. belong to the same Galois orbit, then clearly also their respective
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quotients Y, ¢, and Y, ;. by the unique normal subgroup 7, < G'. Theorem 2 shows that
these are Galois conjugate if and only if they are isomorphic if and only if their index triples are
equivalent. So X, ¢, and X,, ;. belong tothe same Galois orbit at most if (n,t,v) ~ (m,s, w).
To see that this condition is also sufficient, we follow the ideas of [St2] and need some preparation.
Recall that for a € G with fixed point P € X, 4, there is a local variable z with z(P) =0
such that the action of « locally is described by z+— £z for some root of unity €. We will call
this £ (uniquely determined by P and «) the multiplier of « in P.

Lemma 6 1. For the action of G on X, ;, there are 3p fized points of order q .
2. Fvery element a™b" of order q, m € Z/pZ,n € (Z/qZ)*, has three fized points.

3. In its three fized points, b acts with multipliers (™, ', (¥ where 7,t,T denote the inverses
of n,t,v € (Z/qZ)* respectively, i.e. with in =tt = tv =1 mod ¢.

Proof of Lemma 6. 1. follows by a simple counting argument: The surface is triangulated by
3pq images of A-fundamental domains. To each of these fundamental domains belong three
fixed points of order ¢, but every such fixed point belongs to ¢ A—-fundamental domains. (David
Singerman indicated to us another possible argument using results of Macbeath [Mc].)

2. In G, there are precisely p conjugate subgroups of order ¢, see Lemma 1.4. Two different
such subgroups can be generated by a™b, a*b with m # k mod p. If P were a common fixed
point for both it would also be a fixed point for a by consequence of

b=taHmh(P) = P

and the defining relations in G. But a acts fixed—point free on the surface, whence every
subgroup of order ¢ has a fixed point triple, and these triples in fact form an orbit under the
action of 7, .

3. On the universal covering H of X, ;, the generators 7y, 71,7 of A act in their respective
fixed points with multiplier ¢. Since h(yg) = b™, the fixed point of 7y has to be applied by the
universal covering map H — X, ;. on one of the fixed points of 6, and there b must have the
multiplier (". The same argument applies in the fixed points of 71 and 7., if we observe that
e.g. ab’ is conjugate to b’ (see Lemma 1.3) and has therefore the same multipliers in its fixed
points.

Proof of Theorem 3, continued. Now we observe that no automorphism group of our surfaces
in question contains Z; as normal subgroup whence they are not hyperelliptic. Therefore the
canonical model exists, constructed as the image of the following embedding. Let wq,...,w, be
a basis of the vector space of holomorphic differentials on X, ;. Then the map

Xngo = P7H0 Py (wi(P), ... wy(P))

is a well-defined holomorphic embedding, so we may now identify X, ;, with its image (auto-
matically a projective algebraic curve by Chow’s theorem). By [St1] it has the following remark-
able property. The representation — analogous to p in Remark 4 —

¥ 1 G = GLH(Xp10,9))
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on the vector space of holomorphic differentials defined by
Y(a) : w = woa™!

induces an action of ¥(G)/{£1} as subgroup of PGL,(C) on the canonical model. Now let P
be a fixed point for o € G on this canonical model with multiplier ¢. As in [St2], P € P9~! can
be represented as an eigenvector for ¥(a) with eigenvalue £~!. In our particular case, 1 (b™1)
has three eigenvectors giving fixed points of X, ;, and belonging to eigenvalues ¢, ¢t C7, see
Lemma 6, and these eigenvalues uniquely determine the isomorphism class of X, ;,. (¢ (b™")
may have more eigenvectors, in particular for other eigenvalues, but these do not give points of
the canonical model.)

Let 0 € GalQ/Q be any Galois conjugation, tacitly assumed to be extended to a field auto-

morphism of C. As explained in Section 2, ¢ maps X, ;, toa Galois conjugated curve X7,

which is again a canonical model because the basis wi,...,w, is transformed into a basis
wy,...,wy of holomorphic differentials on X7, . The representation matrices ¥»(a) are trans-
"M

formed by coefficient—wise conjugation into representation matrices ¥ (a)?. In particular, the
fixed points P of b~' on X, ;, become fixed points P7 of b~' on X7 v, now corresponding
to eigenvectors of () for eigenvalues o(¢"),0(¢?),0(¢?). There is a unique s € (Z/qZ)*
satisfying o(C) = ¢* for 5 € (Z/qZ)*, 5s = 1 mod ¢. Since X, is uniquely determined up
to isomorphism by the eigenvalues 7, (%%, (%7, the only choice of the Galois conjugated surface
is Xsn,st,s'u . . _

4. Observe that ¢ € GalQ/Q with o(¢) = ¢*, s € (Z/qZ)* transforms X,;, into an iso-
morphic surface if and only if (sn,st, sv) is a permutation of (n,t,v).

5. The proof of this point is similar to the proof of Theorem 1.8 with the difference that the
automorphisms of order ¢ on X, ¢, now have three fixed points. The details are left to the
reader.

6. For the definition of the cartographic group and its meaning as a Galois invariant, see [JSt].
The reduction to the monodromy group of X, ;, — A\# follows directly from the definitions.
In the case ¢ = v this is a normal covering, hence the cartographic group is isomorphic to
the covering group GG. In the other cases, the proof goes along the lines of the constructions

explained in [JSt].
Remarks. 7. The warning after Theorem 1 applies to the Belyi pairs (U™ ﬁmm) as well.

n,t,v)
Also, Remark 1 applies vice versa to the surfaces X ; ;> and their canonical Belyi functions B
if t*=1,14+¢+¢*=0mod q. Here B is definable over the cubic extension Q(() of its moduli
field only.
8. The Belyi surfaces X,,;; can further be divided by the cyclic subgroups Z, of G giving
quotients V" of Uy’ ;. The covering X+ — V7 is ramified in one point with order 2¢, in
two points with order ¢ and in ¢ points with order 2. So their genus is
- 1(g-3
g(Vo) = BT
For example: in the case ¢ =5, p=11 the V,7 are elliptic curves. It would be very interesting
to know how they depend on (n,t).
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9. We sketch another possibility for the proof of Theorem 3 suggested by the two preceding
sections. Since X, ;, is an unramified cyclic covering of Y, ;,, we can construct the function
field of the covering by adjoining a function z to the function field C(z,y) of Y, ;, where z,y, 2
satisfy (for the first equation see Theorem 2.4)

y! = 2" (x - 1)" |, ¥ = f(z,y)

with a rational function f on the base curve. To avoid ramifications, this rational function
must have a divisor (f) which is the p-th power of a non—principal divisor D. Since D? = (f)
is principal, we can use Jacobi’s theorem and look for the p—division points of the Jacobian
JacY, ;,. The dimension of the Jacobian is the genus of the curve whence the p—division points
form — in obvious additive notation — a (¢—1)—dimensional vector space over the field F, with
p elements. Kummer theory [L] implies that the different possible cyclic unramified extensions
depend on these divisors D modulo principal divisors and modulo taking powers only (in vector
space notation: modulo Fy-multiples). So we can associate to every possible unramified cyclic
covering of degree p a unique point in the projective space P?~%(F,). Now we have a further
restriction on the covering coming from the specific automorphism group acting on our covering
spaces. The subgroup Z, =< b > acts on the base space, hence also as an automorphism
group on the Jacobian and even F,-linear on the vector space of p—division points. In analogy
to the proof of Theorem 1, part 4, we are looking for divisor classes D with b(D) = D ie.
for eigenvectors of b in the vector space notation. Now one has to prove that ¢ — 1 eigenvalues
occur and are admissible for our construction according to the different choices of the primitive
g—th root of unity. The case (s, st,st?) with t* =1, 14t +t* =0 mod ¢ is again very special
because there the Jacobian is isogenous to a third power of a Jacobian of complex dimension
(g —1)/6, see [KR].

10. Finally, the use of canonical models and multipliers in the proof can be replaced by the use
of Belyi’s cyclotomic character: here one has to study the coefficient—wise action of Gal Q/Q
on the Puiseux expansions of the inverse Belyi function B in the ramification points.

7 Representations

As in the proof of Theorem 3, let 1 be the representation of G on the vector space HY(X, Q)
of holomorphic differentials on our Belyi surface X defined by

Y:am (we woa ), aed.

and tri its trace. By different reasons — explicit computation of the canonical models [St1],
decomposition of the Jacobian, Galois invariants — its decomposition in irreducible represent-
ations is of some interest. The trace can be calculated as follows.

Lemma 7 Let G,a,b,(,n, X, X,,;, be defined as in Theorems 1 and 3 and their proofs,
n,t,v as in Lemma 6, and as in Lemma 1 let S denote the subgroup of (Z/pZ)* generated by
w. Forall m € Z/pZ,x € (Z/pZ)*,y € (Z/qZ)*, we have
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1. on X

1 _ — ru

rp(1) = 5 =1 (g=2) e =0, rpaT) = 1 E Y
wES
2. on Xyt
1 _ ¢ cty o
pu— — — m y — _
trip(1) 1—|—2p(q 3), trp(a™b7Y) 1+1—Cﬁy+1_cty+1_cﬂy’

trip(a™) = 1.

The proof is an application of Eichler’s trace formula (see [FK]) counting fixed points and
multipliers. For the surfaces X, ¢, , this program is essentially carried out in Lemma 6: recall
that by Lemma 1.3, a™b™¥ is conjugate to b~Y and therefore has the same multipliers in its
three fixed points, and recall that a acts without fixed points. For the first part of the Lemma
consider first the quotient ¥ = Z,\ X, =< a > \ X, of genus 0 treated in Theorem 1.7. There,
b has two fixed points with multipliers ¢ and ¢~'. Each of them lifts to p fixed points on
X, with the same multiplier (the covering X, — Y is ramified in other points). Clearly,
the generators a™b, m € Z/pZ of the p subgroups of order ¢ have two fixed points with
multipliers ¢ and (™', respectively. Taking (—y)-th powers, Eichler’s trace formula gives for all
m € L/pL,y € (Z/qL)*
¢ Y

trp(a™b™Y) = 1 + T + == = 0.

By the construction of X, the element a has ¢ fixed points given by the coordinates z =
¢*,y =0 on the model of Theorem 1.4. Which multipliers? Let zy € H be the fixed point of
the generator 9 of A . Under the covering map, it goes to the fixed point P := Nyzp € X5 of a,
of course with multiplier 5. This point gives all fixed points of a in the form 6%(P), k € Z/qZ.
We may describe fixed points by ¢—tuples in G? as follows. P corresponds to [1,a,a?, ..., a?""]
thinking of the < a >—orbit ¢ F of the image F of a canonical A—fundamental domain under
the universal covering map, arranged in counterclockwise order around their common point P.
There, the action of a is described by

M,a,d%...,a"7 "] = [a,d® ..., a""" 1].

The point b*(P) corresponds to

[bF bFa, bFa?, ... bFat™'] = [bF, b5, a2k, L el DT
and at this fixed point it is now immediate that a*™" acts with multiplier 7, hence a with
multiplier n“k. Each such multiplier occurs precisely once, therefore Eichler’s trace formula

proves the claim.
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The behaviour of ¢tri under Galois actions and the decomposition of ¢ in irreducible components
by means of Eichler’s trace formula is not obvious. It becomes easier if we state it in a different
but equivalent way, more in the spirit of Chevalley’s and Weil’s paper [CW]. For a real number
rlet (r) =r —[r] denote the fractional part and as always 1 = *>™/?

Lemma 8 Let my,...,my and ma, ... ,my € (Z/pZ)* satisfy m;m; =1 mod p for all j and
mi+ ...+ mp =0mod p. Then

k .y p—1 k _
NS R o S S
]:1 z=1 1=1
Proof. For every j,
p—1
m]’Z z < M2z
—_ 77 ] — 77 J
> " = 5 G,
hence I .
1 — nmJ _‘7 z — — nmjz 77_](2-'-1) —
( ) Z:( , Z;(p( )
=] z z—1 ks 1
— N ,r]ﬁljz E— + - + _,r]mjz - _1
> (- ¢5) AW
Therefore _
n" _ 1 — 1 _ myz, ., _
1_77m] 1+1—77mJ 1 Z< >77 B
p=! m;z m;z
= (1= (=) = (——=)7*
and
b n™ m;z ik —m;z
DI R DI DIl R DN B RS- R
j=1 Y P = p pot - P

The relation to the Chevalley—Weil result becomes more explicit if we observe that tri)(a=!) is
the sum of the eigenvalues of ¢!, choosing a™'—eigendifferentials as basis of H (X, Q). Since the
roots of unity n*, z Z 0 mod p, are linearly independent over Q and since 1+Zz,=50modp =0,
we can draw the following conclusion (valid in more general cases, of course).
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Corollary 3 Let a be an automorphism of prime order p of the compact Riemann surface X,
acting in its fived points with multipliers n=™1 . Then, up to an additive term c¢ independent of
z # 0, the coefficient of n*, z # 0, given by Lemma 8 is the dimension

(=1 3 (=)

of the eigenspace for the eigenvalue n* if we decompose H°(X,€Q) in eigenspaces for the action
of a=' . The number c gives the dimension of the subspace of a—invariant differentials (i.e. those
lifted from Z,\X , Z, =< a > ), hence the genus of Z,\X .

Remark 11. If we replace p by ¢ and 5 by ¢ we can apply Lemma 8 also to tr¢(a™b™Y) on
Xn it given by Lemma 7. For y # 0 mod ¢ the result is the same as for the representation p
of Z; =< b > on the intermediate covering Y, ¢+, (see Remark 4) and gives the well-known
eigenspace decomposition for this curve whose Jacobian has complex multiplication by Q((),
see [KR].

If we denote the representation 7 belonging to the surface X, ;, more precisely by ;. we
obtain the following

Theorem 4 The Belyi surfaces X, ¢, and Xy, 5. belong to the same Galois orbit if and only
if there is a o € GalQ/Q with the property

o(trinsan(g)) = trpsw(rg) forall g€ G and a fired 7€ AutG .

Proof. The comparison with Lemma 7 shows that any Galois conjugation ¢ with o(¢) =
¢*, kk = 1mod ¢, maps trip, s, to tribg, gt ke , so Galois conjugate surfaces (see Theorem 3)
lead to Galois conjugate traces. On the other hand, if we have Galois conjugate traces for the
triples (n,t,v) and (m,s,w), Lemma 8 implies the existence of some k € (Z/qZ)* with

knz ktz kvz mz 5z wz
-1+ (—)+ (—)+ (—) = -1+ {(—)+ (=)+ (—
e By (2 B+ (Eyr (L
for all z € (Z/qZ)*, and by [KR] this is possible only for equivalent triples. Then Theorem 3
says that the surfaces are Galois conjugate.

Remarks. 12. The "only if” part of Theorem 4 can be proved using no special property of
the surfaces X,,;,, just applying o to the curve, its differentials, its automorphisms etc. It
is therefore a general observation that the Galois orbit of the traces triy forms a new Galois
invariant at least for Belyi surfaces with many automorphisms. The same is true for the Galois
orbit of the totality of multipliers of the Elements of G in their fixed points. As part 6 of
Theorem 3 shows, they give a sharper distinction between Galois orbits than monodromy groups
and cartographic groups. It has to be worked out further how these invariants can be used for
ordinary hypermap groups of Belyi pairs not having many automorphisms, and in which other
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cases they could give not only necessary but also sufficient conditions for Galois conjugacy.
Another open problem can be formulated as follows: is it possible to get better Galois invariants

taking monodromy groups of p(B) for other Shabat polynomials p combined with the original
Belyi function B?

13. The idea given in Remark 11 and also Eichler’s trace formula work as well for differentials
of higher degree.

Theorem 5 The decomposition of the representation 1 into irreducible components is given by
the decomposition of its trace into the irreducible characters of G (see Lemma 1.6) as follows.

1. On X, we have
ty@:Z <_1+Z ?m)y )
7=1 wES

2. We consider the representation p introduced in Remark 4 as a component of 1 defined on
the (¢ — 1)/2-dimensional (G)—invariant subspace of H°(X,, ;,,Q) of differentials lifted
from Y, 4, . Then we have on X, ;,

_ =3~ .
trip = trp + TZ;%’
]:

mo =X (—14 ED+ )+ 2D )

k=1 q q 1

The proof can be given by the standard computation of multiplicities as inner products of traces
or by counting eigenvalues or directly as follows. If we always denote the inverse mod p (or ¢,
respectively) by the bar, we know by Lemma 7 and Lemma 8 that on X, for 2 € (Z/pZ)*

fr;b(‘“’:1+zl :i(_l"‘z -fUJZ)z.

wEeS weS

We can replace z by —wv;uz where u runs over S and wv;,j = 1,...,r, over a system of
representatives of (Z/pZ)*/S asin Lemma 1.6. With s :=wu € S we get

tri)(a ZZ( 1+ D wu%) e = ZJ: (( 1+ > (3 )Z “ﬁ“) .

j=1u€eS weES SES u€S

Replacing again s by w, the right side becomes

> (—1 + “’”@) 6i(a™) .

7 weS
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For a™b™Y instead of ¢™" this identity holds trivially since both sides vanish, and the check

that
i) = Lo-1)(g-2) = Y (—1+ ZU%) 65(1)

7 weES
easily follows from gr = p—1 and

p—1

wojy _ oy~ zy _pol
Sy = S =2t

7 weES r=1

For part 2, we first observe that on X, ; , the extension of p to (& satisfies
trp(a®d™Y) = tryp(a”7Y) , trp(a™") = ——

forall 2 € Z/pZ,y € (Z/qZ)*. Now, reformulate trp(a”b™Y) as tri(a™b™¥) in the X —case
above, replacing 7 by ¢ and )" ¢ by a sum with three terms. Finally use

Z ¢i(a™) = -1 forall z # 0 mod p
j=1

to get the decomposition given in the theorem.

Corollary 4 1. The Jacobian Jac X, is isogenous to A? where A denotes the Jacobian of the
Belyi surface Us,, , see Theorem 1.8. The endomorphism algebra Fndy A := Q &z End A
contains the fized field K C Q(n) of the group S C (Z/pZ)* = GalQ(n)/Q. We have
dimA=r(¢g—2)/2 and [K: Q] =r.

2. The Jacobian Jac X, ¢, splits up to isogeny into
JacY,, @ AT with A := Jac Uf;?t’v

and dim A =r(q—3)/2 for the surfaces U}, , considered in Theorem 3.5.

Proof. Every 9(G)-irreducible subspace of H%(X,, ) contains a b-invariant differential (more
precisely: 1 (b)-invariant), i.e. lifted from the quotient surface Z,\X, = Us,,. Moreover,
there is no a—invariant differential # 0 in H°(X,, Q), whence we have an embedding Q(n) C
Endg(Jac X;) . Let V. a subspace of a—eigendifferentials for the eigenvalue n*. Then, Z, =< b >
permutes the a—eigenspaces V., w € S. This indicates, taking the quotient of Jac X by the
induced action of 7, , that the Jacobian is isogenous to a pure power of an abelian variety with
K-action.

The situation for X, ¢, differs from that for X, in three points. First, there are Z,~invariant
differentials, i.e. those lifted from Y, ;, whose Jacobian is a factor of the big Jacobian, whence
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we have to decompose the cofactor only. Second, in the special case t = v we can decompose
A even further in A} where A; := JacV,”; — see Remark 8 — is of dimension (g —3)/4 and
contains a subfield K; C Q(n) of degree r/2 in its endomorphism algebra: take the quotient of
Xp,t,u by the subgroup Z, of G and the fixed field of the corresponding subgroup of Gal Q(n)/Q.

The third point is that there is still an embedding
K C EndgJacA or K; C EndgJac Ay

but it may have a different meaning than in the X —case: it is possible that e.g. A = A
and Ag has the trivial endomorphism algebra Q. For example, in the case ¢ = 5,p = 11
mentioned in Remark 8, K; = Q. In general, this trivial situation does in not occur for X
because triy is not rational, whence a splitting of the Jacobian into simple components with

trivial endomorphism algebra is excluded: EndgJac X cannot be isomorphic to a direct sum
of matrix algebras M, (Q).
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