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Abstract

Dessins d’enfants can be seen as bipartite graphs embedded in compact orientable
surfaces. According to Grothendieck and others, a dessin uniquely determines a
complex structure on the surface, even an algebraic structure as a projective algebraic
curve defined over a number field. Combinatorial properties of the dessin should
therefore determine the equations and also structural properties of the curve, such
as the field of moduli or the field of definition. However, apart from a few series of
examples, very few general results concerning such correspondences are known. As
a step in this direction, we present here a graph theoretic characterisation of certain
quasiplatonic curves defined over cyclotomic fields based on Wilson’s operations on
maps.
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1 The mathematical framework

For the last twenty years embeddings of graphs into surfaces have become important for
the theory of algebraic curves as an essential tool in the theory of dessins d’enfants. In
this first section we will briefly recall the necessary definitions and give an outline of the
problems and results presented in this paper.

One way to define dessins d’enfants on compact oriented 2-manifolds is to use the Walsh
representation of hypermaps. The Walsh map W (D) of a hypermap D is a connected bipar-
tite graph B embedded in a compact orientable surface, dividing it into simply connected
cells; in the language of hypermaps, the white and black vertices represent the hyperver-
tices and hyperedges of D, the edges represent incidences between them, and the cells
represent the hyperfaces.

Algebraic hypermaps are an alternative and equivalent way to describe dessins. These are
triples (G, x, y) consisting of a permutation group G ⊂ Sn (the monodromy or hypercar-
tographic group of the dessin), acting transitively on the n edges of the Walsh map W (D)
and generated by two elements x and y . The generators x and y describe the anticlockwise
cyclic permutations of the edges around their incident white and black vertices. We will
call D a dessin of type (p, q, r) if

p = ord x , q = ord y , ord xy = r .

Geometrically, p and q are the least common multiples of the valencies of the white and
black vertices of D ; the faces all have even valencies, and their lcm is 2r. We call D a map
of type (p, r) in the special case where all black vertices have valency q = 2 . Then we
can omit the black vertices, and transform B into an ordinary graph G: the vertices of G
are the white vertices of B, and its edges are formed from the pairs of edges of B incident
with a black vertex. Now y is a permutation reversing the direction of each dart (directed
edge) of G. In this case we call G the cartographic group of the algebraic map (G, x, y) .
From every Walsh hypermap D we can pass to a map MD by forgetting vertex colours
and introducing edge directions — the cartographic group will then be a subgroup of S2n

— and conversely we may consider every map as a hypermap, introducing black midpoints
of valency 2 on every edge and replacing the two directions with the two new parts of the
edge.

Dessins are linked to Riemann surfaces and algebraic curves in the following way. Rie-
mann surfaces X uniformised by subgroups Γ of finite index in triangle groups ∆ play a
special role as Bely̆ı surfaces, that is, surfaces having a (non–constant, meromorphic) Bely̆ı
function

β : X → P1(C)

ramified over at most three points in the Riemann sphere P1(C) , corresponding to the
covering map

β : Γ\H → ∆\H
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where H is the hyperbolic plane if ∆ is a Fuchsian triangle group. In the few cases where
∆ is a spherical or euclidean triangle group, H has to be replaced with the Riemann sphere
P1(C) or the Gauss plane C . As first observed by Bely̆ı [2], the existence of such a function
is equivalent to the property that X — as a smooth projective algebraic curve — can be
defined over a number field. Starting with Grothendieck’s theory of dessins d’enfants [9],
many interesting reformulations of Bely̆ı’s theorem have been found, see for instance [23],
[4], [14], the recent survey in [26], or the introduction in [16].

Every Bely̆ı function β induces a bipartite map on a Riemann surface X: if we normalise its
critical values to be 0, 1 and ∞ then V0 = β−1(0) and V1 = β−1(1) are the sets of white
and black vertices, and the connected components of the preimage of the real interval ]0, 1[
are the edges of the graph; the elements of V∞ = β−1(∞) are called the face centres since
there is one in each face of the map. Conversely, every bipartite map (equivalently, every
hypermap) on a compact orientable surface arises in this way from a unique holomorphic
structure and a unique Bely̆ı function on the surface. The entries of the triple (p, q, r)
giving the type of the resulting dessin divide the corresponding entries of the signature
〈p̄, q̄, r̄〉 of the triangle group mentioned above; for simplicity one may take ∆ = 〈p, q, r〉 ,
and we will always assume ∆ to be given in this way. In the special case where all zeros of
1 − β are of order 2 (a clean Bely̆ı function) we get a hypermap of type (p, 2, r) , hence a
map of type (p, r) . In the language of Bely̆ı functions the passage explained above from
Walsh hypermaps to maps is induced by replacing β with 4β(1 − β) .

A fundamental problem is that of relating the combinatorial properties of the hypermap
D to algebraic properties of the curve X, such as its moduli field, Galois orbit, defining
equations, etc. In general, this problem is very difficult, but it is a little easier if the dessin
has a large automorphism group; for the definition of this in terms of the monodromy group
see the proof of Lemma 2 below. More precisely, we will assume that the Bely̆ı function is
a regular covering, that is, β is the quotient map X → A\X by a group A of holomorphic
automorphisms of the Riemann surface X; this is equivalent to Γ being a normal subgroup
of the triangle group ∆, with A ∼= ∆/Γ, and also to the hypermap D being regular, that
is, having an automorphism group, isomorphic to A, acting transitively on the edges of the
Walsh map W (D). It then follows that X has genus

g = 1 +
|A|
2

(

1 − 1

p
− 1

q
− 1

r

)

.

Such surfaces X, known as quasiplatonic surfaces, have many interesting properties, see
for instance [26, Thm. 4]. In particular A can be identified with the Galois group of
the extension of function fields corresponding to β, and the Galois correspondence allows
information about A and its action on X to be translated into information about this
extension (see [16], [20], [21], [22], [16] and [5] for examples of this). All known examples
follow a common pattern, and in the present paper we will work out the mathematical
structure behind it: a correspondence between Galois actions on cyclotomic fields on the
one hand and Wilson’s map operations Hj on the other hand. These act on maps by
raising the generating monodromy rotation of edges around each vertex to its j-th power
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where j is coprime to the valencies of the vertices; we will generalise this to an operation
Hi,j which acts on hypermaps by raising the permutations x and y around the white and
black vertices to their i-th and j-th powers. After explaining these operations in the next
section, we will establish this correspondence in Section 3, Theorems 1 to 3. With slightly
simplified hypotheses and statements, their content can be summarised in the

Main Theorem A Galois invariant family {Dj} of regular dessins forming an orbit un-
der Wilson’s operations is defined over a cyclotomic field, and the Wilson operations are
equivalent to the Galois conjugations.
Conversely, let Dj run over a family of Galois conjugate regular dessins defined over a
cyclotomic field, and suppose that the Galois conjugations preserve adjacency between the
vertices of the dessins. Then the algebraic conjugations act as Wilson operations on the
dessins.

We apply these results to examples in Sections 4 and 5. Section 4 sheds new light on some
series of known Galois orbits of regular dessins, and in Section 5 we will consider regular
maps and hypermaps whose underlying graphs are complete graphs Kn (for their regular
embeddings see [1], [12] and [11]). In all these examples, Galois conjugation in some sense
imitates the effect of Wilson’s operations. However this is not a universal phenomenon,
and Section 6 contains a lemma about automorphism groups of graphs and maps which
allows us to show that Galois conjugation and Wilson’s operations act very differently
on the family of Macbeath–Hurwitz curves. At the end of Section 3, Proposition 3 gives
an indication how to treat those cases for which the correspondence between Wilson’s
operations and Galois conjugations no longer applies.

2 Wilson’s operations

Wilson’s operations Hj [24] can be defined as follows. Let M be a compact oriented map
of type (p, r) and let j be an integer; we will restrict our considerations to the case where
j is coprime to p . Each face of M is bounded by a closed path which, at each vertex,
proceeds from one edge to the next incident edge in the anticlockwise direction, so that the
path goes clockwise around the face. Thus M is uniquely determined by its underlying
graph G and by the anticlockwise cyclic rotation ρ of edges around each vertex. Instead,
consider paths in G which, at each vertex, proceed from one edge to the j-th incident edge
in the anticlockwise direction. Of course these paths are all closed, and they form the
boundaries of the faces of a new map HjM which is also compact and oriented: it has
the same underlying graph G as M but ρ has been replaced with ρj . Each such operation
depends only on the congruence class of j modulo p; since Hj ◦ Hk = Hjk for all j and k
coprime to p, these operations represent an action of the multiplicative group (Z/pZ)∗ of
units mod p. In particular, H−1 transforms a map into its mirror image, by reversing the
orientation. For further properties of these operations see [24] and [18].

We will apply this procedure to dessins D via the maps MD introduced above, forgetting
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the colours of the vertices. The generators x and y of the monodromy group G of D
represent the rotations of edges around the white and black vertices of W (D), so they
must be replaced with xj and yj where j is coprime to pq. Thus we have the following
lemma (see [18, Section 7]):

Lemma 1 Let D be a dessin of type (p, q, r) , presented as an algebraic hypermap (G, x, y)
with a permutation group G ⊂ Sn acting transitively on the n edges of D , generated by
the elements x and y of order p and q respectively such that xy has order r . Let j be an
integer coprime to pq . Then Wilson’s operation Hj transforms D into the dessin HjD with
algebraic hypermap (G, xj, yj) .

In the case where q = 2, so that the dessin D is in fact already a map, there may be
some confusion as to whether Hj should be applied directly to the map D as in the first
paragraph, raising x but not y to its jth power, or to the map MD as in the second
paragraph, raising both x and y to their jth powers. In fact there is no real problem: if j
is odd then yj = y, and if j is even (so that p is odd) then we can replace Hj with Hj+p,
again fixing y.

Note that in Lemma 1, although xj and yj have order p and q respectively, xjyj need not
have order r, so HjD will have type (p, q, r′) for some r′, possibly distinct from r. Thus
type and hence genus are not always preserved by Hj. This is illustrated by the following
examples (see also Examples 3 and 8).

Example 1 The modular group PSL2(Z) is generated by its elements ±
(

1 1
0 1

)

and ±
(

0 1
−1 0

)

,
so for each integer p ≥ 2 its quotient G = PSL2(Z/pZ) is generated by their images
x and y in G. Since x, y and xy have orders p, 2 and 3 this gives a regular algebraic
hypermap D = (G, x, y) of type (p, 2, 3), that is, a regular map of type (p, 3). Now
xjy = ±

(

j −1
1 0

)

has trace ±j, so by choosing suitable values of j we can change the conjugacy
class of this element; in many cases this also changes its order and hence changes the type
and genus of the map HjD. For instance if p = 5, so that D is the icosahedron with
G = PSL2(Z/5Z) ∼= A5, then x2y has order 5, so H2D has type (5, 5); it is, in fact, the
great dodecahedron, a regular map of genus 4 denoted by {5, 5/2} in [6]. Similarly, if p = 8
with G = PSL2(Z/8Z) of order 192 then x3y has order 6, so H3 converts a regular map
of type (8, 3) and genus 5 into one of type (8, 6) and genus 21. These last two maps are
4-sheeted unbranched coverings of a similar pair of maps of type (8, 3) and (8, 6): the first
is the map {3, 4 + 4} of genus 2, a double covering of the octahedron branched over its
vertices, with automorphism group

G = 〈x, y, z | x8 = y2 = z3 = xyz = [x4, z] = 1〉 ∼= GL2(F3)

(see [17]), while the second, its image under H3, has type (8, 6) and genus 6. (The authors
are grateful to Steve Wilson for this example.)

Example 2 The symmetric group Sn is generated by the n-cycle x = (1, 2, . . . , n) and
the transposition y = (1, 2), with xy an (n − 1)-cycle, so Sn is the monodromy group of
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a regular map M of type (n, n − 1). If j is coprime to n then xjy is the product of two
cycles of lengths k and n − k where jk ≡ 1 mod n and 1 ≤ k ≤ n; these lengths are
mutually coprime, so xjy has order k(n− k) and hence HjM has type (n, k(n− k)). Since
k(n− k) = k′(n− k′) if and only if k′ = k or n− k we thus obtain maps of φ(n)/2 different
types. This is the maximum number possible for any map M of valency n since HjM and
Hn−jM always have the same type.

If n is odd, so that x ∈ An, then the underlying graph of the map M is bipartite, with
white and black vertices corresponding to the cosets of 〈x〉 consisting of even and odd
permutations respectively. In this case M is the Walsh map of a regular hypermap D =
(An, x, xy) of type (n, n, (n− 1)/2) such that HjD has type (n, n, k(n− k)/2), so again we
obtain φ(n)/2 different types.

In view of examples like this, and to determine whether the hypotheses of Theorem 2 in
the next section are satisfied, we need a sufficient condition for D and HjD to have the
same type. A Frobenius group is a semidirect product G of a normal subgroup K (the
Frobenius kernel) by a subgroup H (the Frobenius complement) which acts fixed-point
freely by conjugation on K, i.e. such that no pair of non-identity elements of H and K
commute with each other. Equivalently, G is a transitive permutation group in which only
the identity element fixes more than one point: here H is the stabiliser of a point and K
consists of the identity and the elements without fixed points (see [10, §V.8] for details). A
useful example is the group AGL1(Fn) of affine transformations t 7→ at+b (a, b ∈ Fn, a 6= 0)
of a finite field Fn of order n, with K (isomorphic to the additive group of Fn) consisting
of the translations t 7→ t + b and H (the stabiliser of 0, isomorphic to the multiplicative
group F∗

n) consisting of the transformations t 7→ at, a 6= 0.

Lemma 2 Let G be a finite Frobenius group with a kernel K and a complement H. Then
two elements of G \ K are conjugate in G if and only if their images in H are conjugate
in H. In particular, all elements of a given coset Kg 6= K of K in G have the same order.

Proof. Each element g ∈ G has the unique form kh where k ∈ K and h ∈ H, so that
h is the image of g under the natural epimorphism G → G/K ∼= H. By applying this
epimorphism we see that conjugate elements of G have conjugate images in H, so each
conjugacy class of G is contained in a set KC where C is a conjugacy class of H. Since G
is a Frobenius group we have CG(h) = CH(h) for each non-identity h ∈ H, so if C is the
conjugacy class of h in H then the number of conjugates of h in G is

|G : CG(h)| = |G : CH(h)| = |G : H| · |H : CH(h)| = |K| · |C| = |KC| .

Thus KC is a single conjugacy class of G, so the first assertion is proved. The second
assertion follows immediately. 2

Corollary 1 Let D = (G, x, y) be a regular hypermap of type (p, q, r) for which the mon-
odromy group G is a Frobenius group with an abelian complement H and a kernel K not
containing xy. If j is coprime to pqr then HjD also has type (p, q, r).
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Proof. Since j is coprime to both p and q it is sufficient to show that xjyj has the same
order as xy, namely r. Since G/K is abelian, xjyj is in the same coset of K as (xy)j. Now
j is coprime to r, so (xy)j has order r and (xy)j 6∈ K since xy 6∈ K. The second part of
Lemma 2 therefore implies that xjyj has order r. 2

The following example shows that this result does not apply to all Frobenius groups.

Example 3 For each prime p ≡ ±1 mod 5 the group H := SL2(F5) is isomorphic to
a subgroup of SL2(Fp). The resulting action of H on K := Cp × Cp (regarded as a 2-
dimensional vector space over Fp) determines a semidirect product G of K by H, and
this is a Frobenius group with a nonabelian complement H [10, V.8.8(b)]. The generators
a =

(

1 0
1 1

)

and b =
(

1 1
0 1

)

of H have order 5, with ab and a2b2 of order 10 and 6 respectively.
Let S be the subgroup of G generated by x := a and y := kb for some non-identity element
k ∈ K. Since S maps onto H we have G = KS. If K ∩ S = 1 then S is a complement
for K in G; however, all such complements are conjugate (since K and H have coprime
orders, see [10, I.18.3]), and are therefore point-stabilisers, whereas x and y each fix a
single distinct fixed point, so K ∩ S > 1. Now K ∩ S is a normal subgroup of S, and S
acts irreducibly on K since H does, so K ∩ S = K. Thus S ≥ K, so S = KS = G and
hence x and y generate G. By Lemma 2 the resulting hypermap D = (G, x, y) has type
(5, 5, 10) whereas H2D has type (5, 5, 6).

The case where xy ∈ K is dealt with by the following slightly more general result:

Proposition 1 Let D = (G, x, y) be a regular hypermap of type (p, q, r) for which xy lies
in an abelian normal subgroup K of G. If j is coprime to pqr then HjD also has type
(p, q, r).

Proof. As in the proof of Corollary 1 it is sufficient to show that the order r′ of xjyj is
equal to the order r of the element w = xy. Now

xjyj = xj · wx · wx2 · . . . · wxj · x−j ,

which is conjugate (by xj−1) to the element v = w · wx · wx2 · . . . · wxj−1

, so v has order
r′. Since w and all its conjugates lie in K they commute with each other, so vr = 1 and
hence r′ divides r. If r′ < r then let L be the characteristic subgroup of K consisting
of its elements of order dividing r′, so w,wx, . . . , wxj−1 ∈ K \ L whereas v ∈ L. Now
wx·wx2 ·. . .·wxj−1 ·wxj

= vx ∈ L , so wxj ≡ w mod L and hence the elements w,wx, . . . , wxj−1

represent an orbit of length l dividing j in the action of 〈x〉 by conjugation on K/L. Since
j is coprime to the order p of x it follows that l = 1, so w ≡ wx ≡ · · · ≡ wxj−1

mod L.
Thus wj ≡ v mod L, so wj ∈ L, and since j is coprime to r it follows that w ∈ L, a
contradiction. Thus r′ = r, as required. 2

Sometimes the following more general version of Wilson’s operations is useful, as we shall
see later in Lemma 4, Theorem 5 and Examples 5, 7 and 10.

Definition. Let D be a dessin of type (p, q, r) and suppose that i is coprime to p , and j
is coprime to q . We define Hi,jD to be the dessin resulting from D by an application of
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the Hi procedure to the white vertices and of Hj to the black vertices. In other words, the
algebraic hypermap (G, x, y) is replaced with (G, xi, yj) .

(As in Wilson’s original definition, one could even define Hi,j for arbitrary integers i, j .)
The above definition induces an action of (Z/pZ)∗ × (Z/qZ)∗ on dessins with the same
monodromy group and embedded graph, commuting with the action of the usual Wilson
operations defined earlier. Namely, if k is coprime to pq , we have HkHi,j = Hi,jHk = Hki,kj

and Hk = Hk,k . Note that H1.−1 and H−1,1 act as Petrie operations, transposing faces and
Petrie polygons (closed zig-zag paths); they differ by a reversal of the orientation.

3 The main results

The next two Lemmas are certainly known to experts, but since they do not seem to be
formulated explicitly in the literature, we state them here and give a short proof.

Lemma 3 Let D be a regular dessin of type (p, q, r) , presented as an algebraic hypermap
(G, x, y) with a transitive permutation group G ⊂ Sn acting on the n edges of D , generated
by the elements x and y of order p and q respectively. Its monodromy group G and its
automorphism group A ⊂ Sn determine each other uniquely by

A = C(G) and G = C(A)

where C denotes the centraliser in Sn .

Proof. It is well known that, as a permutation group on the set E(D) of edges, A = C(G) ,
see e.g. [14]. This immediately implies that G ⊆ C(A) . Since the dessin D is regular, A
acts transitively on E(D). It follows that C(A), as a permutation group with a transitive
centraliser, must act without fixed points on the set of edges. It therefore contains at most
one element sending any given edge to another. However, its subgroup G always contains
such an element, so C(A) = G. 2

Remarks. 1) A regular dessin D does not necessarily lead to a regular map MD since the
cartographic group does not necessarily act transitively on the directed edges. In terms
of Bely̆ı functions the regularity of β as a covering map does not imply the regularity of
4β(1 − β) .
2) Since A = C(G) without the regularity assumption, and since G is not changed by
Wilson’s operation Hj (see Lemma 1), HjD has the same automorphism group as D for
any dessin D .

The automorphism group A of a regular dessin D of type (p, q, r) is generated by two
elements a0 and b0 of order p and q, called canonical generators, which respectively fix a
white vertex P0 and a neighbouring black vertex Q0 , each permuting their incident edges
by a cyclic shift to the anticlockwise next edge; by the regularity of D, all such pairs P0, Q0
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are equivalent under A, so a0 and b0 are unique up to conjugacy. Their product a0b0, which
has order r, describes a clockwise rotation of the face of D on the left-hand side of the edge
from P0 to Q0 (or of all such faces if there are multiple edges).

Lemma 4 Let ∆ = 〈p, q, r〉 = 〈γ0, γ1, γ∞ | γp
0 = γq

1 = γr
∞ = 1 = γ0γ1γ∞〉 be a triangle

group in its usual representation, and D the regular dessin defined by the Bely̆ı function

β : Γ\H → ∆\H

where Γ denotes the kernel of the canonical epimorphism

h : ∆ → A = AutD ∼= ∆/Γ , h(γ0) = a0 , h(γ1) = b0 .

Suppose that i, j are coprime to pq. Let ai
0b

j
0 have order r′ in A, let ∆′ = 〈p, q, r′〉 =

〈δ0, δ1, δ∞ | δp
0 = δq

1 = δr′

∞ = 1 = δ0δ1δ∞〉 and let h′ : ∆′ → A be the epimorphism defined
by

h′(δ0) := ai
0 and h′(δ1) := bj

0

with kernel Γ′ . Then Hi,jD is the dessin corresponding to the Bely̆ı function

β′ : Γ′\H → ∆′\H .

(For the few signatures not defining Fuchsian triangle groups, H has to be replaced with
the Riemann sphere or the Gauss plane.)

(To apply Lemma 4 to the original Wilson operation, recall that Hj = Hj,j .

Proof. Let D′ denote the dessin corresponding to β′. Since D and D′ are both regular,
with automorphism group A, their edge-sets E(D) and E(D′) are both permuted regularly
by A. We can therefore identify E(D) with E(D′) so that A induces the same permutation
group on both edge-sets. By Lemma 2, the monodromy groups of D and D′ coincide, so
these dessins differ only in the local cyclic ordering of edges around the white and black
vertices. The edges of each dessin can be identified with the elements of A, so that in D
these cyclic orderings are given by right multiplication by the images a0 and b0 of γ0 and
γ1, while in D′ they are given by the images aj

0 and bj
0 of δ0 and δ1. It immediately follows

from Lemma 1 that D′ ∼= HjD . 2

Lemma 5 Let D be a dessin with an automorphism group A, and let σ ∈ GalQ/Q . Then
the conjugate dessin Dσ has an automorphism group Aσ ∼= A, and the mapping P 7→ P σ

induces isomorphisms between the actions of A on the sets V0, V1 and V∞ of white and
black vertices and face centres P of D and the actions of Aσ on the corresponding sets of
points P σ of Dσ.

Proof. The automorphisms of D are also automorphisms of the corresponding curve X,
and are thus birational transformations of X. Like X they are defined over Q, so σ may
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be applied to them through their coefficients. They are in fact the automorphisms of
X serving as covering transformations of the Bely̆ı function β corresponding to D, so σ
induces a bijection between the automorphism groups A and Aσ of D and Dσ. If a, b ∈ A
then the coefficients of ab are rational functions of those of a and b, so (ab)σ = aσbσ and
this bijection is an isomorphism.

The white vertices, black vertices and face centres of D are the points P ∈ X such that
β(P ) = 0, 1 or ∞. Since β is defined over Q these are all Q-rational points of X, so they
are sent bijectively by σ to the white vertices, black vertices and face centres P σ of Dσ. The
second assertion now follows from the fact that a(P ) = Q if and only if aσ(P σ) = Qσ . 2

Remark. Although Galois conjugation acts in this natural way on the vertices and face
centres of a dessin, it does not do so on the edges. The first difficulty is that edges are
defined topologically, not algebraically, as connected sets covering the open unit interval
]0, 1[, and even if one restricts attention to Q-rational points of X, a point P on an edge
of D may be sent to a point P σ not on an edge of Dσ since an algebraic number which is
in ]0, 1[ may be conjugate to one which is not. Of course, edge-points which cover rational
elements of ]0, 1[ will be sent to edge-points, but two such points on the same edge may
be sent to points on different edges. A second related difficulty is that if P and Q are
adjacent vertices of D then the vertices P σ and Qσ of Dσ need not be adjacent: indeed it
is this possibility which allows Galois conjugate dessins to have mutually non-isomorphic
embedded graphs (see Example 8 and Corollary 2, for instance).

In order to avoid these difficulties we will work under additional hypotheses, e.g. that the
Galois conjugation σ is adjacency preserving on D , i.e. that there is a white vertex P0

and an adjacent black vertex Q0 of D such that P σ
0 and Qσ

0 are neighbours in the Galois
conjugate dessin Dσ . By Lemma 5 and the transitivity of the action of the automorphism
group A on V0 and V1 in the case of regular dessins we have

Lemma 6 Let D be a regular dessin with automorphism group A and σ an adjacency
preserving Galois conjugation. Then for all adjacent pairs P,Q of white and black vertices
in D , their σ–images P σ, Qσ in Dσ are also adjacent. 2

Under the hypothesis that σ is adjacency preserving we can extend its action to the edges
of D in a way which is compatible with the action of A .

Lemma 7 Let C and C′ denote the underlying graphs of a regular dessin D and its Galois
conjugate Dσ . If σ preserves adjacency on D then there is a graph isomorphism f : C → C′

such that

1. f coincides with σ on the vertices, and

2. f ◦ a = aσ ◦ f for all automorphisms a ∈ A .

10



Proof. If there is only one edge joining the neighbouring vertices P0, Q0 in D , then
the same is true for their σ-images in Dσ , because the existence of multiple edges can
be characterised by the existence of a nontrivial subgroup of A fixing both points, and
because this property is σ-invariant (see the last line of the proof of Lemma 5, with P = Q
first a white and then a black vertex). If we exclude this possibility, edges correspond
bijectively to adjacent pairs of vertices, so there is an obvious and canonical choice for f .
If on the other hand there are several edges joining adjacent vertices, the definition of f
is still determined canonically on the vertices by property 1, but no longer on the edge
set. In this case take an arbitrary edge e0 between P0 and Q0 , say, and define f(e0) to
be an edge between P σ

0 and Qσ
0 . Since each other edge in D can be written as a(e0) for a

unique a ∈ A , property 2 determines f in a unique way. It is easy to see that incidence is
preserved, so we have a graph isomorphism. 2

This graph isomorphism f is in general not a dessin isomorphism since it need not preserve
the local ordering of the edges around the vertices. To study its behaviour around the
vertices, we consider a canonical pair of generators a0 and b0, fixing a white vertex P0 and
a neighbouring black vertex Q0 . Since A can also be regarded as a group of automorphisms
of X , the action of a0 (resp. b0 ) locally around P0 (resp. Q0 ) can be written in suitable
local coordinates as a rotation

z 7→ ζpz around z(P0) = 0 with ζp := e2πi/p

(resp. z 7→ ζqz around z(Q0) = 0 ). More generally, if P is any white vertex of D fixed
by a ∈ A (the stabiliser in A is always cyclic of order p ), then a acts locally around P as
multiplication, the only difference being that the multiplier ζp must now be replaced with

a power ζ
k(a,P )
p for some residue class k(a, P ) mod p . Similarly, any b ∈ A fixing a black

vertex Q acts locally like z 7→ ζ
l(b,Q)
q z for some residue class l(b,Q) mod q . Observe that

conjugation does not change multipliers: for all g ∈ A we have

k(gag−1, gP ) = k(a, P ) and l(gbg−1, gQ) = l(b,Q) . (1)

As shown in Lemma 5, the automorphisms of X are birational morphisms defined over Q,
and their fixed points are Q-rational points of X . In the following we will in fact identify
A with Aσ by using the isomorphism A → Aσ, a 7→ aσ described in Lemma 5. The
multipliers at these points satisfy

ζk(a,P σ)
p = σ(ζk(a,P )

p ) , (2)

see [22, Lemma 4] and [5, Lemma 1], and the multipliers ζ
l(b,Q)
q at the black vertex fixed

points behave in the same way under Galois conjugation. Since σ(ζm) = ζs
m for some

s ∈ (Z/mZ)∗, we can describe the effect of Galois conjugation on the multipliers by taking
s-th powers, i.e. by writing k(a, P σ) ≡ sk(a, P ) mod m and l(b,Qσ) ≡ sl(b,Q) mod m .
Recall that under the hypotheses of Lemmas 6 and 7 we have P σ = f(P ) and Qσ = f(Q) .

For some applications — see the remarks after Theorem 4 and Example 9, for instance —
it is useful to generalise the condition of adjacency preserving as follows.

11



Definition. Let A be the automorphism group of a regular dessin D. For each σ in the
absolute Galois group GalQ/Q we can identify A and Aσ in the obvious way, so that A
is regarded as the automorphism group of Dσ. We call D and Dσ equivariant for A if
there is a colour-preserving isomorphism f : C → C′ of the underlying graphs of D and
Dσ commuting with the actions of A and changing the multipliers in a uniform way. More
precisely we require that

1. f ◦ a = a ◦ f for all automorphisms a ∈ A , and

2. there is an integer s coprime to the least common multiple m of p and q such that
k(a, f(P )) ≡ sk(a, P ) mod m for all a ∈ A and all fixed points P of a .

We then call f an A-equivariant graph isomorphism. We say that D is Galois compatible
if D and Dσ are equivariant for A for each σ ∈ GalQ/Q .

Lemmas 6 and 7 and equation (2) immediately imply the following:

Proposition 2 If D is a regular dessin with automorphism group A, and the Galois con-
jugation σ : D → Dσ is adjacency preserving, then D and Dσ are equivariant for A. 2

Theorem 1 Let X be a quasiplatonic surface with a regular dessin D of type (p, q, r) . As
a smooth projective algebraic curve, let X be defined over a subfield of the cyclotomic field
Q(ζm), ζm := exp(2πi/m) , where m is the least common multiple of p and q . Let σ ∈
GalQ(ζm)/Q , so that σ(ζm) = ζs

m for some s coprime to m. If there is an A-equivariant
graph isomorphism f between the graphs underlying D and Dσ , where A = AutD , then
the Galois conjugate dessin Dσ results from D by an application of Wilson’s operation Hj

where js ≡ 1 mod m , so Dσ ∼= HjD .

Proof. We will use the terminology and the results of Lemmas 4 to 7, in particular the
isomorphism f : C → C′ between the graphs underlying D and Dσ, and the generation of
the automorphism group A = AutD by a0 and b0 as described above.

The dessin D is uniquely determined by C and the anticlockwise cyclic rotations of edges
around its vertices. The rotation around P0 is given by (e0, a0e0, a

2
0e0, . . . , a

p−1
0 e0) where e0

is an edge incident with P0, and since D is regular, the rotation around any white vertex
P is given by applying successive powers of an automorphism a fixing P and conjugate
in A to a0. Similarly the rotation around a black vertex Q is given by successive powers
of an automorphism b fixing Q and conjugate to b0. Identifying via f we can regard the
dessin Dσ as having the same graph C as D, but possibly with a different local ordering
of the edges around the vertices, corresponding to different generating rotations a and b
of A fixing them. Now a0 acts on Dσ by fixing f(P0) (which we have identified with P0),
and by the definition of A–equivariance it acts locally around this vertex as multiplication
by ζs

p . Thus if we were to choose a conjugate to a0 , the resulting cyclic order of edges of
Dσ around each white vertex P would be given locally by multiplication by ζs

p . Instead,
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in order to obtain the correct anticlockwise cyclic order of edges around P we need to
multiply by ζp, so we must choose a conjugate to aj

0 where js ≡ 1 mod m . Of course,
the same idea applies to the black vertices, with b conjugate to bj

0. By Lemma 4, this is
equivalent to replacing D with HjD . 2

Remark. If C′ 6∼= C, we cannot have Dσ ∼= HjD for any j since HjD has the same embedded
graph C as D, whereas Dσ has C′ as its embedded graph. See Example 8 and Corollary 2
below.

Theorem 2 Let Xj, j ∈ (Z/mZ)∗ , denote a family of quasiplatonic surfaces of type
(p, q, r) where m denotes the least common multiple of p and q , with regular dessins
Dj := HjD1 forming an orbit under Wilson’s map operations Hj and corresponding to
Bely̆ı functions βj on Xj . Suppose that the family of pairs {(Xj, βj), j ∈ (Z/mZ)∗} is
invariant under the action of the absolute Galois group GalQ/Q . Then, as smooth pro-
jective algebraic curves, the curves Xj and their Bely̆ı functions βj can be defined over a
subfield K of the cyclotomic field Q(ζm) , and they form a single orbit under the action of
the absolute Galois group. Here, K is the fixed field of the subgroup

H := {j ∈ (Z/mZ)∗ | HjD1
∼= D1},

where we identify (Z/mZ)∗ with the Galois group GalQ(ζm)/Q .

Proof. Suppose that σ ∈ GalQ/Q is a Galois conjugation with Xσ
1
∼= Xj , Dσ

1
∼= Dj .

Equation (1) also applies in this case to all multipliers. Therefore, if a ∈ A generates the
stabiliser of the white vertex P of D1, with multiplier ζp , it fixes P σ with multiplier σ(ζp) .
By definition of Hj — see Lemma 1 — aj has the correct multiplier ζp as a generator
of the stabiliser P σ , so σ(ζj

p) = ζp . The situation is completely analogous for the black
vertices, so for all σ fixing the cyclotomic field Q(ζm) elementwise we have Dσ

1
∼= D1

and hence Xσ
1
∼= X1 . This is moreover the case for each σ whose restriction to Q(ζm)

belongs to H . This means that the moduli field of (X1, β1) is contained in the cyclotomic
field K ⊆ Q(ζm) corresponding to H, and by [3] (see also [7], [25, Remark 4] or [26,
Theorem 5]), X1 and β1 can be defined over this moduli field. On the other hand, any
σ ∈ GalQ(ζm)/Q with σ(ζm) = ζs

m sends D1 to a Galois conjugate dessin Dσ
1 which, by

hypothesis, belongs to the family {Dj} . The behaviour at the fixed vertices again shows
that j must satisfy sj ≡ 1 mod m . 2

Remarks. 1. Since HiHj = HjHi for all i and j , we can use any Di instead of D1 in the
definition of H.
2. Since we are considering isomorphisms of dessins, and not just curves, K is in fact
the minimal field of definition of a Bely̆ı pair (Xj, βj) where βj is the Bely̆ı function
corresponding to Dj . It may happen that the moduli field (minimal field of definition) of
Xj is smaller, see [21, Remark 1], if there are isomorphisms Xj

∼= Xk not compatible with
the corresponding Bely̆ı functions.
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If we consider the white and the black vertices separately in the proof of Theorem 2, we
get an obvious extension to Wilson’s generalised operations Hi,j introduced at the end of
Section 2.

Theorem 3 Let Xi,j, with (i, j) running over a subset S ⊆ (Z/pZ)∗ × (Z/qZ)∗ , denote
a family of quasiplatonic surfaces of type (p, q, r) . Let m denote the least common multiple
of p and q , and suppose that S admits an action of (Z/mZ)∗ , i.e. whenever S contains
(i, j) it also contains (ki, kj) for all k ∈ (Z/mZ)∗ . Suppose that these curves Xi,j are
equipped with regular dessins Di,j := Hi,jD1,1 forming an orbit under Wilson’s generalised
operations Hi,j and corresponding to Bely̆ı functions βi,j on Xi,j . Suppose that the family
of pairs {(Xi,j, βi,j), (i, j) ∈ S} is invariant under the action of the absolute Galois group
GalQ/Q . Then, as smooth projective algebraic curves, the curves Xi,j and their Bely̆ı
functions βi,j can be defined over a subfield K(i, j) of the cyclotomic field Q(ζm) . The
orbits of the absolute Galois group consist of the dessins

Hki,kjD1,1 = Hk ◦ Hi,jD1,1 , k ∈ (Z/mZ)∗ ,

and the minimal field of definition of the Bely̆ı pair (Xi,j, βi,j) is the fixed field K(i, j) ⊆
Q(ζm) of all k ∈ (Z/mZ)∗ with the property that Di,j

∼= Dki,kj .

Proof. By the same multiplier arguments as in the proof of Theorem 2, all the dessins Di,j

in question are invariant under GalQ/Q(ζm) , and algebraic conjugations within Q(ζm)
act like Wilson’s operations Hk . 2

4 Known Galois orbits

We will examine the next example in some detail, in order to illustrate the general principles
underlying the preceding theorems.

Example 4 Suppose that p is a prime and q an integer > 2 dividing p − 1 , and let A
be the semidirect product of a cyclic normal subgroup 〈a〉 of order p by a cyclic subgroup
〈b〉 of order q acting on 〈a〉 by b−1ab = au , where the integer u represents a fixed residue
class of order q in (Z/pZ)∗ (the isomorphism class of A is independent of the choice of this
class). Along the lines of [21, Sections 2 and 3] one can prove that there are precisely φ(q)
non-isomorphic regular dessins D(s), s ∈ (Z/qZ)∗ , of type (p, q, q) with automorphism
group A, determined by the generators h(γ0) = a0 = a , h(γ1) = b0 = bs. (In [21] more
restrictive assumptions on p and q were made which are not necessary for the present
paper, see e.g. [21, Remark 2].) These dessins D(s) are all cyclic coverings of a common
quotient M = D(s)/〈a〉 , a genus 0 dessin with one white vertex of valency q at x = 0
and q black vertices of valency 1 at x = ζj

q , j mod q , corresponding to the Bely̆ı function
xq . Each D(s) is ramified of order p at all the black vertices of M, so that the embedded
graph of D(s) is the complete bipartite graph Kp,q .

14



We use this example first for an application of Theorem 2. Since type and automorphism
group are Galois invariants, these dessins form a Galois invariant family. Then we can
modify the homomorphism h without changing the kernel by defining

h(γ0) = a0 = as , h(γ1) = b0 = bs

for any s prime to pq (the dessin still depends only on s mod q and one may assume that
s ≡ 1 mod p ), so by Lemma 4 we have D(s) = HsD(1) . Hence Theorem 2 implies that
the resulting Bely̆ı pairs are all defined over Q(ζq) and form a single Galois orbit, see [21,
Thm 1]. Specifically, an affine model of the curve Xs corresponding to D(s) is given by

yp =

q
∏

j=1

(x − ζsj
q )uj

where ζq = exp(2πi/q) and ss ≡ 1 mod q .

Conversely we can use this field of definition and the common graph to see that these Galois
conjugate dessins result from each other by Wilson’s operations Hs : since the graphs are
complete, all Galois conjugations are clearly adjacency preserving, so Theorem 1 applies.

For completeness we consider the behaviour of the generating automorphisms around the
fixed points. We may take y as local variable near the q white vertices Pi = (ζ i

q, 0) , and x
near the p black vertices Qj = (0, ζj

p) . As rational maps, the generating automorphisms
are given by

a : (x, y) 7→ (x, ζpy) , b : (x, y) 7→ (ζs
qx, ζu

p yu(x − 1)(1−uq)/p)

where we define u by uu ≡ 1 mod p. One can check the relation ab = bau and verify that
as and bs have the correct multipliers (recall that s ≡ 1 mod p ).

Example 5 Now we consider the same group A as in Example 4 under the more restrictive
assumptions that p and q are both primes > 3 with p ≡ 1 mod q and q 6= 7 . The group
A also occurs in [21, Cor. 1] as the automorphism group of (q − 1)(q − 2) regular dessins
D(n, t) of type (q, q, q) for all n, t ∈ (Z/qZ)∗ with n + t 6≡ 0 mod q , in this case with
h(γ0) := bn , h(γ1) := abt . We can replace these generators with

a0 = bn , b0 = (ab)t

by composing h with an automorphism of A , see [21, Lemma 3]. With these generators,
Lemma 4 applies and shows that for Wilson’s generalised operations Hn,tD(1, 1) = D(n, t)
for all n, t coprime to q with n+t 6≡ 0 mod q . It is shown in [21, Thm 3] that these dessins
are all defined over Q(ζq) , and that for fixed n and t the dessins D(kn, kt), k ∈ (Z/qZ)∗ ,
form a single Galois orbit. With S := {(n, t) ∈ ((Z/qZ)∗)2 | n + t 6≡ 0 mod q} this
is now a direct application of Theorem 3 since Galois conjugation leaves invariant the
automorphism group and ramification properties. Thus these dessins D(n, t) in fact form
a Galois invariant family.
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On the other hand, knowing that the corresponding Bely̆ı pairs are defined over Q(ζq)
we can also apply Theorem 1 to them — provided, for instance, we can show that Galois
conjugation is adjacency preserving on the dessins D(n, t) . To do so, we remark that these
dessins all have the same graph: if we label the white and black vertices with Fp so that
A acts as a subgroup of AGL1(Fp), then Pi is joined to Qj if and only if j − i is in a
specific coset of 〈u〉 depending on u. (For a given p and q, all such graphs are isomorphic,
so the choice of a generator u is unimportant.) In particular, a generates translations on
the sets of white and black vertices (without fixed points), and the elements b and ab have
precisely one fixed point each on the respective sets of white and black vertices. If we think
of Galois conjugations as identifying the automorphism group and preserving the labelling
of the vertices, then neighbouring vertices Pi and Qj (as the unique white and black fixed
points of b and ab ) must remain neighbouring fixed points under the Galois action because
j − i remains invariant. Thus Proposition 2 and Theorem 1 apply, showing that Galois
conjugacy implies Wilson conjugacy.

More generally, if we apply Hi,j, replacing a0 and b0 with ai
0 and bj

0 for arbitrary i and j
coprime to q, then we obtain all (q − 1)(q − 2) dessins of this type (q, q, q) , together with
q − 1 dessins of type (q, q, p) where n + t ≡ 0 mod q; these are the duals of the dessins in
Example 4, interchanging white vertices and face centres.

Example 6 Let n = pe be an odd prime power, and M a regular dessin based on an
embedding of the complete bipartite graph B = Kn,n such that the map, and not just the
hypermap, is regular. These dessins have been classified in [13]: they are of type (n, n, n)
with automorphism group (of the hypermap)

Gf := 〈g, h | gn = hn = 1 , hg = h1+pf 〉 ( f ∈ {1, . . . , e} ) . (3)

Their isomorphism classes are M(f ; u) where u ∈ (Z/pe−fZ)∗ , the different dessins being
distinguished by the choice of a pair of generators a0 = gu , b0 = (gh)u , see [13, Thm 1]
and [16, Lemma 1]: here one has to take a representative u mod n , but the isomorphism
class of the dessin depends only on the residue class u mod pe−f . It follows from Lemma 4
(see also [13]) that for each fixed f the maps M(f ; u) form a single orbit under Wilson’s
operations, with HjM(f ; u) ∼= M(f ; ju) for all j coprime to p; Theorems 1 and 2 of [16]
show that they correspond to Bely̆ı pairs defined over Q(ζpe−f ) , and that they form a
single Galois orbit. Since all graphs are complete bipartite, adjacency is preserved under
Galois conjugation, so these results again illustrate Theorems 1 and 2.

Example 7 Once again consider a regular embedding of Kn,n , n = pe an odd prime
power, but now regular only as a hypermap (i.e. with an edge-transitive automorphism
group which is not necessarily transitive on directed edges). We again get hypermaps
of type (n, n, n) with automorphism group Gf as in (3), but now many more pairs of
generators are allowed. Up to a permutation of the three generators of ∆ = 〈n, n, n〉
(i.e. exchange of black vertices, white vertices and face centres) we can take them to be

a0 = gu , b0 = (gh)v , u, v ∈ (Z/nZ)∗ .
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As before, the isomorphism classes of dessins M(f ; u, v) depend only on u, v mod pe−f ,
and by Lemma 4 we again have

M(f ; iu, jv) ∼= Hi,jM(f ; u, v) for all i, j coprime to p .

This series of dessins is also Galois invariant because they are — up to the permutations of
the generators mentioned above — the only ones sharing regularity, type and automorphism
group Gf . Therefore Theorem 3 applies and shows that the family M(f ; u, v) splits into
Galois orbits M(f ; ku, kv), k ∈ (Z/nZ)∗ . Theorem 2 applies to these orbits. For more
detailed information, in particular the fields of definition of the underlying curves and their
equations, see [5]. Since all graphs are again complete bipartite, adjacency is also preserved
in these cases.

Example 8 The preceding examples may give the impression that dessins which are Galois
conjugate are always equivalent under Wilson’s operations. The following example shows
that this is not always the case.

A curve X of genus g > 1 is a Hurwitz curve if |Aut X| attains Hurwitz’s upper bound of
84(g−1). This is equivalent to X being uniformised by a normal subgroup Γ of finite index
|∆ : Γ| > 1 in the triangle group ∆ of signature (7, 2, 3), so such surfaces are quasiplatonic
and correspond to regular dessins of type (7, 2, 3), that is, regular maps of type (7, 3).

Macbeath [Macb] showed that for each prime p ≡ ±1 mod 7 there are three Hurwitz
curves, known as Macbeath–Hurwitz curves, with an automorphism group PSL2(Fp) . As
shown in [20] they form a family of three Galois conjugate curves, defined over the cubic
field Q(cos 2π

7
) ⊂ Q(ζ7) . In the generating triples (x, y, z) for the corresponding dessins

the elements x lie in the three conjugacy classes of elements of order 7 in PSL2(Fp) ,
distinguished from each other by their traces. In fact, not only are these three curves and
their corresponding dessins mutually non-isomorphic, but so are their underlying graphs,
as shown in the Appendix.

There is another reason as well showing that Galois conjugations and Wilson’s operations
do not coincide on Macbeath–Hurwitz curves: Wilson’s operations may change the valen-
cies of the faces of the maps. The case p = 13 is simple and instructive. The elements
of order 7 in PSL2(F13) consist of the three classes C(t) of elements with traces t = ±3,
±6 and ±5, permuted in that cyclic order by squaring. The corresponding dessins D(t)
are distinguished from each other by the order of the commutator c = [x, y] = x−1y−1xy ,
which is respectively 7, 6 or 13, so that the Petrie polygons in these maps have lengths
14, 12 or 26. (This example shows that Petrie length, unlike various other combinatorial
parameters such as valencies of vertices and faces, is not a Galois invariant.) We can apply
Wilson’s operation H2 to each map D(t), replacing x with x′ = x2 but using the same y,
or equivalently we can apply H9 to the Walsh map, sending x to x9 = x2 and y to y9 = y,
so that z = (xy)−1 is replaced with z′ = (x2y)−1 = yx5. In all three cases z′ has order 7
rather than 3, so we get three non-isomorphic regular maps H2D(t) of type (7, 7), with x′

and z′ in classes C(6) and C(3), C(5) and C(6), and C(3) and C(5) respectively. However,
if we apply the inverse operation H4 to each D(t) we get maps H4D(t) of three different

17



types, namely type (7, 7) with x′, z′ ∈ C(5), type (7, 6) with x′ ∈ C(3), and type (7, 13)
with x′ ∈ C(6).

The situation is similar for the next possible prime p = 29. In this case the elements of
order 7 have traces ±3, ±7 and ±11, and are permuted by squaring in this cyclic order.
The commutator c = [x, y] has trace ±8, ±10 and ±4 respectively, so that its order is
15, 14 and 15 giving Petrie lengths 30, 28 and 30. This distinguishes the second map from
the first and third, and for a combinatorial distinction between these two we can consider
the element x4yx2y, representing a generalised Petrie path turning alternately fourth and
second right: in these two cases it has order 29 and 14 respectively, giving path-lengths
58 and 28. Applying H2 to any of these three maps gives a map of type (7, 7), with z′

conjugate to x, whereas applying H4 gives maps of types (7, 15), (7, 14) and (7, 15), with z′

conjugate to c in all cases. Once again we have a Galois orbit which is not an orbit under
Wilson’s operations.

To conclude this section, we recall the common ideas behind the earlier papers which
considered the Galois actions on the families of dessins in Examples 4 to 8. It is unclear
whether this method has a common graph–theoretic interpretation, but its advantage is the
possible application to additional examples such as the Macbeath–Hurwitz curves, where
no graph isomorphism is available.

Definition. Let D be a regular dessin of type (p, q, r) , and let its automorphism group
A have canonical generators a0 and b0. Suppose that for each i ∈ (Z/pZ)∗ , a0 fixes li
white vertices of D with multiplier ζ i

p , that for each j ∈ (Z/qZ)∗ , b0 fixes mj black
vertices with multiplier ζj

q , and that for each k ∈ (Z/rZ)∗ , a0b0 fixes nk face centres
with multiplier ζk

r . The sets of all such pairs

(i, li) ∈ (Z/pZ)∗ × N0 , (j,mj) ∈ (Z/qZ)∗ × N0 , (k, nk) ∈ (Z/rZ)∗ × N0 ,

which are independent of the choice of a0, b0 by the conjugacy of canonical generating pairs,
are called the multiplier data for D.

Using formula (2) again one can easily see how the absolute Galois group induces an action
on the multiplier data: each σ acts on roots of unity ζ of orders p, q and r as σ(ζ) = ζs

for some s coprime to pqr, so that the multiplier data for Dσ are obtained from those for
D by replacing the above sets of pairs with the sets of pairs (si, li) , (sj,mj) and (sk, nk) .

Proposition 3 Let A be a finite group, and let F be the family of all regular dessins D
of type (p, q, r) with automorphism group A . Suppose that there is a bijection between
F and the multiplier data for its dessins D . Then these dessins are all defined over the
cyclotomic field Q(ζp, ζq, ζr) , and the orbits of the absolute Galois group on F are in
one-to-one correspondence with its orbits on the multiplier data.

Proof. As in the proof of Theorem 2, the type and automorphism group of a dessin are
Galois invariants, so F is a Galois invariant family. If σ fixes Q(ζp, ζq, ζr) elementwise,
it fixes all the multiplier data. Since the dessins in F are uniquely determined by their
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multiplier data, they are invariant under those σ and are therefore defined over a subfield of
Q(ζp, ζq, ζr) . The precise field of moduli of a dessin, equal to its minimal field of definition,
is determined by its Galois orbit, and hence by the corresponding Galois orbit on the
multiplier data. 2

5 Regular dessins based on complete graphs

By work of Lynne James and the first author of the present paper [12] it is known that
there are regular maps whose underlying graph is the complete graph Kn if and only if n
is a prime power pe . The regular embeddings of Kn were previously constructed by Biggs
[1] in the following way. Label the vertices with the elements of the finite field Fn , choose
a generator u of the cyclic multiplicative group F∗

n , and join each vertex v ∈ Fn by an
edge to each of the other vertices in the anticlockwise cyclic order

v + 1 , v + u , v + u2 , . . . , v + un−2

around v . This ordering defines a regular map M(n, u) . Considered as a hypermap it is
of type (n − 1, 2, r) with

r =
1

2
(n − 1) for 3 < n ≡ 3 mod 4 and r = n − 1 otherwise

on a Riemann surface X(n, u) of genus (n2 − 7n + 4)/4 if n ≡ 3 mod 4 and
(n−1)(n−4)/4 for all other n > 3 [12, p. 362]. The automorphism group of M(n, u) is the
affine group AGL1(Fn) , acting naturally on the vertices. Two such dessins M(n, u) and
M(n, u′) are isomorphic if and only if u and u′ belong to the same orbit under the action of
the Galois group GalFn/Fp [12, Thm B]. Since this group is cyclic of order e , generated
by the Frobenius automorphism u 7→ up , there are φ(n − 1)/e maps M(n, u) up to
isomorphism. It is clear from the construction of these maps that HjM(n, u) = M(n, uj)
for all j coprime to n−1 [12, p. 362], thus illustrating Corollary 1 and also showing that for
fixed n they are all equivalent under Wilson’s operations. Theorem 2 implies the following

Theorem 4 Let n be a prime power pe and let {M(n, u) | u ∈ (Z/(n − 1)Z)∗} be the
family of regular maps resulting from all regular embeddings of the complete graph Kn

into orientable surfaces X(n, u) , equipped with the structure of smooth complex projective
algebraic curves over number fields and with the regular Bely̆ı functions βu corresponding
to the dessins M(n, u) . Then these Bely̆ı pairs (X(n, u), βu) form a single Galois orbit.
Their minimal field of definition is the splitting field K of the prime p in the cyclotomic
field extension Q(ζn−1)/Q .

Proof. Since regularity is a Galois invariant [15] and since by [12] we have a complete
list of regular maps based on Kn , our family is Galois invariant, so Theorem 2 applies:
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Wilson’s operation Hj replaces u with uj in the above definition of the cyclic order around
the vertices.
The only remaining point is to determine the field of definition K . By Theorem 2 and [12]
again, K is the fixed field of the subgroup

H = { pk mod n − 1 | k = 1, . . . , e } ⊆ (Z/(n − 1)Z)∗ ∼= GalQ(ζn−1)/Q

inducing all residue class Galois groups for all prime ideals extending p (unramified in
Q(ζn−1) since p is coprime to n − 1 ). Therefore K is the splitting field of p , i.e. the
maximal subextension of Q(ζn−1)/Q in which p decomposes completely into d different
prime ideals of degree 1 over p , where d = [K : Q] = φ(n − 1)/e . 2

Example 9 Let n = 8 , so p = 2, e = 3 and there are d = φ(7)/3 = 2 regular maps
M(8, u). If we take F8 = F2[x]/(x3 + x + 1) then these two maps correspond to choosing
u from the subsets {x, x2, x4 = x2 + x} or {x + 1, (x + 1)2 = x2 + 1, (x2 + 1)2 = x2 + x + 1}
of F∗

8. These two sets are mutually inverse in F8, so the two maps form a chiral (mirror-
image) pair M, H−1M, namely the Edmonds maps of genus 7. If ζ := ζ7 and η :=
ζ+ζ2+ζ4 = (−1+

√
−7)/2 then the two corresponding Bely̆ı pairs are defined over the field

K = Q(η) = Q(
√
−7) fixed by the automorphism ζ 7→ ζ2 of order 3 of the cyclotomic

field Q(ζ), and they are conjugate under its automorphism ζ 7→ ζ−1, or equivalently√
−7 7→ −

√
−7. The decomposition of p = 2 in this field is given by 2 = −η(η + 1) .

In this example, considered as a hypermap with black vertices as midpoints of all edges
in Kn , it is obvious that Galois conjugation preserves adjacency between the white and
black vertices of valencies n − 1 and 2 , since it acts as a reflection. In other instances of
Theorem 4 it is unclear whether adjacency is always preserved. For instance, when n = 25
there are φ(24)/2 = 4 regular maps, forming two chiral pairs: if u is a primitive element
of F25, then one pair corresponds to u±1 and the other to u±7. Here Wilson’s operations
and the absolute Galois group both act on these dessins as the Klein four-group {±1,±7}
in (Z/24Z)∗, while the complementary subgroup {±5} (corresponding to the Galois group
of F25) acts by dessin automorphisms only. As in the case n = 8 the Galois conjugations
corresponding to {±1} preserve adjacency, but it is unclear whether those corresponding
to {±7} also do. However, since all dessins of the family are based on the graph K8 , it is
easy to see that there are always A–equivariant graph isomorphisms between them, so we
could use this weaker hypothesis to apply Theorem 1 in these cases as well.

In [11], James classified the orientable embeddings of Kn which are edge-transitive but
not regular, so that the automorphism group acts transitively on edges but not on directed
edges. Such maps exist if and only if n is a prime power pe, with n ≡ 3 mod 4 and n > 3.
As before the vertices of such a map are labelled with the elements of Fn. Choosing a
generator u of F∗

n and an odd integer k with 1 < k < n − 1, we define a map M(n, u, k)
by joining each vertex v ∈ Fn by an edge to each of the other vertices in the anticlockwise
cyclic order

v + 1 , v + uk , v + u2 , v + uk+2 , v + u4 , v + uk+4 , . . . , v + un−3 , v + uk+n−3.
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Two such maps M(n, u, k) and M(n, u′, k′) are isomorphic if and only if u and u′ are in
the same orbit of GalFn/Fp and k′ ≡ k or 2 − k mod n − 1 [11, Thm B′], so there are
(n − 3)φ(n − 1)/4e isomorphism classes of such maps [11, Thm A].

The automorphism group A of M(n, u, k) is the unique subgroup of index 2 in AGL1(Fn) ,
consisting of the affine transformations t 7→ at+b of Fn such that a is a square in F∗

n . This
group acts transitively on the vertices and on the edges of the map, but it has two orbits on
the faces, each edge separating faces from different orbits. For instance, the edge joining
vertices 0 and uk separates two faces whose stabilisers in A are cyclic groups generated by
the affine transformations a0 : t 7→ −u−kt + 1 and b0 : t 7→ −uk−2t + uk , rotating the
incident vertices in the anticlockwise cyclic orders . . . , uk, 0, 1, . . . and . . . , u2, 0, uk, . . .. The
valencies m0 and m1 of these faces are the orders of a0 and b0. Since −1 = u(n−1)/2 and k
is odd we find that m0 = (n− 1)/2(n− 1, k) unless k ≡ (n− 1)/2 mod (n− 1) , in which
case m0 = p ; similarly m1 = (n−1)/2(n−1, k−2) unless k−2 ≡ (n−1)/2 mod (n−1) ,
in which case m1 = p . This allows us to count the faces, and hence to compute the genus
of the map [11].

The dual map M(n, u, k)∗ is bipartite, with white and black vertices corresponding to the
two orbits of A on faces of M(n, u, k), so it is the Walsh map of a hypermap D(n, u, k)
of type (m0,m1, (n − 1)/2). In fact, the product a0b0 : t 7→ u−2t has order (n − 1)/2
and rotates the face of M(n, u, k)∗ resulting from the vertex v = 0 of the original map
M(n, u, k) . Since A acts transitively on the edges of M(n, u, k)∗, this hypermap is regu-
lar, corresponding to the algebraic hypermap with automorphism group A and generators
a0, b0 . Observe that the involution k 7→ 2− k transposes the vertex colours of the hyper-
map.

Theorem 5 With n = pe ≡ 3 mod 4 , > 3 and u, k,m0,m1 as above, let

S :=
{

(i, j) | i ∈ (Z/m0Z)∗ , j ∈ (Z/m1Z)∗ , j(k − 2) − ik is coprime to
n − 1

2

}

.

For these (i, j) ∈ S , we have Hi,jM(n, u, k)∗ ∼= M(n, us, k′)∗ with
s ≡ 1

2
[ik−j(k−2)] mod n−1

2
and k′ ≡ ik/s mod n−1 if we assume i, j, s to be represented

by odd integers. They form a Galois invariant family of dessins. If we identify dessins
resulting from each other by transposition of the vertex colours, this family splits into
(n − 3)/4 Galois orbits

{Hri,rjM(n, u, k)∗ , r ∈ (Z/(n − 1)Z)∗ } = {M(n, us, k)∗ , s ∈ (Z/(n − 1)Z)∗ }

characterised by the odd numbers k , 1 < k < n − 1 modulo the involution k 7→ 2 − k .
Independently of k , their minimal field of definition K is the splitting subfield of the prime
p in Q(ζn−1) .

Proof. Clearly, ai
0 and bj

0 generate the same automorphism group A as a0 and b0 , and by
Lemma 4 they correspond to a regular dessin of the same type if their product has the same
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order n−1
2

as a0b0 . The additive constant is irrelevant: renumbering the elements of Fn

by a translation makes it disappear. In the same way one may check that replacing a0, b0

with ai
0, b

j
0 amounts to replacing (u, k) with (us, k′) . Then, as an element of AGL1(Fn) ,

the action is given by
ai

0b
j
0 : t 7→ (−1)i+j u−ik+jk−2jt + c

for some constant c, where we can omit the factor (−1) since i and j are assumed to be
odd. Thus the choice of S guarantees the correct order, and the claim follows directly from
Theorem 3 with some rather obvious calculations. The determination of K relies on the
same argument as in the proof of Theorem 4. 2

Example 10 For the reasons given above, we can restrict to odd k with 1 < k ≤ (n−1)/2 .

a) The first case to consider is p = n = 7 , leading with k = 3 to two isomorphism classes
of regular hypermaps of type (7, 3, 3) and genus 3 , both on Klein’s quartic, compare [22]
or Example 4.

b) The next case is p = n = 11 , leading with k = 3 and 5 to two Galois orbits, each
containing four regular dessins of types (5, 5, 5) and (11, 5, 5) in genera 12 and 15 , all
defined over Q(ζ10) = Q(ζ5) (where the prime 11 splits completely). These orbits are
special cases of Examples 5 and 4.

c) The first really new case occurs for n = 27 , p = 3 , e = 3 , giving five Galois orbits
of regular dessins of type (13, 13, 13) (for k = 3, 5, 7, 9, 11 ) and for k = 13 one Galois
orbit of type (3, 13, 13) , all defined over the biquadratic field K = Q(ζ+ζ3+ζ9) , ζ = ζ26 .

As always, it is much more demanding to find explicit equations for the curves than to
determine the fields of definition. We restrict our consideration to an accessible but already
sufficiently complicated subcase of the regular hypermaps considered in Thm. 5. In the
notation and under the hypothesis given there, we concentrate on the case

k :=
n − 1

2
, m0 = p , m1 =

n − 1

2(n − 1, k − 2)
=

n − 1

2

(recall that n ≡ 3 mod 4 , hence k and k − 2 are odd) and the subfamily

{HrM(n, u,
n − 1

2
)∗ , r ∈ (Z/(n − 1)Z)∗ } = {Hr,rM(n, u,

n − 1

2
)∗ , r ∈ (Z/(n − 1)Z)∗ }

= {M(n, us,
n − 1

2
)∗ , s ∈ (Z/(n − 1)Z)∗ } .

According to Theorem 3 they form a Galois orbit, therefore it is sufficient to determine
equations for s = 1 . Recall that Q(ζn−1) = Q(ζk) , and that the splitting subfield of the
prime p in Q(ζk) is the fixed field of the subgroup of GalQ(ζk)/Q generated by ζk 7→ ζp

k .

Theorem 6 Let n > 3 be a prime power pe ≡ 3 mod 4 . An affine (singular) model of
the curve determined by the regular dessin M(n, u, n−1

2
)∗ is given by e equations in Ce+1
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of type

yp
ν =

∏

j

(z − ζ−pνj)µj , ζ := ζk , k =
n − 1

2
, ν = 0, . . . , e − 1 .

The integer exponents µj depend on the interplay between the additive and the multiplica-
tive structures of Fn and can be calculated explicitly.

Proof. We consider a regular dessin of type (p, k, k) and with an automorphism group
A ∼= Ce

p ⋊ Ck , defined as that index 2 subgroup of AGL1(Fn) = {x 7→ ax + b | a ∈ F∗
n, b ∈

Fn} for which a runs only over the cyclic group Ck of squares in F∗
n . The normal subgroup

(Fn, +) of translations is isomorphic to Ce
p , and we can fix three generators gj of A acting

on Fn as
g0 : x 7→ x + 1 , g1 : x 7→ u−2x , g∞ : x 7→ u2(x − 1)

where u denotes as before a generator of the multiplicative group of the field. The respective
orders of the generators are p, k and k , and they satisfy g0g1g∞ = 1 . The kernel N of
the homomorphism h of ∆ = 〈p, k, k〉 onto A given by

γj 7→ gj , j = 0 , 1 , ∞

is the surface group of the curve X . First we calculate the signature of the normal subgroup
Γ1 := h−1(Ce

p) of ∆ . To do so, we determine the cycle structure of the action of each
generator on the cosets of Ce

p . Considered as permutations, they act as

g0 7→ (1) , g1 7→ (1 2 . . . k) , g∞ 7→ (k . . . 2 1) .

Using Singerman’s procedure described in [19] and the Riemann–Hurwitz formula we can
deduce from this information that Γ1 has genus 0 and signature 〈0; p, p, . . . , p〉 with k

generators γ0, γ−1
1 γ0γ1, . . . , γ

−(k−1)
1 γ0γ

k−1
1 of order p , mapped by h to the elements

g0 : x → x + 1 , g−1
1 g0g1 : x 7→ x + u2 , . . . , g

−(k−1)
1 g0g

k−1
1 : x 7→ x + un−3 .

Therefore we can consider the covering β : Γ1\H → ∆\H as a cyclic cover of the Riemann
sphere over itself of order k and ramified in two points. In the usual normalisation, β
ramifies over 1 and ∞ . We renormalise β defining z := 1 − β so that the covering
looks like z 7→ zk , ramified in and over 0 and ∞ , and so that the covering group is the
group of k–th roots of unity acting by multiplication. The critical values of the covering
N\H → Γ1\H can be identified with these roots of unity ζj, j mod k , and the function
field of X is clearly a Kummer extension of C(z) , i.e. a composite extension of e cyclic
field extensions of degree p corresponding to e index p subgroups U of Ce

p .

We concentrate first on the more difficult case e > 1 , identify Ce
p with an e–dimensional

vector space over Fp and consider its subgroup U as an e−1–dimensional subspace. Besides
0 it contains as many Fn–squares as non–squares because it is the union of one–dimensional
Fp–vector spaces inside Fn intersecting only in 0 , and every such one–dimensional vector
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space contains as many nonzero Fn–squares as non–squares because they are F∗
p–multiples

of one additive generator, and F∗
p contains as many squares as non–squares, and since e is

odd, non–squares in Fp remain non–squares in Fn . So the action of g−j
1 g0g

j
1 : x 7→ x+u2j

on the cosets of U is

• either trivial if u2j ∈ U (in (pe−1 − 1)/2 cases)

• or given by a cycle of order p if u2j 6∈ U .

In the trivial case the generator γ−j
1 γ0γ

j
1 of Γ1 also belongs to the index p subgroup

ΓU := h−1(U) , therefore the cyclic covering ΓU\H → Γ1\H is unramified over the fixed
point of this generator. If we suppose that γ1 acts on the Riemann sphere Γ1\H as
z 7→ ζz , and that z = 1 is the fixed point of γ0 under its action, then ζ−j is the fixed
point of the generator γ−j

1 γ0γ
j
1 . The function field of ΓU\H is therefore C(z, y) with

yp =
∏

u2j 6∈U

(z − ζ−j)µj

for some integer exponents µj to be determined as follows. In the nontrivial case the
covering is ramified of order p over this point ζ−j . Since the local behaviour of γ−j

1 γ0γ
j
1

around its fixed point induces a multiplication of y with ζp , and since on the other hand
the different branches of y correspond to the different cosets of U , we can determine the
µj in the following way. Suppose for simplicity that 1 = u0 6∈ U such that γ0 6∈ ΓU and
such that the covering ramifies over z = 1 . We label the residue classes of U in Ce

p
∼= Fn

(corresponding to the branches of y ) such that

Uµ := U + µ for µ = 0, 1, . . . , p − 1

and such that γ0 acts on the branches — here on the indices of the residue classes Uµ — as
the cyclic permutation τ = (0 1 . . . p − 1) . Clearly, if γ−j

1 γ0γ
j
1 6∈ U , it acts as the power

τµj where µj is determined by

U + u2j = Uµj
= U + µj (4)

(in particular µ0 = 1 ). With this normalisation for the other µj the first equation is
determined. The explicit calculation of the µj depends on the choice of U and requires a
nontrivial comparison between the additive and the multiplicative structures of Fn .

We can apply this procedure for any index p subgroup of Ce
p
∼= Fn . On the other hand

it is clear that e of these subgroups are sufficient provided their common intersection is
0 . This is equivalent to the property that their one–dimensional duals Û ⊂ F̂n

∼= Fn

generate Fn as an additive group. By the normal basis theorem we can choose some
Galois orbit as a basis for the field extension Fn/Fp . By dualisation, this means that we
can choose a subspace U with the property that by taking pν–powers, ν = 0, . . . , e − 1 ,
we obtain e subspaces Upν

with common intersection 0 . Their cosets are obtained by
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applying the Frobenius automorphisms to the cosets Uµ = U + µ of U , of course. In
the resulting equations the same effect is obtained if we replace j with pνj : observe that
u2j ∈ (U + µ)pe−ν

is equivalent to u2jpν ∈ (U + µ)pe

= U + µ .

The case e = 1 , n = p is considerably simpler since we have only to consider U = {0} , and
the u2j automatically have integer representatives. We can simply replace the definition
(4) with µj := u2j , then all other arguments — as far as needed — remain valid. 2

Remark. The construction shows again that the Galois automorphisms of Q(ζ)/Q leaving
invariant the splitting field of p induce permutations of the coordinates yν only, therefore
inducing isomorphisms, as predicted by Theorem 5.

Example 11 We take up Example 10 c) with the dessins of type (3, 13, 13) . To determine
the three equations explicitly, we have to make a good choice of the index 3 subspace U
in F27 . For some generator u of the multiplicative group F∗

27 a [8] calculation gives the
following exponents in U \ {0} .

E(U) = {3, 16, 4, 17, 6, 19, 12, 25} ⊂ Z/26Z

(Since u13 = −1 it would be sufficient to give the residue classes 3, 4, 6, 12 mod 13 which
form in fact a difference set mod 13 , see the remark below.) The images under the
operation of GalFn/Fp correspond to the exponent sets E(U), 3E(U) and 9E(U) having
an empty intersection, so we have

⋂

Upν

= {0} , hence a good choice of U . The u–
exponents for the additive residue classes of U can be calculated as

E(U1) = {0, 1, 2, 8, 11, 18, 20, 22, 23} ,

E(U2) = {5, 7, 9, 10, 13, 14, 15, 21, 24} .

Therefore, the first of the three equations can be written as

y3
0 =

∏

2j∈E(U1)

(z − ζ−j)
∏

2j∈E(U2)

(z − ζ−j)2 ,

the other two for y1 and y2 following from this by replacing ζ−j with ζ−3j and ζ−9j , re-
spectively.

Remark. The prime number cases n = p can be treated as in [21], see Example 4; there,
take q = k , s = −1 and replace u with u2 . In the next case n = p3 we may consider
the 2–dimensional subspaces U ⊂ Fp3 as lines in the (cyclic) projective plane P2(Fp) ,
therefore it is not surprising that its elements 6= 0 , seen as exponents of a fixed generator
u of Fp3 , correspond to the elements of a difference set mod (p3 − 1)/(p − 1) . A similar
rule is true for p–exponents e > 3 ; e.g. for e = 5 we get the elements of U via generalised
difference sets corresponding to the points of a projective 3–space in P4(Fp) .

25



6 Appendix

Lemma 8 Let M be a reflexible embedding of a graph G of girth 3 and prime valency p such
that (p − 1)/2 is also prime (and thus a Sophie Germain prime). Then AutG = AutM,
the full automorphism group of M, including orientation–reversing elements.

Proof. Clearly AutG ≥ AutM. Since M is reflexible the subgroup (AutM)v of AutM
fixing a vertex v acts on the set N(v) of neighbouring vertices of v as the dihedral group
Dp, so the subgroup (AutG)v of AutG fixing v induces on N(v) a permutation group P of
degree p containing Dp. By theorems of Galois and Burnside, any transitive group of prime
degree p is either doubly transitive or is a proper subgroup of the affine group AGL1(Fp) .

First suppose that P is doubly transitive. Since G has girth 3 it contains a triangle, and
since AutG acts transitively on the vertices of G we may assume that v is a vertex of
this triangle. Thus at least two of the neighbours of v are adjacent, and since (AutG)v

is doubly transitive on N(v) they are all adjacent. Thus v and N(v) span a complete
subgraph K(v) ∼= Kp+1 in G, and since G is connected and has valency p it follows that
G = K(v). However, the regular embeddings of complete graphs Kn are all known [12],
and for n > 4 none of them is reflexible, so this contradiction shows that P is a proper
subgroup of AGL1(Fp). Now P contains Dp, which is a maximal subgroup of AGL1(Fp)
since its index (p − 1)/2 is prime, so P = Dp.

The stabiliser in Dp of any two points is the identity subgroup, so the kernel K(v) of the
action of (AutG)v on N(v) consists of those g ∈ AutGv fixing at least two neighbours
w of v. Since G contains a triangle and M is regular, such a pair v, w have a common
neighbour u in G, so g fixes at least two elements u, v of N(w) and hence g ∈ K(w). Thus
K(v) ≤ K(w), so the connectedness of G implies that K(v) = K(v′) for all vertices v, v′

of G. Since G has no multiple edges it follows that K(v) = 1, so (AutG)v
∼= Dp . Thus

(AutG)v = (AutM)v and hence AutG = AutM. 2

Note that one cannot remove that the condition that G has girth 3: for instance the
Fermat curve of degree p gives a reflexible embedding M of the complete bipartite graph
G = Kp,p, which has girth 4, with AutM ∼= Dp ×Dp of order 4p2 and AutG isomorphic to
the wreath product Sp ≀ S2 of order 2(p!)2. Similarly the reflexibility condition is essential
here: for each Mersenne prime p the complete graph G = Kp+1, of girth 3 and valency p,
has chiral (i.e. regular but not reflexible) embeddings M with AutM ∼= AGL1(Fp+1) and
AutG ∼= Sp+1, see [12].

We can apply Lemma 8 to the Macbeath–Hurwitz dessins, which have valency 7 and girth
3, and are reflexible since the corresponding curves are defined over real fields.

Corollary 2 Let p be a prime ≡ ±1 mod 7 . Then the graphs underlying the three Galois
conjugate Macbeath–Hurwitz dessins of type (7, 2, 3) and automorphism group PSL2(Fp)
are pairwise non–isomorphic.
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Proof. According to Lemma 8, any isomorphism between two of them would extend to an
isomorphism between the corresponding dessins, contradiction. 2
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7. P. Dèbes, M. Emsalem, On Fields of Moduli of Curves, J. Algebra 211 (1999) 42–56.

8. The GAP Group: GAP — Groups, Algorithms, and Programming,
http://www.gap-system.org

9. A. Grothendieck, Esquisse d’un Programme, pp. 5–84 in Geometric Galois Actions 1.
Around Grothendieck’s Esquisse d’un Programme, eds. P. Lochak, L. Schneps, London
Math. Soc. Lecture Note Ser. 242, Cambridge University Press, 1997.

10. B. Huppert, Endliche Gruppen I, Springer–Verlag, Berlin / Heidelberg / New York,
1979.

11. L.D. James, Edge–symmetric Orientable Imbeddings of Complete Graphs, Europ. J.
Combinatorics 11 (1990) 133–144.

12. L.D. James, G.A. Jones, Regular Orientable Imbeddings of Complete Graphs, J.
Combin. Theory Ser. B 39 (1985) 353–367.
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