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COMMON TRANSVERSALS AND TANGENTS TO

TWO LINES AND TWO QUADRICS IN P

3

G

�

ABOR MEGYESI, FRANK SOTTILE, AND THORSTEN THEOBALD

Abstra
t. We solve the following geometri
 problem, whi
h arises in several three-

dimensional appli
ations in 
omputational geometry: For whi
h arrangements of two

lines and two spheres in R

3

are there in�nitely many lines simultaneously transversal to

the two lines and tangent to the two spheres?

We also treat a generalization of this problem to proje
tive quadri
s: Repla
ing the

spheres in R

3

by quadri
s in proje
tive spa
e P

3

, and �xing the lines and one general

quadri
, we give the following 
omplete geometri
 des
ription of the set of (se
ond)

quadri
s for whi
h the two lines and two quadri
s have in�nitely many transversals and

tangents: In the nine-dimensional proje
tive spa
e P

9

of quadri
s, this is a 
urve of degree

24 
onsisting of 12 plane 
oni
s, a remarkably redu
ible variety.

Introdu
tion

In [14℄, one of us (Theobald) 
onsidered arrangements of k lines and 4�k spheres in R

3

having in�nitely many lines simultaneously transversal to the k lines and tangent to the

4�k spheres. Sin
e for generi
 
on�gurations of k lines and 4�k spheres there are only

�nitely many 
ommon transversals/tangents, the goal was to 
hara
terize the non-generi



on�gurations where the dis
rete and 
ombinatorial nature of the problem is lost. One


ase left open was that of two lines and two spheres. We solve that here.

A se
ond purpose is to develop and present a variety of te
hniques from 
omputational

algebrai
 geometry for ta
kling problems of this kind. Sin
e not all our readers are fa-

miliar with these te
hniques, we explain and do
ument these te
hniques, with the goal of

in
reasing their appli
ability. For that reason, we �rst deal with the more general problem

where we repla
e the spheres in R

3

by general quadrati
 surfa
es (hereafter quadri
s) in


omplex proje
tive 3-spa
e P

3

. In order to study the geometry of this problem, we �x two

lines and a quadri
 in general position, and des
ribe the set of (se
ond) quadri
s for whi
h

there are in�nitely many 
ommon transversals/tangents in terms of an algebrai
 
urve.

It turns out that this set is an algebrai
 
urve of degree 24 in the spa
e P

9

of quadri
s.

Fa
toring the ideal of this 
urve shows that it is remarkably redu
ible:

Theorem 1. Fix two skew lines `

1

and `

2

and a quadri
 Q in P

3

that is neither tangent

to either line nor 
ontains any 
ommon transversal to the lines. The 
losure of the set of

quadri
s Q

0

for whi
h there are in�nitely many lines simultaneously transversal to `

1

and

`

2

and tangent to both Q and to Q

0

is a 
urve of degree 24 in the P

9

of quadri
s. This


urve 
onsists of 12 plane 
oni
s.
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We prove this theorem by investigating the ideal de�ning the algebrai
 
urve des
ribing

the set of (se
ond) quadri
s. Based on this, we prove the theorem with the aid of a


omputer 
al
ulation in the 
omputer algebra system Singular [4℄. As explained in

Se
tion 3, the su

ess of that 
omputation depends 
ru
ially upon the pre
eding analysis

of the 
urve. Quite interestingly, there are real lines `

1

and `

2

and real quadri
s Q su
h

that all 12 
omponents of the 
urve of se
ond quadri
s are real. In general, given real

lines `

1

and `

2

, and a real quadri
 Q, not all of the 12 
omponents are de�ned over the

real numbers.

While the beautiful and sophisti
ated geometry of our fundamental problem on lines

and quadri
s 
ould be suÆ
ient motivation to study this geometri
 problem, the original

motivation 
ame from algorithmi
 problems in 
omputational geometry. As explained

in [14℄, problems of this type o

ur in appli
ations where one is looking for a line or ray

intera
ting (in the sense of \interse
ting" or in the sense of \not interse
ting") with a given

set of three-dimensional bodies, if the 
lass of admissible bodies 
onsists of polytopes and

spheres (respe
tively quadri
s). Con
rete appli
ation 
lasses of this type in
lude visibility


omputations with moving viewpoints [15℄, 
ontrolling a laser beam in manufa
turing [11℄,

or the design of envelope data stru
tures supporting ray shooting queries (i.e., seeking the

�rst sphere, if any, met by a query ray) [1℄. With regard to related treatments of the

resulting algebrai
-geometri
 
ore problems, we refer to [9, 10, 13℄. In these papers, the

question of arrangements of four (unit) spheres in R

3

leading to an in�nite number of


ommon tangent lines is dis
ussed from various viewpoints.

The present paper is stru
tured as follows: In Se
tion 1, we review the well-known

Pl�u
ker 
oordinates from line geometry. In Se
tion 2, we 
hara
terize the set of lines

transversal to two skew lines and tangent to a quadri
 in terms of algebrai
 
urves; we

study and 
lassify these (2; 2)-
urves. Then, in Se
tion 3, we study the set of quadri
s

whi
h (for pres
ribed lines `

1

and `

2

) lead to most (2; 2)-
urves. This in
ludes 
omputer-

algebrai
 
al
ulations, based on whi
h we establish the proof of Theorem 1. The appendix

to the paper 
ontains annotated 
omputer 
ode used in the proof. In Se
tion 4, we give

some detailed examples illustrating the geometry des
ribed by Theorem 1, and 
omplete

its proof. Finally, in Se
tion 5, we solve the original question of spheres and give the


omplete 
hara
terization of 
on�gurations of two lines and two spheres having in�nitely

many lines transversal to the lines and tangent to the spheres. For a pre
ise statement of

that 
hara
terization see Theorems 16 and 20.

1. Pl

�

u
ker Coordinates

We review the well-known Pl�u
ker 
oordinates of lines in three-dimensional (
omplex)

proje
tive spa
e P

3

. For general referen
es, see [2, 7, 12℄. Let x = (x

0

; x

1

; x

2

; x

3

)

T

and

y = (y

0

; y

1

; y

2

; y

3

)

T

2 P

3

be two points spanning a line `. Then ` 
an be represented (not

uniquely) by the 4 � 2-matrix L whose two 
olumns are x and y. The Pl�u
ker ve
tor

p = (p

01

; p

02

; p

03

; p

12

; p

13

; p

23

)

T

2 P

5

of ` is de�ned by the determinants of the 2 � 2-

submatri
es of L, that is, p

ij

:= x

i

y

j

� x

j

y

i

. The set G

1;3

of all lines in P

3

is 
alled the

Grassmannian of lines in P

3

. The set of ve
tors in P

5

satisfying the Pl�u
ker relation

p

01

p

23

� p

02

p

13

+ p

03

p

12

= 0(1.1)
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is in 1-1-
orresponden
e with G

1;3

. See, for example Theorem 11 in [2, x 8.6℄.

A line ` interse
ts a line `

0

in P

3

if and only if their Pl�u
ker ve
tors p and p

0

satisfy

p

01

p

0

23

� p

02

p

0

13

+ p

03

p

0

12

+ p

12

p

0

03

� p

13

p

0

02

+ p

23

p

0

01

= 0:(1.2)

Geometri
ally, this means that the set of lines interse
ting a given line is des
ribed by a

hyperplane se
tion of the Pl�u
ker quadri
 (1.1) in P

5

.

In Pl�u
ker 
oordinates we also obtain a ni
e 
hara
terization (given in [13℄) of the

lines tangent to a given quadri
 in P

3

. (See [14℄ for an alternative dedu
tion of that


hara
terization). We identify a quadri
 x

T

Qx = 0 in P

3

with its symmetri
 4 � 4-

representation matrix Q. Thus the sphere with 
enter (


1

; 


2

; 


3

)

T

2 R

3

and radius r and

des
ribed in P

3

by (x

1

� 


1

x

0

)

2

+ (x

2

� 


2

x

0

)

2

+ (x

3

� 


3

x

0

)

2

= r

2

x

2

0

, is identi�ed with the

matrix

0

B

B

�




2

1

+ 


2

2

+ 


2

3

� r

2

�


1

�


2

�


3

�


1

1 0 0

�


2

0 1 0

�


3

0 0 1

1

C

C

A

:

The quadri
 is smooth if its representation matrix has rank 4. To 
hara
terize the tangent

lines, we use the se
ond exterior power of matri
es

^

2

: C

m�n

! C

(

m

2

)

�

(

n

2

)

(see [12, p. 145℄,[13℄). Here C

a�b

is the set of a � b matri
es with 
omplex entries. The

row and 
olumn indi
es of the resulting matrix are subsets of 
ardinality 2 of f1; : : : ; mg

and f1; : : : ; ng, respe
tively. For I = fi

1

; i

2

g with 1 � i

1

< i

2

� m and J = fj

1

; j

2

g with

1 � j

1

< j

2

� n,

�

^

2

A

�

I;J

:= A

i

1

;j

1

A

i

2

;j

2

� A

i

1

;j

2

A

i

2

;j

1

:

Let ` be a line in P

3

and L be a 4� 2-matrix representing `. Interpreting the 6� 1-matrix

^

2

L as a ve
tor in P

5

, we observe that ^

2

L = p

`

, where p

`

is the Pl�u
ker ve
tor of `.

Re
all the following algebrai
 
hara
terization of tangen
y: The restri
tion of the qua-

drati
 form to the line ` is singular, in that either it has a double root, or it vanishes

identi
ally. When the quadri
 is smooth, this implies that the line is tangent to the

quadri
 in the usual geometri
 sense.

Proposition 2 (Proposition 5.2 of [13℄). A line ` � P

3

is tangent to a quadri
 Q if and

only if the Pl�u
ker ve
tor p

`

of ` lies on the quadrati
 hypersurfa
e in P

5

de�ned by ^

2

Q,

if and only if

p

T

`

�

^

2

Q

�

p

`

= 0:(1.3)
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For a sphere with radius r and 
enter (


1

; 


2

; 


3

)

T

2 R

3

the quadrati
 form p

T

`

�

^

2

Q

�

p

`

is

0

B

B

B

B

B

�

p

01

p

02

p

03

p

12

p

13

p

23

1

C

C

C

C

C

A

T

0

B

B

B

B

B

�




2

2

+ 


2

3

� r

2

�


1




2

�


1




3




2




3

0

�


1




2




2

1

+ 


2

3

� r

2

�


2




3

�


1

0 


3

�


1




3

�


2




3




2

1

+ 


2

2

� r

2

0 �


1

�


2




2

�


1

0 1 0 0




3

0 �


1

0 1 0

0 


3

�


2

0 0 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

p

01

p

02

p

03

p

12

p

13

p

23

1

C

C

C

C

C

A

:(1.4)

2. Lines in P

3

meeting 2 lines and tangent to a quadri


We work here over the ground �eld C . First suppose that `

1

and `

2

are lines in P

3

that

meet at a point p and thus span a plane �. Then the 
ommon transversals to `

1

and `

2

either 
ontain p or they lie in the plane �. This redu
es any problem involving 
ommon

transversals to `

1

and `

2

to a planar problem in P

2

(or R

2

), and so we shall always assume

that `

1

and `

2

are skew. Su
h lines have the form

`

1

= fwa+ xb : [w; x℄ 2 P

1

g ;

`

2

= fy
+ zd : [y; z℄ 2 P

1

g

(2.1)

where the points a; b; 
; d 2 P

3

are aÆnely independent. We des
ribe the set of lines

meeting `

1

and `

2

that are also tangent to a smooth quadri
 Q. We will refer to this set

as the envelope of 
ommon transversals and tangents, or (when `

1

and `

2

are understood)

simply as the envelope of Q.

The parametrization of (2.1) allows us to identify ea
h of `

1

and `

2

with P

1

; the point

wa + xb 2 `

1

is identi�ed with the parameter value [w; x℄ 2 P

1

, and the same for `

2

. We

will use these identi�
ations throughout this se
tion. In this way, any line meeting `

1

and

`

2


an be identi�ed with the pair ([w; x℄; [y; z℄) 2 P

1

�P

1


orresponding to its interse
tions

with `

1

and `

2

. By (1.2), the Pl�u
ker 
oordinates p

`

= p

`

(w; x; y; z) of the transversal `

passing through the points wa+xb and y
+zd are separately homogeneous of degree 1 in

ea
h set of variables fw; xg and fy; zg, 
alled bihomogeneous of bidegree (1,1) (see, e.g.,

[2, x8.5℄).

By Proposition 2, the envelope of 
ommon transversals to `

1

and `

2

that are also tangent

to Q is given by the 
ommon transversals ` of `

1

and `

2

whose Pl�u
ker 
oordinates p

`

additionally satisfy p

T

`

�

^

2

Q

�

p

`

= 0. This yields a homogeneous equation

F (w; x; y; z) := p

`

(w; x; y; z)

T

�

^

2

Q

�

p

`

(w; x; y; z) = 0(2.2)

of degree four in the variables w; x; y; z. More pre
isely, F has the form

F (w; x; y; z) =

2

X

i;j=0




ij

w

i

x

2�i

y

j

z

2�j

(2.3)

with 
oeÆ
ients 


ij

, that is F is bihomogeneous with bidegree (2; 2). The zero set of a (non-

zero) bihomogeneous polynomial de�nes an algebrai
 
urve in P

1

�P

1

(see the treatment of

proje
tive elimination theory in [2, x8.5℄). In 
orresponden
e with its bidegree, the 
urve
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de�ned by F is 
alled a (2; 2)-
urve. The nine 
oeÆ
ients of this polynomial identify the

set of (2; 2)-
urves with P

8

.

It is well-known that the Cartesian produ
t P

1

� P

1

is isomorphi
 to a smooth quadri


surfa
e in P

3

[2, Proposition 10 in x 8.6℄. Thus the set of lines meeting `

1

and `

2

and

tangent to the quadri
 Q is des
ribed as the interse
tion of two quadri
s in a proje
tive 3-

spa
e. When it is smooth, this set is a genus 1 
urve [6, Exer. I.7.2(d) and Exer. II.8.4(g)℄.

This set of lines 
annot be parametrized by polynomials|only genus 0 
urves (also 
alled

rational 
urves) admit su
h parametrizations (see, e.g., [8, Corollary 2 on p.268℄). This

observation is the starting point for our study of 
ommon transversals and tangents.

Let C be a (2; 2)-
urve in P

1

�P

1

de�ned by a bihomogeneous polynomialF of bidegree 2.

The 
omponents of C 
orrespond to the irredu
ible fa
tors of F , whi
h are bihomogeneous

of bidegree at most (2; 2). Thus any fa
tors of F must have bidegree one of (2; 2), (2; 1),

(1; 1), (1; 0), or (0; 1). (Sin
e we are working over C , a homogeneous quadrati
 of bidegree

(2; 0) fa
tors into two linear fa
tors of bidegree (1; 0).) Re
all (for example, [2℄) that a

point ([w

0

; x

0

℄; [y

0

; z

0

℄) 2 C � P

1

� P

1

is singular if the gradient rF vanishes at that

point, rF ([w

0

; x

0

℄; [y

0

; z

0

℄) = 0. The 
urve C is smooth if it does not 
ontain a singular

point; otherwise C is singular. We 
lassify (2; 2)-
urves, up to 
hange of 
oordinates on

`

1

� `

2

, and inter
hange of `

1

and `

2

. Note that an (a; b)-
urve and a (
; d)-
urve meet if

ad+ b
 6= 0, and the interse
tion points are singular on the union of the two 
urves.

Lemma 3. Let C be a (2; 2)-
urve on P

1

� P

1

. Then, up to inter
hanging the fa
tors of

P

1

� P

1

, C is either

1. smooth and irredu
ible,

2. singular and irredu
ible,

3. the union of a (1; 0)-
urve and an irredu
ible (1; 2)-
urve,

4. the union of two distin
t irredu
ible (1; 1)-
urves,

5. a single irredu
ible (1; 1)-
urve, of multipli
ity two,

6. the union of one irredu
ible (1; 1)-
urve, one (1; 0)-
urve, and one (0; 1)-
urve,

7. the union of two distin
t (1; 0)-
urves, and two distin
t (0; 1)-
urves,

8. the union of two distin
t (1; 0)-
urves, and one (0; 1)-
urve of multipli
ity two,

9. the union of one (1; 0)-
urve, and one (0; 1)-
urve, both of multipli
ity two.

In parti
ular, when C is smooth it is also irredu
ible.

When the polynomial F has repeated fa
tors, we are in 
ases (5), (8), or (9). We study

the form F when the quadri
 is redu
ible, that is either when Q has rank 1, so that it

de�nes a double plane, or when Q has rank 2 so that it de�nes the union of two planes.

Lemma 4. Suppose Q is a redu
ible quadri
.

(1) If Q has rank 1, then ^

2

Q = 0, and so the form F in (2.2) is identi
ally zero.

(2) Suppose Q has rank 2, so that it de�nes the union of two planes meeting in a line

`. If ` is one of `

1

or `

2

, then the form F in (2.2) is identi
ally zero. Otherwise

the form F is the square of a (1; 1)-form, and hen
e we are in 
ases (5) or (9) of

Lemma 3.

Proof. The �rst statement is immediate. For the se
ond, let `

0

be a line in P

3

with

Pl�u
ker 
oordinates p

`

0

. From the algebrai
 
hara
terization of tangen
y of Proposition 2,
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p

T

`

0

�

^

2

Q

�

p

`

0

= 0 implies that the restri
tion of the quadrati
 form to `

0

either has a zero

of multipli
ity two, or it vanishes identi
ally. In either 
ase, this implies that `

0

meets the

line ` 
ommon to the two planes. Conversely, if `

0

meets the line `, then p

T

`

0

�

^

2

Q

�

p

`

0

= 0.

Thus if ` equals one of `

1

or `

2

, then p

T

`

0

�

^

2

Q

�

p

`

0

= 0 for every 
ommon transversal `

0

to `

1

and `

2

, and so the form F is identi
ally zero. Suppose that ` is distin
t from both

`

1

and `

2

. We observed earlier that the set of lines transversal to `

1

and `

2

that also meet

` is de�ned by a (1; 1)-form G. Sin
e the (2; 2)-form F de�nes the same set as does the

(1; 1)-form G, we must have that F = G

2

, up to a 
onstant fa
tor.

As above, let C be the (2; 2)-
urve de�ned by the polynomial F . For a �xed point [w; x℄,

the restri
tion of the polynomial F to [w; x℄� P

1

is a homogeneous quadrati
 polynomial

in y; z. A line passing through [w; x℄ 2 `

1

and the point of `

2


orresponding to any zero

of this restri
tion is tangent to Q. This 
onstru
tion gives all lines tangent to Q that


ontain the point [w; x℄. We 
all the zeroes of this restri
tion the �ber over [w; x℄ of the

proje
tion of C to `

1

.

We investigate these �bers. Consider the polynomial F as a polynomial in the variables

y; z with 
oeÆ
ients polynomials in w; x. The resulting quadrati
 polynomial in y; z has

dis
riminant

 

2

X

i=0




i1

w

i

x

2�i

!

2

� 4

 

2

X

i=0




i0

w

i

x

2�i

! 

2

X

i=0




i2

w

i

x

2�i

!

:(2.4)

Lemma 5. If this dis
riminant vanishes identi
ally, then the polynomial F has a repeated

fa
tor.

Proof. Let �; �; 
 be the 
oeÆ
ients of y

2

; yz; z

2

in the polynomial F , respe
tively. Then

we have �

2

= 4�
, as the dis
riminant vanishes. Sin
e the ring of polynomials in w; x is

a unique fa
torization domain, either � di�ers from 
 by a 
onstant fa
tor, or else both

� and 
 are squares. If � and 
 di�er by a 
onstant fa
tor, then so do � and �. Writing

� = 2d� for some d 2 C , we have

F = �y

2

+ 2d�yz + d

2

�z

2

= �(y + dz)

2

:

If we have � = Æ

2

and 
 = �

2

for some linear polynomials Æ and �, then

F = Æ

2

y � 2Æ�yz + �

2

z

2

= (Æy � �z)

2

:

The �ber of C over the point [w; x℄ of `

1


onsists of two distin
t points exa
tly when the

dis
riminant does not vanish at [w; x℄. Call the points [w; x℄ of `

1

where the dis
riminant

vanishes (so that the �ber does not 
onsist of two distin
t points) a rami�
ation point of

the proje
tion from C to `

1

. Suppose that F does not have repeated fa
tors so that the

dis
riminant does not vanish identi
ally. Sin
e the dis
riminant (2.4) has degree 4, there

are at most four rami�
ation points of C. If C is irredu
ible, then these are the points

where the �ber 
onsists of a double point rather than two distin
t points.

This dis
ussion shows how we may parametrize the 
urve C, at least lo
ally. Suppose

that we have a point [w; x℄ 2 P

1

where the dis
riminant (2.4) does not vanish. Then we
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may solve for [y; z℄ in the polynomial F in terms of [w; x℄. The di�erent bran
hes of the

square root fun
tion give lo
al parametrizations of the 
urve C.

2.1. A normal form for asymmetri
 smooth (2; 2)-
urves. Re
all that for any dis-

tin
t points a

1

; a

2

; a

3

2 P

1

and any distin
t points b

1

; b

2

; b

3

2 P

1

, there exists a pro-

je
tive linear transformation (given by a regular 2 � 2-matrix) whi
h maps a

i

to b

i

,

1 � i � 3 [2, 12℄.

Lemma 6. A (2; 2)-
urve C is smooth if and only if its proje
tion to `

1

has four distin
t

rami�
ation points.

Proof. Suppose C is a smooth (2; 2)-
urve. Changing 
oordinates on `

1

and `

2

by a

proje
tive linear transformation if ne
essary, we may assume that this proje
tion to `

1

is

rami�ed over [w; x℄ = [1; 0℄, and the double root of the �ber is at [y; z℄ = [1; 0℄. Restri
ting

the polynomial F (2.3) to the �ber over [w; x℄ = [1; 0℄ gives the equation




22

y

2

+ 


21

yz + 


20

z

2

= 0 :

Sin
e we assumed that this has a double root at [y; z℄ = [1; 0℄, we have 


21

= 


22

= 0.

Suppose now that the proje
tion from C to `

1

is rami�ed at fewer than four points. We

may assume that [w; x℄ = [1; 0℄ is a double root of the dis
riminant (2.4), whi
h implies

that the 
oeÆ
ients of w

4

and w

3

x in (2.4) vanish. The previously derived 
ondition




21

= 


22

= 0 implies that the 
oeÆ
ient of w

4

vanishes and the 
oeÆ
ient of w

3

x be
omes

�4


20




12

. If 


20

= 0, then every non-vanishing term of (2.3) depends on x; hen
e, x divides

F , and so C is redu
ible, and hen
e not smooth. If 


12

= 0 then the gradient rF vanishes

at the point ([1; 0℄; [1; 0℄), and so C is not smooth.

Conversely, suppose that C is not smooth. Assume that the point ([w; x℄; [y; z℄) =

([1; 0℄; [1; 0℄) is a singular point of C. Then the proje
tions of C to `

1

and to `

2

are both

rami�ed over [1; 0℄. We 
on
lude as before that the 
oeÆ
ients 


21

; 


22

, and 


12

of the form

F (2.3) vanish. But then the dis
riminant (2.4) is divisible by x

2

, and so it has a double

root. In parti
ular, the proje
tion of C to `

1

has fewer than 4 rami�
ation points.

Suppose that C is a smooth (2; 2)-
urve. Then its proje
tion to `

1

is rami�ed at four

distin
t points. We further assume that the double points in the rami�ed �bers proje
t

to at least 3 distin
t points in `

2

. We 
all su
h a smooth (2; 2)-
urve asymmetri
. The


hoi
e of this terminology will be
ome 
lear in Se
tion 4. We will give a normal form for

su
h asymmetri
 smooth 
urves.

Hen
e, we may assume that three of the rami�
ation points are [w; x℄ = [0; 1℄, [1; 0℄,

and [1; 1℄, and the double points in these rami�
ation �bers o

ur at [y; z℄ = [0; 1℄, [1; 0℄,

and [1; 1℄, respe
tively. As in the proof of Lemma 6, the double point at [y; z℄ = [1; 0℄

in the �ber over [w; x℄ = [1; 0℄ implies that 


21

= 


22

= 0. Similarly, the double point

at [y; z℄ = [0; 1℄ in the �ber over [w; x℄ = [0; 1℄ implies that 


00

= 


01

= 0. Thus the

polynomial F (2.3) be
omes




20

w

2

z

2

+ 


10

wxz

2

+ 


11

wxyz + 


12

wxy

2

+ 


02

x

2

y

2

Restri
ting F to the �ber of [w; x℄ = [1; 1℄ gives




10

z

2

+ 


20

z

2

+ 


11

yz + 


02

y

2

+ 


12

y

2

:
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Sin
e this has a double root at [y; z℄ = [1; 1℄, we must have

�

1

2




11

= 


10

+ 


20

= 


02

+ 


12

:

Dehomogenizing (setting 


11

= �2) and letting 


20

:= s and 


02

:= t for some s; t 2 C , we

obtain the following theorem.

Theorem 7. After proje
tive linear transformations in `

1

and `

2

, an asymmetri
 smooth

(2; 2)-
urve is the zero set of a polynomial

sw

2

z

2

+ (1�s)wxz

2

� 2wxyz + (1�t)wxy

2

+ tx

2

y

2

;(2.5)

for some (s; t) 2 C

2

satisfying

st(s�1)(t�1)(s�t) 6= 0 :(2.6)

We 
omplete the proof of Theorem 7. The dis
riminant (2.4) of the polynomial (2.5) is

4wx(w�x) (s(t�1)w � t(s�1)x) ;

whi
h has roots at [w; x℄ = [0; 1℄; [1; 0℄; [1; 1℄, and � = [t(s�1); s(t�1)℄. Sin
e we assumed

that these are distin
t, the fourth point � must di�er from the �rst three, whi
h implies

that (s; t) satis�es (2.6). The double point in the �ber over � o

urs at [y; z℄ = [s�1; t�1℄.

This equals a double point in another rami�
ation �ber only for values of the parameters

not allowed by (2.6).

Remark 8. These 
al
ulations show that smooth (2; 2)-
urves exhibit the following di-


hotomy. Either the double points in the rami�
ation �bers proje
t to four distin
t points

in `

2

or to two distin
t points. They must proje
t to at least two points, as there are at

most two points in ea
h �ber of the proje
tion to `

2

. We showed that if they proje
t to

at least three, then they proje
t to four.

We 
ompute the parameters s and t from the intrinsi
 geometry of the 
urve C. Re
all

the following de�nition of the 
ross ratio (see, for example [12, x1.1.4℄).

De�nition 9. For four points a

1

; : : : ; a

4

2 P

1

with a

i

= [�

i

; �

i

℄, the 
ross ratio of

a

1

; : : : ; a

4

is the point of P

1

de�ned by

2

6

6

4

det

�

�

1

�

4

�

1

�

4

�

det

�

�

1

�

3

�

1

�

3

�

;

det

�

�

2

�

4

�

2

�

4

�

det

�

�

2

�

3

�

2

�

3

�

3

7

7

5

:

If the points are of the form a

i

= [1; �

i

℄, this simpli�es to

�

�

4

� �

1

�

3

� �

1

;

�

4

� �

2

�

3

� �

2

�

:

The 
ross ratio of four points a

1

; a

2

; a

3

; a

4

2 P

1

remains invariant under any proje
tive

linear transformation.
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The proje
tion of C to `

1

is rami�ed over the points [w; x℄ = [0; 1℄; [1; 0℄; [1; 1℄ and

� = [t(s � 1); s(t � 1)℄. The 
ross ratio of these four (ordered) rami�
ation points is

[t(s�1); s(t�1)℄. Similarly, the 
ross ratio of the four (ordered) double points in the

rami�
ation �bers is [s�1; t�1℄.

This 
omputation of 
ross ratios allows us to 
ompute the normal form of an asymmetri


smooth (2; 2)-
urve. Namely, let a

1

; a

2

; a

3

, and a

4

be the four rami�
ation points of the

proje
tion of C to `

1

and b

1

; b

2

; b

3

, and b

4

be the images in `

2

of the 
orresponding double

points. Let 


1

be the 
ross ratio of the four points a

1

; a

2

; a

3

, and a

4

(this is well-de�ned,

as 
ross ratios are invariant under proje
tive linear transformation). Similarly, let 


2

be

the 
ross ratio of the points b

1

; b

2

; b

3

, and b

4

. For four distin
t points, the 
ross ratio is

an element of C n f0; 1g, so we express 


1

; 


2

as 
omplex numbers. The invarian
e of the


ross ratios yields the 
onditions on s and t

s(t�1)

t(s�1)

= 


1

and

t�1

s�1

= 


2

:

Again, sin
e 


1

; 


2

2 C n f0; 1g, these two equations have the unique solution

s =




1

(


2

� 1)




2

(


1

� 1)

and t =




2

� 1




1

� 1

:

Remark 10. We interpret the rami�
ation of the (2; 2)-
urve C of 
ommon tangents to

a smooth quadri
 Q geometri
ally and 
hara
terize when C is smooth. Let `

1

and `

2

be

skew lines and Q be a quadri
 whose tangent lines meeting `

1

and `

2

are des
ribed by the

(2; 2)-
urve C � P

1

� P

1

.

The �ber over p 2 `

1

of the proje
tion of C to `

1


onsists of the lines through p meeting

`

2

that are tangent to Q. These are the lines through p lying in the plane � := p; `

2

that

are tangent to the 
oni
 Q \ �. Sin
e Q is smooth, either (a) Q \ � is smooth, or (b)

Q \� 
onsists of distin
t lines m;m

0

. In this se
ond 
ase, � is tangent to Q at the point

q where the lines meet so that the tangents to Q lying in � are the lines in � through q.

The 
urve C is rami�ed over p when the number of tangents to Q\� through p is not

2. That is, either (i) every line in � through p is tangent to Q or (ii) there is a single line

in � through p tangent to Q. In 
ase (i), Q is ne
essarily tangent to � at p, so that we

are in (b) above with p = q. In this 
ase, the �ber of C over p is a (0; 1)-
urve and so C is

redu
ible and hen
e not smooth. In 
ase (ii), if (a) Q \ � is smooth, then p 2 Q and the

unique tangent is the tangent to this 
oni
 at p, and if (b) Q \ � is singular, then p 6= q

and the unique tangent is the line p; q.

We use this dis
ussion and Lemma 6 to give a geometri
 
hara
terization of when the

(2; 2)-
urve is smooth.

Theorem 11. Let `

1

and `

2

be skew lines and Q a smooth quadri
 in P

3

. Then the (2; 2)-


urve C of 
ommon transversals to `

1

and `

2

that are tangent to Q is smooth if and only

if Q is neither tangent to either line nor 
ontains any 
ommon transversal to the lines.

Proof. Suppose that Q is tangent to neither `

1

nor `

2

and that no 
ommon transversal to

`

1

and `

2

lies in Q. Then Q\ `

1


onsists of two points p; p

0

, ea
h of whi
h is a rami�
ation

point of the proje
tion of C to `

1

. Also, exa
tly two planes �;�

0


ontaining `

2

are tangent
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to Q. Let q; q

0

2 `

1

be the points of interse
tion of these tangent planes with `

1

, whi
h are

also rami�
ation points of the proje
tion of C to `

1

. Suppose that fp; p

0

g \ fq; q

0

g 6= ;,

say p = q. Then the plane � = p; `

2

is tangent to Q and so it 
onsists of two lines m;m

0

.

As p 2 Q, p lies on one of these lines, whi
h is thus a 
ommon transversal to `

1

and `

2

lying in Q. But this 
ontradi
ts our assumptions, so we 
on
lude that fp; p

0

g\fq; q

0

g = ;.

Thus the proje
tion of C to `

1

has four distin
t rami�
ation points and so by Lemma 6

C is smooth.

Suppose now that C is smooth. Then it is irredu
ible, and 
ase (ii) of the dis
ussion

above 
annot o

ur. By Lemma 6 the proje
tion of C to `

1

has four rami�
ation points.

These rami�
ation points are those in Q \ `

1

together with those points of `

1

lying in a

tangent plane to Q 
ontaining `

2

. We do not have `

1

� Q or `

2

� Q, as either implies

that every point of `

1

is a rami�
ation point (if `

2

� Q, then every plane 
ontaining `

2

is

tangent to Q). This implies that there are at most two points in Q \ `

1

and at most two

tangent plane to Q 
ontaining `

2

, and so there are exa
tly two of ea
h type. But then

neither line is tangent to Q. Moreover the points inQ\`

1

do not meet either tangent plane

to Q 
ontaining `

2

, and the argument in the �rst paragraph shows this to be equivalent

to the 
ondition that Q does not 
ontain a 
ommon transversal to the two lines.

3. Proof of Theorem 1

We 
hara
terize the quadri
s Q whi
h generate the same envelope of tangents as a given

quadri
. A symmetri
 4� 4 matrix has 10 independent entries whi
h identi�es the spa
e

of quadri
s with P

9

. Central to our analysis is a map ' de�ned for almost all quadri
s

Q. For a quadri
 Q (
onsidered as a point in P

9

) whose asso
iated (2; 2)-form (2.2) is not

identi
ally zero, we let '(Q) be this (2; 2)-form, 
onsidered as a point in P

8

. With this

de�nition, we see that the Theorem 1 is 
on
erned with the �ber '

�1

(C), where C is the

(2; 2)-
urve asso
iated to a general quadri
 Q. Sin
e the domain of ' is 9-dimensional

while its range is 8-dimensional, we expe
t ea
h �ber to be 1-dimensional.

We will show that every smooth (2; 2) 
urve arises as '(Q) for some quadri
 Q. This,

together with Theorem 11 implies that Theorem 1 is a 
onsequen
e of the following the-

orem.

Theorem 12. Let C 2 P

8

be a smooth (2; 2)-
urve. Then the 
losure '

�1

(C) in P

9

of

the �ber of ' is a 
urve of degree 24 that is the union of 12 plane 
oni
s.

We prove Theorem 12 by 
omputing the ideal J of the �ber '

�1

(C). Then we fa
tor

J into several ideals, whi
h 
orresponds to de
omposing the 
urve of degree 24 into the

union of several 
urves. Finally, we analyze the output of these 
omputations by hand to

prove the desired result.

Our initial formulation of the problem gives an ideal I that not only de�nes the �ber

of ', but also the subset of P

9

where ' is not de�ned. We identify and remove this subset

from I in several 
ostly auxiliary 
omputations that are performed in the 
omputer algebra

system Singular [4℄. It is only after removing the ex
ess 
omponents that we obtain the

ideal J of the �ber '

�1

(C).

Sin
e we want to analyze this de
omposition for every smooth (2; 2)-
urve, we must

treat the representation of C as symboli
 parameters. This leads to additional diÆ
ulties,
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whi
h we 
ir
umvent. It is quite remarkable that the 
omputer-algebrai
 
al
ulation

su

eeds and that it is still possible to analyze its result.

In the following, we assume that `

1

is the x-axis. Furthermore, we may apply a proje
-

tive linear transformation and assume without loss of generality that `

2

is the yz-line at

in�nity. Thus we have

`

1

= f(w; x; 0; 0)

T

2 P

3

: [w; x℄ 2 P

1

g ;

`

2

= f(0; 0; y; z)

T

2 P

3

: [y; z℄ 2 P

1

g :

Hen
e, in Pl�u
ker 
oordinates, the lines interse
ting `

1

and `

2

are given by

f(0; wy; wz; xy; xz; 0)

T

2 P

5

: [w; x℄; [y; z℄ 2 P

1

g :(3.1)

By Proposition 2, the envelope of 
ommon transversals to `

1

and `

2

that are also tangent

to Q is given by those lines in (3.1) whi
h additionally satisfy

(0; wy; wz; xy; xz; 0)

�

^

2

Q

�

(0; wy; wz; xy; xz; 0)

T

= 0 :(3.2)

A quadri
 Q in P

3

is given by the quadrati
 form asso
iated to a symmetri
 4�4-matrix

Q :=

0

B

B

�

a b 
 d

b e f g


 f h k

d g k l

1

C

C

A

:(3.3)

In a straightforward approa
h, the ideal I of quadri
s giving a general (2; 2)-
urve C is

obtained by �rst expanding the left hand side of (3.2) into

(el�g

2

)x

2

z

2

+ 2(bl�dg)wxz

2

+ (al�d

2

)w

2

z

2

+ 2(ek�gf)x

2

yz + 2(2bk�
g�df)wxyz + 2(ak�d
)w

2

yz

+ (eh�f

2

)x

2

y

2

+ 2(bh�
f)wxy

2

+ (ah�


2

)w

2

y

2

:

(3.4)

We equate this (2; 2)-form with the general (2; 2)-form (2.3), as points in P

8

. This is

a

omplished by requiring that they are proportional, or rather that the 2� 9 matrix of

their 
oeÆ
ients

�




00




10




20




01




11

: : : 


22

el � g

2

2(bl � dg) al � d

2

2(ek � gf) 2(2bk � 
g � df) : : : ah� 


2

�

has rank 1. Thus the ideal I is generated by the

�

9

2

�

minors of this 
oeÆ
ient matrix.

With this formulation, the ideal I will de�ne the �ber '

�1

(C) as well as additional,

ex
ess 
omponents that we wish to ex
lude. For example, the variety in P

9

de�ned by

the vanishing of the entries in the se
ond row of this matrix will lie in the variety I,

but these points are not those that we seek. Geometri
ally, these ex
ess 
omponents

are pre
isely where the map ' is not de�ned. By Lemma 4, we 
an identify three of

these ex
ess 
omponents, those points of P

9


orresponding to rank 1 quadri
s, and those


orresponding to rank 2 quadri
s 
onsisting of the union of two planes meeting in either `

1

or in `

2

. The rank one quadri
s have ideal E

1

generated by the entries of the matrix ^

2

Q,

the rank 2 quadri
s whose planes meet in `

1

have ideal E

2

generated by a; b; 
; d; e; f; g,

and those whose plane meets in `

2

have ideal E

3

generated by 
; d; f; g; h; k; l.
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We remove these ex
ess 
omponents from our ideal I to obtain an ideal J whose set of

zeroes 
ontain the �ber '

�1

(C). After fa
toring J into its irredu
ible 
omponents, we will

observe that ' does not vanish identi
ally on any 
omponent of J , 
ompleting the proof

that J is the ideal of '

�1

(C), and also the proof of Theorem 12.

Sin
e 


00

; 


10

; : : : ; 


22

have to be treated as parameters, the 
omputation should be


arried out over the fun
tion �eld Q(


00

; 


10

; : : : ; 


22

). That 
omputation is infeasible.

Even the initial 
omputation of a Gr�obner basis for the ideal I (a ne
essary prerequisite)

did not terminate in two days. In 
ontrast, the 
omputation we �nally des
ribe termi-

nates in 7 minutes on the same 
omputer. This is be
ause the original 
omputation in

Q(


00

; 


10

; : : : ; 


22

)[a; b; : : : ; l℄ involved too many parameters.

We instead use the 2-parameter normal form (2.5) for asymmetri
 smooth (2; 2)-
urves.

This will prove Theorem 12 in the 
ase when C is an asymmetri
 smooth (2; 2)-
urve. We

treat the remaining 
ases of symmetri
 smooth (2; 2)-
urves in Se
tion 4. As des
ribed in

Se
tion 2.1, by 
hanging the 
oordinates on `

1

and `

2

, every asymmetri
 smooth (2; 2)-


urve 
an be transformed into one de�ned by a polynomial in the family (2.5). Equating

the (2; 2)-form (3.4) with the form (2.5) gives the ideal I generated by the following

polynomials:

el � g

2

; ek � gf ; ak � d
 ; ah� 


2

;(3.5)

and the ten 2� 2 minors of the 
oeÆ
ient matrix:

M :=

�

s 1� s �2 1� t t

al � d

2

2 � (bl � dg) 2 � (2bk � 
g � df) 2 � (bh� 
f) eh� f

2

�

:(3.6)

This ideal I de�nes the same three ex
ess 
omponents as before, and we must remove

them to obtain the desired ideal J . Although the ideal I should be treated in the ring

S := Q (s; t)[a; b; 
; d; e; f; g; h; k; l℄, the ne
essary 
al
ulations are infeasible even in this

ring, and we instead work in subring R := Q [a; b; 
; d; e; f; g; h; k; l℄[s; t℄. In the ring R,

the ideal I is homogeneous in the set of variables a; b; : : : ; l, thus de�ning a subvariety

of P

9

� C

2

. The ideals E

1

, E

2

, and E

3

des
ribing the ex
ess 
omponents satisfy E

j

� I,

1 � j � 3.

A Singular 
omputation shows that I is a �ve-dimensional subvariety of P

9

� C

2

(see

the Appendix for details). Moreover, the dimensions of the three ex
ess 
omponents are

5, 4, and 4, respe
tively. In fa
t, it is quite easy to see that dim E

2

= dim E

3

= 4 as both

ideals are de�ned by 7 independent linear equations.

We are fa
ed with a geometri
 situation of the following form. We have an ideal I whose

variety 
ontains an ex
ess 
omponent de�ned by an ideal E and we want to 
ompute the

ideal of the di�eren
e

V(I)� V(E) ;

here, V(K) is the variety of an ideal K. Computational algebrai
 geometry gives us an

e�e
tive method to a

omplish this, namely saturation. The elementary notion is that of

the ideal quotient (I : E), whi
h is de�ned by

(I : E) := ff 2 R j fg 2 I for all g 2 Eg :
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Then the saturation of I with respe
t to E is

(I : E

1

) :=

1

[

n=1

(I : E

n

) :

The least number n su
h that (I : E

1

) = (I : E

n

) is 
alled the saturation exponent.

Proposition 13 ([2, x4.4℄ or [3, x15.10℄ or the referen
e manual for Singular). Over an

algebrai
ally 
losed �eld,

V(I : E

1

) = V(I)� V(E) :

A Singular 
omputation shows that the saturation exponent of the �rst ex
ess ideal

E

1

in I is 1, and so the ideal quotient suÆ
es to remove the ex
ess 
omponent V(E

1

) from

V(I). Set I

0

:= (I : E

1

), an ideal of dimension 4. The ex
ess ideals E

2

and E

3

ea
h have

saturation exponent 4 in I

1

, and so we saturate I

0

with respe
t to ea
h to obtain an ideal

J := ( (I

0

: E

1

2

) : E

1

3

), whi
h has dimension 3 in P

9

� C

2

.

To study the 
omponents of V(J), we �rst apply the fa
torization Gr�obner basis al-

gorithm to J , as implemented in the Singular 
ommand fa
std (see [5℄ or the refer-

en
e manual of Singular). This algorithm takes two arguments, an ideal I and a list

L = f

1

; : : : ; f

n

of polynomials. It pro
eeds as in the usual Bu
hberger algorithm to 
om-

pute a Gr�obner basis for I, ex
ept that whenever it 
omputes a Gr�obner basis element G

that it 
an fa
tor, it splits the 
al
ulation into sub
al
ulations, one for ea
h fa
tor of G

that is not in the list L, adding that fa
tor to the Gr�obner basis for the 
orresponding

sub
al
ulation. The output of fa
std is a list I

1

; I

2

; : : : ; I

m

of ideals with the property

that

m

[

j=1

V(I

j

) � V(f

1

� � � f

n

) = V(I)� V(f

1

� � � f

n

) :

Thus, the zero set of I 
oin
ides with the union of zero sets of the fa
tors I

j

, in the region

where none of the polynomials in the list L vanish. In terms of saturation, this is

rad(I

1

� � � I

m

: (f

1

f

2

� � � f

n

)

1

) = rad(I : (f

1

f

2

� � � f

n

)

1

)(3.7)

where rad(K) denotes the radi
al of an ideal K. Some of the ideals I

j

may be spurious

in that V(I

j

) is already 
ontained in the union of the other V(I

i

).

We run fa
std on the ideal J with the list of polynomials s, t, s�1, t�1, and s�t, and

obtain seven 
omponents J

0

; J

1

; : : : ; J

6

. The 
omponents J

1

; : : : ; J

6

ea
h have dimension

3, while the 
omponent J

0

has dimension 2. Sin
e V(J

0

) is 
ontained in the union of the

V(J

1

); : : : ;V(J

6

), it is spurious and so we disregard it.

We now, �nally, 
hange from the base ring R to the base ring S, and 
ompute with

the parameters s; t. There, J de�nes an ideal of dimension 1 and degree 24 in the 9-

dimensional proje
tive spa
e over the �eld Q (s; t). As we remarked before, we have that

V(J) � '

�1

(C). The fa
torization of J into J

1

; : : : ; J

6

remains valid over S. The reason

we did not 
ompute the fa
torization over S is that fa
std and the saturations were

infeasible over S, and the standard arguments from 
omputational algebrai
 geometry we
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have given show that it suÆ
es to 
ompute without parameters, as long as 
are is taken

when interpreting the output.

Ea
h of the fa
tors J

i

has dimension 1 and degree 4. Moreover, ea
h ideal 
ontains

a homogeneous quadrati
 polynomial in the variables k; l whi
h must fa
tor over some

�eld extension of Q (s; t). In fa
t, these six quadrati
 polynomials all fa
tor over the �eld

Q(

p

s;

p

t). For example, two of the J

i


ontain the polynomial (s� 1)k

2

� 2kl� l

2

, whi
h

is the produ
t

�

(

p

s+1)k + l

� �

(

p

s�1)k � l

�

:

For ea
h ideal J

i

, the fa
torization of the quadrati
 polynomial indu
es a fa
torization of

J

i

into two ideals J

i1

and J

i2

. Inspe
ting a Gr�obner basis for ea
h ideal shows that ea
h

de�nes a plane 
oni
 in P

9

. Thus, over the �eld Q(

p

s;

p

t), J de�nes 12 plane 
oni
s.

Theorem 12 is a 
onsequen
e of the following two observations.

(1) The fa
torization of J gives 12 distin
t 
omponents for all values of the parameters

s; t satisfying (2.6).

(2) The map ' does not vanish identi
ally on any of the 
omponents V(J

ij

) for values

of the parameters s; t satisfying (2.6).

By (1), no 
omponent of J is empty for any s; t satisfying (2.6) and thus, for every

asymmetri
 (2; 2)-
urve C, there is a quadri
 Q with '(Q) = C. Also by (1), J has

exa
tly 12 
omponents with ea
h a plane 
oni
, for any s; t satisfying (2.6), and by (2),

V(J) = '

�1

(C).

4. Symmetri
 smooth (2; 2)-
urves

We investigate smooth 
urves C whose double points in the rami�ed �bers over `

1

have only two distin
t proje
tions to `

2

. Assume that the rami�
ation is at the points

[w; x℄ = [1; 1℄; [1;�1℄; [1; s℄, and at [1;�s℄, for some s 2 C nf0;�1g with the double points

in the �bers at [y; z℄ = [1; 0℄ for the �rst two and at [0; 1℄ for the se
ond two. Sin
e the

points [1; 1℄; [1;�1℄; [1; s℄, and [1;�s℄ have 
ross ratio

�

1 + s

1� s

;

1� s

1 + s

�

=

�

1;

(1� s)

2

(1 + s)

2

�

;

we see that all 
ross ratios in P

1

nf[1; 0℄; [0; 1℄; [1; 1℄g are obtained for some s 2 C nf0;�1g.

Thus our 
hoi
e of rami�
ation results in no loss of generality.

As in Se
tion 2, these 
onditions give equations on the 
oeÆ
ients 


ij

of the general

(2; 2)-
urve (2.3):




00

+ 


10

+ 


20

= 0; 


01

+ 


11

+ 


21

= 0; 


00

� 


10

+ 


20

= 0;




01

� 


11

+ 


21

= 0; 


02

+ 


12

s+ 


22

s

2

= 0; 


01

+ 


11

s+ 


21

s

2

= 0;




02

� 


12

s + 


22

s

2

= 0; 


01

� 


11

s+ 


21

s

2

= 0:

These equations have the following 
onsequen
es

0 = 


21

= 


01

= 


12

= 


11

= 


10

= 


02

+ 


22

s

2

= 


00

+ 


20

:

Hen
e after normalizing by setting 


20

= 1, the (2; 2)-form (2.3) be
omes

(x

2

� w

2

)y

2

+ 


22

(x

2

� s

2

w

2

)z

2

:
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While the 
hoi
e of rami�
ation points [1; 1℄; [1;�1℄; [1; s℄; [1;�s℄ �xes the parametrization

of `

1

, the double points in the �bers of [1; 0℄ and [0; 1℄ do not �x the parametrization of

`

2

. Thus we are still free to s
ale the z-
oordinate. We normalize this equation setting




22

= �1. We do not simply set 


22

= 1 be
ause that misses an important real form of

the polynomial. This normalization gives

(x

2

� w

2

)y

2

� (x

2

� s

2

w

2

)z

2

= (y

2

� z

2

)x

2

� (y

2

� s

2

z

2

)w

2

:(4.1)

This shows the equation to be symmetri
 under the involution [w; x℄ $ [

p

�1z; y℄. This

symmetry is the sour
e of our terminology for the two 
lasses of (2; 2)-
urves. Also, if

s 62 f�1; 0g, then this is the equation of a smooth (2; 2)-
urve. With the 
hoi
e of sign

(�), whi
h we 
all the 
urve C(s).

Note that (4.1) is real if s either is real or is purely imaginary (s 2 R

p

�1 ). We


omplete the proof of Theorem 1 with the following result for symmetri
 (2; 2)-
urves.

Theorem 14. For ea
h s 2 C n f�1; 0g, the 
losure of the �ber '

�1

(C(s)) 
onsists of 12

distin
t plane 
oni
s. When s 2 R or s 2 R

p

�1 and we use the real form of (4.1) with

the plus sign (+), then exa
tly 4 of these 12 
omponents will be real. If we use the real

form of (4.1) with the minus sign (�), then if s 2 R, all 12 
omponents will be real, but

if s 2 R

p

�1, then exa
tly 4 of these 12 
omponents will be real.

Proof. Our proof follows the proof of Theorem 12 almost exa
tly, but with signi�
ant

simpli�
ations and a 
ase analysis. Unlike the proof des
ribed in Se
tion 3, we do not give

annotated Singular 
ode in an appendix, but rather supply su
h annotated Singular


ode on the web page

y

.

The outline is as before, ex
ept that we work over the ring of parameters Q (s), and

�nd no extraneous 
omponents when we fa
tor the ideal into 
omponents. We formulate

this as a system of equations, remove the same three ex
ess 
omponents, and then fa
tor

the resulting ideal. We do this 
al
ulation four times, on
e for ea
h 
hoi
e of sign (�)

in (4.1), and for s 2 R and s 2 R

p

�1. Examining the output proves the result.

We 
onsider in some detail four 
ases of the geometry studied in Se
tion 2, whi
h


orrespond to the four real 
ases of Theorem 14. As in Se
tion 2, let `

1

be the x-axis

and `

2

be the yz-line at in�nity. Viewed in R

3

, lines transversal to `

1

and `

2

are the set

of lines perpendi
ular to the x-axis. For a transversal line `, the 
oordinates [y; z℄ of the

point ` \ `

2


an be interpreted as the slope of ` in the two-dimensional plane orthogonal

to the x-axis.

Consider real quadri
s given by an equation of the form

x

2

+ (y � y

0

)

2

� z

2

= 1 :(4.2)

The quadri
s with the plus (+) sign are spheres with 
enter (0; y

0

; 0)

T

and radius 1,

and those with the minus (�) sign are hyperboloids of one sheet. When jy

0

j > 1 the

quadri
 does not meet the x-axis. We look at four families of su
h quadri
s: spheres and

y

http://www.math.umass.edu/~sottile/pages/2l2s/
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hyperboloids that meet and do not meet the x-axis. We remark that quadri
s whi
h are

tangent to the x-axis give singular (2; 2)-
urves, as shown in Theorem 11.

First, 
onsider the resulting (2; 2)-
urve

(x

2

� w

2

)y

2

� (x

2

� (1 � y

2

0

)w

2

)z

2

:

Thus we see that these 
orrespond to the 
ase s =

p

1� y

2

0

in the parametrization of

symmetri
 (2; 2)-
urves given above (4.1), while in (4.2) and (4.1) the signs (�) 
orrespond.

Figures 1 and 2 display pi
tures of these four quadri
s, together with the x-axis, some

tangents perpendi
ular to the x-axis, and the 
urve on the quadri
 where the lines are

tangent.

(a) (b)

Figure 1. Real quadri
s not meeting the x-axis.

(a) (b)

Figure 2. Real quadri
s meeting the x-axis.

Remark 15. For ea
h of the spheres, there is another sphere of radius r whi
h leads to

the same envelope, namely the one with 
enter (0;�y

0

; 0)

T

.

The rami�
ation of the (2; 2)-
urve of tangents perpendi
ular to the x-axis is evident

from Figures 1 and 2. When x = �1, there is a single tangent line; this line has slope
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[y; z℄ = [1; 0℄, i.e., it is a horizontal line. When x = �

p

1� y

2

0

, there is a single tangent

line, whi
h is verti
al (i.e., whi
h has slope [y; z℄ = [0; 1℄). Figures 1 and 2 depi
t these

lines in 
ase they are real. In Figure 1 we have jy

0

j > 1, and hen
e the verti
al tangent

lines are 
omplex. All other values of x give two lines perpendi
ular to the x-axis and

tangent to the quadri
, but some have imaginary slope.

The di�eren
e in the number of real 
omponents of the �ber '

�1

(C(s)) noted in The-

orem 14 
an be seen in these examples. The spheres and hyperboloid displayed together

are isomorphi
 under the 
hange of 
oordinates z 7!

p

�1 � z, whi
h inter
hanges the

transversal tangents of purely imaginary slope for one quadri
 with the real transversal

tangents of the other and 
orresponds to the di�erent signs � in (4.2) and (4.1).

For the sphere of Figure 1, only 4 of the 12 families are real. One 
onsists of ellipsoids,

in
luding the original sphere, one of hyperboloids of two sheets, and two of hyperboloids of

one sheet. Sin
e a hyperboloid of two sheets 
an be seen as an ellipsoid meeting the plane

at in�nity in a 
oni
, we see there are two families of ellipsoids and two of hyperboloids.

In Figure 3, we display one quadri
 from ea
h family (ex
ept the family of the sphere),

together with the original sphere, the x-axis, and the 
urve on the quadri
 where the lines

perpendi
ular to the x-axis are tangent to the quadri
.

Figure 3. The other three families.

Similarly, the hyperboloid of Figure 1 has only 4 of its 12 families real with two families

of ellipsoids and two of hyperboloids. The sphere of Figure 2 has only 4 of its 12 families

real, and all 4 
ontain ellipsoids. In 
ontrast, the hyperboloid of Figure 2 has all 12 of its

families real, and they 
ontain only hyperboloids of one sheet.

Many more pi
tures (in 
olor) are found on the web page a

ompanying this arti
le.

5. Transversals to two lines and tangents to two spheres

We solve the original question of 
on�gurations of two lines and two spheres for whi
h

there are in�nitely many real transversals to the two lines that are also tangent to both

spheres. While general quadri
s are naturally studied in proje
tive spa
e P

3

, spheres

naturally live in (the slightly more restri
ted) aÆne spa
e R

3

. As noted in Se
tion 2, we
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treat only skew lines. There are two 
ases to 
onsider. Either the two lines are in R

3

or

one lies in the plane at in�nity. We work throughout over the real numbers.

5.1. Lines in aÆne spa
e R

3

. The 
omplete geometri
 
hara
terization of 
on�gura-

tions where the lines lie in R

3

is stated in the following theorem and illustrated in Figure 4.

Theorem 16. Let S

1

and S

2

be two distin
t spheres and let `

1

and `

2

be two skew lines

in R

3

. There are in�nitely many lines that meet `

1

and `

2

and are tangent to S

1

and S

2

in exa
tly the following 
ases.

(1) The spheres S

1

and S

2

are tangent to ea
h other at a point p whi
h lies on one line,

and the se
ond line lies in the 
ommon tangent plane to the spheres at the point

p. The pen
il of lines through p that also meet the se
ond line is exa
tly the set of


ommon transversals to `

1

and `

2

that are also tangent to S

1

and S

2

.

(2) The lines `

1

and `

2

are ea
h tangent to both S

1

and S

2

, and they are images of ea
h

other under a rotation about the line 
onne
ting the 
enters of S

1

and S

2

. If we rotate

`

1

about the line 
onne
ting the 
enters of the spheres, it sweeps out a hyperboloid of

one sheet. One of its rulings 
ontains `

1

and `

2

, and the lines in the other ruling are

tangent to S

1

and S

2

and meet `

1

and `

2

, ex
ept for those that are parallel to one of

them.

(1) (2)

Figure 4. Examples from Theorem 16.

Let `

1

and `

2

be two skew lines. The 
lass of spheres is not invariant under the set

of proje
tive linear transformations, but rather under the group generated by rotations,

translations, and s
aling the 
oordinates. Thus we 
an assume that

`

1

=

8

<

:

0

�

0

0

1

1

A

+ x

0

�

1

Æ

0

1

A

: x 2 R

9

=

;

; `

2

=

8

<

:

0

�

0

0

�1

1

A

+ z

0

�

�1

�Æ

0

1

A

: z 2 R

9

=

;

for some Æ 2 R n f0g. As before, there is a one-to-one 
orresponden
e between lines

meeting `

1

and `

2

and pairs (x; z) 2 R

2

. The transversal 
orresponding to a pair (x; z)

passes through the points (x; Æx; 1)

T

and (z;�Æz;�1)

T

, and has Pl�u
ker 
oordinates

(x� z; Æ(x+ z); 2; 2Æxz; x+ z; Æ(x� z))

T

:
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Let S

1

have 
enter (a; b; 
)

T

and radius r. By Proposition 2 and (1.4), the transversals

tangent to S

1

are parametrized by a 
urve C

1

of degree 4 with equation

0 = 4Æ

2

x

2

z

2

+ 4Æ(b�aÆ)x

2

z +

�

(b�aÆ)

2

+ (1+Æ

2

)((1+
)

2

� r

2

)

�

x

2

� 4Æ(b+ aÆ)xz

2

+ 2

�

(r

2

�


2

)(1�Æ

2

) + (1�b

2

) + Æ

2

(a

2

�1)

�

xz(5.1)

� 4(1+
)(a+bÆ)x +

�

(b+aÆ)

2

+ (1+Æ

2

)((1�
)

2

�r

2

)

�

z

2

+4(
�1)(a�bÆ)z + 4(a

2

+ b

2

� r

2

) :

This is a dehomogenized version of the bihomogeneous equation (2.3) of bidegree (2; 2).

Note also that the 
urve C

1

is de�ned over our ground �eld R. The transversals to `

1

and `

2

tangent to S

2

are parametrized by a similar 
urve C

2

. There are in�nitely many

lines whi
h meet `

1

and `

2

and are tangent to S

1

and S

2

if and only if the 
urves C

1

and

C

2

have a 
ommon 
omponent. That is, if and only if the asso
iated polynomials share a


ommon fa
tor. We �rst rule out the 
ase when the 
urves are irredu
ible.

Lemma 17. The 
urve C

1

in (5.1) determines the sphere S

1

uniquely.

Proof. Given the 
urve (5.1), we 
an res
ale the equation su
h that the 
oeÆ
ient of x

2

z

2

is 4Æ

2

. From the 
oeÆ
ients of x

2

z and xz

2

we 
an determine a and b, and then from the


oeÆ
ients of x

2

and z

2

we 
an determine 
 and r.

Remark 18. By Remark 15, Lemma 17 does not hold if the lines are allowed to live in

proje
tive spa
e P

3

. We 
ome ba
k to this in Se
tion 5.2.

By Lemma 17, there 
an be in�nitely many 
ommon transversals to `

1

and `

2

that are

tangent to two spheres only if the 
urves C

1

and C

2

are redu
ible. In parti
ular, this rules

out 
ases (1) and (2) of Lemma 3. Our 
lassi�
ation of fa
tors of (2; 2)-forms in Lemma 3

gives the following possibilities for the 
ommon irredu
ible fa
tors (over R) of C

1

and

C

2

, up to inter
hanging x and z. Either the fa
tor is a 
ubi
 (the dehomogenization of

a (2; 1)-form), or it is linear in x and z (the dehomogenization of a (1; 1)-form), or it is

linear in x alone (the dehomogenization of a (1; 0)-form). There is the possibility that the


ommon fa
tor will be an irredu
ible (over R) quadrati
 polynomial in x (
oming from a

(2; 0)-form), but then this 
omponent will have no real points, and thus 
ontributes no


ommon real tangents.

We rule out the possibility of a 
ommon 
ubi
 fa
tor, showing that if C

1

fa
tors

as x � x

0

and a 
ubi
, then the 
ubi
 still determines S

1

. The ve
tor (�Æ;�1; Æx

0

)

T

is perpendi
ular to the plane through (x

0

; Æx

0

; 1)

T

and `

2

, so the 
enter of S

1

will be

(x

0

; Æx

0

; 1)

T

+ �(�Æ;�1; Æx

0

)

T

for some non-zero � 2 R. Thus r

2

= �

2

(1 + Æ

2

+ Æ

2

x

2

0

).

Substituting this into (5.1) and dividing by (x� x

0

) we obtain the equation of the 
ubi
:

0 = Æ

2

xz

2

+ Æ(Æ

2

�1)�xz + (1+Æ

2

(1��

2

) + Æ�(1+Æ

2

)x

0

)x

+ Æ(�(1+Æ

2

)� Æx

0

)z

2

+ Æ(Æ

2

�1)�x

0

z + 4Æ�+ (Æ

2

�

2

� Æ

2

� 1)x

0

:

(5.2)

Given only this 
urve, we 
an res
ale its equation so that the 
oeÆ
ient of xz

2

is Æ

2

, then

if Æ 6= �1, we 
an uniquely determine �, x

0

and therefore S

1

, too, from the 
oeÆ
ients of

xz and x.
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The uniqueness is still true if Æ = �1. Assume that Æ = 1. Then (5.2) redu
es to

xz

2

+ (2�� x

0

)z

2

+ (2� �

2

+ 2�x

0

)x + 4�+ (�

2

� 2)x

0

= 0 :

Set � := 2�� x

0

, � := 2� �

2

+ 2�x

0

, and 
 := 4�+ (�

2

� 2)x

0

. We 
an solve for � and

x

0

in terms of � and �,

� =

��

p

�

2

+ 3� � 6

3

; x

0

=

�� � 2

p

�

2

+ 3� � 6

3

:

(We take the same sign of the square root in both 
ases). If we substitute these values

into the formula for 
, we see that the two possible values of 
 
oin
ide if and only if

�

2

+ 3� � 6 = 0, in whi
h 
ase there is only one solution for � and x

0

, so �, �, and 


always determine � and x

0

and hen
e S

1

uniquely. The 
ase Æ = �1 is similar.

We now are left only with the 
ases when C

1

and C

2


ontain a 
ommon fa
tor of the

form x � x

0

or xz + sx + tz + u. Suppose the 
ommon fa
tor is x � x

0

. Then any line

through p := (x

0

; Æx

0

; 1)

T

and a point of `

2

is tangent to S

1

. This is only possible if the

sphere S

1

is tangent to the plane through p and `

2

at the point p. We 
on
lude that if C

1

and C

2

have the 
ommon fa
tor x � x

0

, then the spheres S

1

and S

2

are tangent to ea
h

other at the point p = (x

0

; Æx

0

; 1)

T

lying on `

1

and `

2

lies in the 
ommon tangent plane

to the spheres at the point p. This is 
ase (1) of Theorem 16.

Suppose now that C

1

and C

2

have a 
ommon irredu
ible fa
tor xz+sx+ tz+u. We 
an

solve the equation xz+sx+ tz+u = 0 uniquely for z in terms of x for general values of x,

or for x in terms of z for general values of z, this gives rise to an isomorphism � between

the proje
tivizations of `

1

and `

2

. The lines 
onne
ting q and �(q) as q runs through the

points of `

1

sweep out a hyperboloid of one sheet. The lines `

1

and `

2

are 
ontained in one

ruling, and the lines meeting both of them and tangent to S

1

are the lines in the other

ruling.

Lemma 19. Let H � R

3

be a hyperboloid of one sheet. If all lines in one of its rulings

are tangent to a sphere S, then H is a hyperboloid of revolution, the 
enter of the sphere

S is on the axis of rotation and S is tangent to H.

Proof. We 
an 
hoose Cartesian 
oordinates su
h that H has equation x

2

=�

2

+ y

2

=�

2

�

z

2

=


2

= 1 for some positive real numbers �, �, 
. Let the sphere have 
enter (A;B;C)

T

and radius R. The set of points of the form (�; ��; �
)

T

, (��;���; �
)

T

, (���; �; �
)

T

and (��;��; �
)

T

as � runs through R form four lines in one of the rulings. Sin
e the

two rulings are symmetri
, we only need to deal with one of them.

The sphere S is tangent to a line if and only if the distan
e of the line from the 
enter

of S is R. The 
ondition that (A;B;C)

T

must be at the same distan
e from the �rst two

lines gives the equation

�(�

2

+ 


2

)A + �
BC = 0 ;

the equality of distan
es from the other two lines gives

�(�

2

+ 


2

)B � �
AC = 0 :

Sin
e �; �; 
 > 0, the 
ommon solutions of these equations have A = B = 0. Using

this information, the equality of the distan
es from the �rst and third lines gives � = �,
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or C = �

p

(�

2

+ 


2

)(�

2

+ 


2

)=
. To eliminate this se
ond possibility, 
onsider two more

lines in the same ruling, the points of the form

�

�

1� �

p

2

; �

1 + �

p

2

; �


�

T

and

�

�

1 + �

p

2

; �

�1 + �

p

2

; �


�

T

as � runs through R. The equality of distan
es from these two lines together with A =

B = 0 gives � = � or C = 0.

Therefore the only 
ase when (A;B;C)

T


an be at the same distan
e from all lines in

one ruling of H is when � = �, i.e., H is a hyperboloid of revolution about the z-axis,

and (A;B;C)

T

lies on the z-axis. In this 
ase, it is obvious that (A;B;C)

T

is at the same

distan
e from all the lines 
ontained in H, and these lines are tangent to S if and only if

S is tangent to H.

By this lemma, the hyperboloid swept out by the lines meeting `

1

and `

2

and tangent to

S

1

is a hyperboloid of revolution with the 
enter of S

1

on the axis of rotation. Furthermore,

`

1

and `

2

are lines in one the rulings of the hyperboloid, therefore they are images of

ea
h other under suitable rotation about the axis, the images of `

1

sweep out the whole

hyperboloid, and `

1

, `

2

are both tangent to S

1

. Applying the lemma to S

2

shows that the


enter of S

2

is also on the axis of rotation and `

1

, `

2

are both tangent to S

2

. We 
annot

have S

1

and S

2


on
entri
, therefore the axis of rotation is the line through their 
enters.

This is exa
tly 
ase (2) of Theorem 16, and we have 
ompleted its proof.

5.2. Lines in proje
tive spa
e. We give the 
omplete geometri
 
hara
terization of


on�gurations in real proje
tive spa
e where the line `

2

lies in the plane at in�nity.

Theorem 20. Let S

1

and S

2

be two distin
t spheres and let `

1

lie in R

3

with `

2

a line at

in�nity skew to `

1

. There are in�nitely many lines that meet `

1

and `

2

and are tangent to

S

1

and S

2

in exa
tly the following 
ases.

(1) The spheres S

1

and S

2

are tangent to ea
h other at a point p whi
h lies on `

1

, and

`

2

is the line at in�nity in the 
ommon tangent plane to the spheres at the point p.

The pen
il of lines through p that lie in this tangent plane are exa
tly the 
ommon

transversals to `

1

and `

2

that are also tangent to S

1

and S

2

.

(2) Any line meeting `

1

and `

2

is perpendi
ular to `

1

and S

1

and S

2

are related to ea
h

other by multipli
ation by �1 in the dire
tions perpendi
ular to `

1

. Thus when `

1

is

not tangent to the spheres, we are in exa
tly the situation of Remark 15 of Se
tion 4

as shown in Figures 1(a) and 2(a).

Proof. Let � be any plane passing through a point of `

1

and 
ontaining `

2

. Then 
ommon

transversals to `

1

and `

2

are lines meeting `

1

that are parallel to �. Choose a Cartesian


oordinate system in R

3

su
h that `

1

is the x-axis. Suppose that S

1

has 
enter (a; b; 
)

T

and radius r. Let u = (u

1

; u

2

; 0)

T

and v = (v

1

; 0; v

3

)

T

be ve
tors with u

2

6= 0 and v

3

6= 0

parallel to �. Su
h ve
tors exist as `

1

and `

2

are skew. A 
ommon transversal to `

1

and `

2

is determined by the interse
tion point (x; 0; 0)

T

with `

1

and a dire
tion ve
tor


orresponding to the interse
tion point with `

2

, whi
h 
an be written as u+ zv for some

z 2 R, unless it is parallel to v. Sin
e S

1

has at most two tangent lines whi
h meet `

1
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that are parallel to v, so by omitting these we are not losing an in�nite family of 
ommon

transversals/tangents.

The transversals that are tangent to S

1

are parametrized by a 
urve C

1

in the xz-plane

with equation

0 = v

2

3

x

2

z

2

+ u

2

2

x

2

+ 2v

3

(
v

1

� av

3

)xz

2

+ 2(bu

2

v

1

+ 
u

1

v

3

)xz

+2u

2

(bu

1

�au

2

)x+ ((b

2

+ 


2

�r

2

)v

2

1

�2a
v

1

v

3

+ (a

2

+ b

2

�r

2

)v

2

3

)z

2

(5.3)

+2((b

2

+ 


2

� r

2

)u

1

v

1

� a
u

1

v

3

� bu

2

(av

1

+ 
v

3

))z

+((b

2

+ 


2

� r

2

)u

2

1

� 2abu

1

u

2

+ (a

2

+ 


2

� r

2

)u

2

2

)

The transversals tangent to S

2

are parametrized by a similar 
urve C

2

. There are in�nitely

many lines that meet `

1

and `

2

and are tangent to S

1

and S

2

if and only if C

1

and C

2

have a 
ommon non-empty real 
omponent.

It is easy to see from the 
oeÆ
ients of xz

2

, xz and x and the 
onstant term that if

u

1

6= 0 or v

1

6= 0, then C

1

determines a, b, 
 and r

2

and therefore S

1

uniquely, so if

C

1

is irredu
ible and u

1

6= 0 or v

1

6= 0, then there 
annot be in�nitely many 
ommon

transversals that are tangent to S

1

and S

2

.

Assume now that u

1

= v

1

= 0, this is equivalent to the plane � being perpendi
ular to

`

1

. From the 
oeÆ
ient of x we 
an determine a, and then from the 
oeÆ
ients of z

2

, z,

and the 
onstant term we 
an 
al
ulate the quantities � = 


2

�r

2

, � = b
, and 
 = b

2

�r

2

.

The equation (�+ r

2

)(
 + r

2

)� �

2

= 0 is a quadrati
 equation for r

2

with solutions

r

2

=

1

2

�

�� � 
 �

p

(�� 
)

2

+ 4�

2

�

:

Only the larger root is feasible, even when both are positive, sin
e both � + r

2

= 


2

and


 + r

2

= b

2

must be non-negative. Hen
e r

2

, and thus b

2

and 


2

are uniquely determined.

The values of b

2

, b
, and 


2

determine two possible pairs (b; 
) whi
h are negatives of

ea
h other. This is exa
tly 
ase (2) of the theorem. In fa
t, this 
ase is illustrated by

Figures 1(a) and 2(b).

Let us now 
onsider the 
ases when C

1

is redu
ible. As in the proof of Theorem 16, we

need only 
onsider 
ubi
s and fa
tors of the form xz + sx+ tz + u, x� x

0

, and z � z

0

.

Assume that C

1

has a 
omponent with equation xz + sx+ tz + u. As des
ribed in the

proof of Theorem 16, this establishes an isomorphism between the proje
tivizations of `

1

and `

2

. The lines 
onne
ting the 
orresponding points of the proje
tivizations of `

1

and

`

2

sweep out a hyperboli
 paraboloid. However, the lines in one ruling of the hyperboli


paraboloid 
annot all be tangent to a sphere, therefore this 
ase 
annot o

ur.

Likewise, the fa
tor z�z

0


annot appear, sin
e it would mean that all the lines through

a point of `

1

parallel to a 
ertain dire
tion are tangent to S

1

, whi
h is 
learly impossible.

Consider the 
ase where the equation of C

1

has a fa
tor of x � x

0

. As we saw in the

proof of Theorem 16, `

1

meets the sphere S

1

at the point p := (x

0

; 0; 0)

T

, and `

2

lies in

the tangent plane to S

1

at p, and so this tangent plane is parallel to �.

If x� x

0

is a fa
tor of C

2

, too, then C

2

passes through p and its tangent plane there is

also parallel to �, so we have 
ase (1) of the theorem.
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To �nish the proof we investigate what happens if the 
ommon 
omponent of C

1

and

C

2

is the 
ubi
 obtained from C

1

after removing the line x� x

0

= 0.

The 
enter of S

1

has 
oordinates (x

0

+ �u

2

v

3

;��u

1

v

3

;��u

2

v

1

)

T

for some � 2 R, sin
e

S

1

passes through (x

0

; 0; 0)

T

and its tangent plane there is parallel to �, and we have

r

2

= �

2

(u

2

1

v

2

3

+ u

2

2

v

2

1

+ u

2

2

v

2

3

). Substituting this into (5.3) we obtain the equation of the

remaining 
ubi
,

v

2

3

xz

2

+ u

2

2

x� v

3

(x

0

v

3

+ 2�u

2

(v

2

1

+ v

2

3

))z

2

�4�u

1

u

2

v

1

v

3

z � u

2

(x

0

u

2

+ 2�v

3

(u

2

1

+ u

2

2

)) = 0:

If u

1

6= 0 or v

1

6= 0 then from the 
oeÆ
ients of this 
urve we 
an determine x

0

and �,

hen
e S

1

uniquely, so C

1

and C

2


annot have a 
ommon 
ubi
 
omponent. If u

1

= v

1

= 0

then the above equation fa
torizes as

(x� (2�u

2

v

3

+ x

0

))(v

2

3

z

2

+ u

2

2

) = 0;

so if C

2


ontains the 
urve de�ned by this equation, then the line x� (2�u

2

v

3

+x

0

) = 0 is

a 
ommon 
omponent of both C

1

and C

2

, whi
h is a 
ase we have already dealt with.

Appendix A. Cal
ulations from Se
tion 3

We des
ribe the 
omputation of Se
tion 3 in mu
h more detail, giving a 
ommentary

on the Singular �le that a

omplishes the 
omputation and displaying its output. The

input and output are displayed in typewriter font on separate lines and the output begins

with the Singular 
omment 
hara
ters (//).

The library primde
.lib 
ontains the fun
tion sat for saturating ideals, and the option

redSB for
es Singular to work with redu
ed Gr�obner (standard) bases.

LIB "primde
.lib";

option(redSB);

We initialize our ring.

ring R = 0, (s,t, a,b,
,d,e,f,g,h,k,l), (dp(2), dp(10));

The underlying 
oeÆ
ient �eld has 
hara
teristi
 0 (so it is Q ) and variables s; t; a; : : : ; k; l,

with a produ
t term order 
hosen to simplify our analysis of the proje
tion to C

2

, the

spa
e of parameters.

We 
onsider the ideal generated by (3.5)

ideal I = el-g^2, ek-gf, ak-d
, ah-
^2;

and by the 2� 2 minors of the 
oeÆ
ient matrix (3.6).

matrix M[2℄[5℄ = s , 1-s , -2 , 1-t , t ,

al-d^2, 2*(bl-dg), 2*(2bk-
g-df), 2*(bh-
f), eh-f^2;

I = I + minor(M,2);

We 
he
k the dimension and degree (multipli
ity) of the variety V(I), �rst 
omputing a

Gr�obner basis for I.

I = std(I); dim(I), mult(I);

// 6 8
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Singular gives the dimension of V(I) in aÆne spa
e C

12

. Sin
e I is homogeneous in the

variables a; b; : : : ; h; k; l, we 
onsider V(I) to be a subvariety of P

9

� C

2

. Its dimension

is one less than that of the 
orresponding aÆne variety. Thus V(I) has dimension 5 and

degree 8.

In Se
tion 3, we identi�ed three spurious 
omponents of V(I) whi
h we remove. The

�rst and largest is the ideal of rank 1 quadri
s, given by the 2 � 2-minors of the 4 � 4-

symmetri
 matrix (3.3).

matrix Q[4℄[4℄ = a , b , 
 , d ,

b , e , f , g ,


 , f , h , k ,

d , g , k , l ;

ideal E1 = std(minor(Q,2));

We remove this spurious 
omponent by 
omputing the quotient ideal (I : E

1

).

I = std(quotient(I,E1)); dim(I), mult(I);

// 5 20

The other two spurious 
omponents des
ribe rank 2 quadri
s whi
h are unions of two

planes with interse
tion line `

1

or `

2

.

ideal E2 = g, f, e, d, 
, b, a; // interse
tion line l1

ideal E3 = l, k, h, g, f, d, 
; // interse
tion line l2

The 
orresponding 
omponents are not redu
ed; rather than take ideal quotients, we

saturate the ideal I with respe
t to these spurious ideals. The Singular 
ommand sat

for saturation returns a pair whose �rst 
omponent is a Gr�obner basis of the saturation

and the se
ond is the saturation exponent. Here, both saturations have exponent 4. We

saturate I with respe
t to E

2

,

I = sat(I,E2)[1℄; dim(I), mult(I);

// 5 10

and then with respe
t to E

3

.

ideal J = sat(I,E3)[1℄; dim(J), mult(J);

// 4 120

Thus we now have a variety V(J) of dimension 3 in P

9

� C

2

. We 
he
k that it proje
ts

onto the spa
e C

2

of parameters by eliminating the variables a; b; : : : ; h; k; l from J .

eliminate(J, ab
defghkl);

// _[1℄=0

Sin
e we obtain the zero ideal, the image of V(J) is Zariski dense in C

2

[2, Chapter 4, x4℄.

However, the proje
tion P

9

� C

2

� C

2

is a 
losed map, so the image of V(J) is C

2

. Thus,

for every smooth (2; 2)-
urve C de�ned by (2.5), there is a quadri
 whose transversal

tangents are des
ribed by the 
urve C.

We now apply the fa
torization Gr�obner basis algorithm fa
std to J . The se
ond

argument of fa
std is the list of non-zero 
onstraints whi
h are given by Theorem 7.

ideal L = s, t, t-1, s-1, s-t;

list F = fa
std(J,L);
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Singular 
omputes seven fa
tors

size(F);

// 7

Sin
e J and the seven fa
tors F

1

; : : : ; F

7

are radi
al ideals, this fa
torization 
an be veri�ed

by 
he
king that that the following ideals V

1

and V

2


oin
ide. (This part of the 
al
ulation

is ar
hived on the web page a

ompanying this arti
le.)

int i;

ideal FF = 1;

for (i = 1; i <= 7; i++) { FF = interse
t(FF,F[i℄); }

ideal V1, V2;

V1 = std(sat(sat(sat(sat(sat(FF,t)[1℄,s)[1℄,t-1)[1℄,s-1)[1℄,s-t)[1℄);

V2 = std(sat(sat(sat(sat(sat(J ,t)[1℄,s)[1℄,t-1)[1℄,s-1)[1℄,s-t)[1℄);

Note, in parti
ular, that for any given expli
it values of s; t satisfying the nonzero


onditions, the parametri
 fa
torization (in s; t) produ
ed by fa
std 
an be spe
ialized

to an expli
it fa
torization.

We examine the ideals in the list F , working over the ring with parameters.

ring S = (0,s,t), (a,b,
,d,e,f,g,h,k,l), lp; short = 0;

First, the ideal J has dimension 1 and degree 24 over this ring, as 
laimed.

ideal JS = std(imap(R,J)); dim(JS), mult(JS);

// 2 24

The �rst ideal in the list F has dimension 0.

setring R; FR = F[1℄; setring S;

FS = std(imap(R,FR)); dim(FS), mult(FS);

// 1 4

This ideal is a spurious 
omponent from the fa
torization. It is 
ontained in the spurious

ideal E

2

.

FS[5℄, FS[6℄, FS[7℄, FS[8℄, FS[9℄, FS[10℄, FS[11℄;

// g f e d 
 b a

The other six 
omponents ea
h have dimension 1 and degree 4, and ea
h 
ontains a

homogeneous quadrati
 polynomial in the variables x and y.

for (i = 2; i <= 7; i++) {

setring R; FR = F[i℄; setring S;

FS = std(imap(R,FR)); dim(FS), mult(FS);

FS[1℄;

print("--------------------------------");

}

// 2 4

// (-s^2+2*s-1)*k^2+(2*s-2)*k*l+(s*t-1)*l^2

// --------------------------------

// 2 4

// (s-1)*k^2-2*k*l-l^2
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// --------------------------------

// 2 4

// (s^2-2*s+1)*k^2+(-2*s+2)*k*l+(-t+1)*l^2

// --------------------------------

// 2 4

// (s^2-2*s+1)*k^2+(-2*s+2)*k*l+(-t+1)*l^2

// --------------------------------

// 2 4

// (s-1)*k^2-2*k*l-l^2

// --------------------------------

// 2 4

// (-s^2+2*s-1)*k^2+(2*s-2)*k*l+(s*t-1)*l^2

// --------------------------------

The whole 
omputation takes 7 minutes CPU time on an 800 Mhz Pentium III pro
essor,

and 3 minutes of that time are spent on the fa
std operation.

Ea
h of these homogeneous quadrati
 polynomials fa
tors over Q (

p

s;

p

t), and indu
es

a fa
torization of the 
orresponding ideal. We des
ribe this fa
torization|whi
h is 
arried

out by hand|in detail for the se
ond 
omponent F

2

. We start from the Gr�obner basis of

the ideal F

2


omputed in the program above,

(s� 1)k

2

� 2kl � l

2

; (s� 1)h+ (2t� 2)k + (t� 1)l; f l � gk;

el � g

2

; d+ f + g; 
; 2b+ e; a;

(s� 1)fk � 2gk � gl; (s� 1)f

2

� 2fg � g

2

; ek � fg :

(A.1)

Over Q (

p

s;

p

t), the �rst polynomial fa
tors into

�

(

p

s+ 1)k + l

� �

(

p

s� 1)k � l

�

:

We 
onsider the �rst fa
tor; the se
ond one 
an be treated similarly. Substituting l =

�(

p

s+ 1)k into the generator fl � gk, that one fa
tors into

�k

�

(

p

s+ 1)f + g

�

:

Sin
e any zero of F

2

with k = 0 would imply a = 
 = d = f = g = h = k = l = 0 and thus

be 
ontained in V(E

3

), we 
an divide by k and obtain a linear polynomial. Altogether,

the �rst two rows of (A.1) be
ome a set of seven independent linear polynomials and

one quadrati
 polynomial el � g

2

. For any pair (s; t) satisfying (2.6) they de�ne a plane


oni
. We leave it to the reader to verify that the three polynomials in the third row are


ontained in the ideal generated by the �rst two rows, after the substitution.

In order to show that for none of the parameters s, t satisfying (2.6) the map ' vanishes

identi
ally on this 
oni
, 
onsider the following point p = (a; b; 
; d; e; d; f; g; h; k; l) on it:

�

0; �(

p

s+ 1)(s� 1); 0; �2

p

s(s� 1); 2(

p

s+ 1)(s� 1); �2(s� 1);

2(

p

s+ 1)(s� 1); 4(t� 1)� 2(t� 1)(

p

s+ 1); �2(s� 1); 2(

p

s+ 1)(s� 1)

2

�

:

The 
oeÆ
ient of w

2

z

2

in '(C) is

�4s(

p

s� 1)

2

(

p

s+ 1)

2

;
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so '(C) does not not vanish identi
ally.

In order to show that for all parameters s, t satisfying (2.6) the 12 
oni
s are distin
t,


onsider the quadrati
 polynomials in k and l in the Singular output above. In the

fa
torization over Q (

p

s;

p

t), the ideal of ea
h of the 12 
oni
s 
ontains a generator whi
h

is linear in k and l and independent of a; : : : ; h. To show the distin
tness of two 
oni
s,

we distinguish two 
ases.

If these linear homogeneous polynomials are distin
t (over Q (s; t)), then it 
an be


he
ked that for every given pair (s; t) they de�ne subspa
es whose restri
tions to (k; l) 6=

(0; 0) are disjoint.

In 
ase that the linear homogeneous polynomials 
oin
ide then it 
an be expli
itly


he
ked that both 
oni
s are distin
t. For example, both F

2

and F

5


ontain the fa
tor

(

p

s + 1)k + l in the �rst polynomial. As seen above, the 
orresponding 
oni
 of F

2

is


ontained in the subspa
e a = 
 = 0. Similarly, the 
orresponding 
oni
 of F

5

is 
ontained

in e = g = 0. Assuming that the two 
oni
s are equal for some pair (s; t), the equations

of the ideals 
an be used to show further a = b = 
 = � � � = h = 0. However, due to the

saturation with the ex
ess 
omponent E

2

this is not possible, and hen
e the two 
oni
s

are distin
t.

The same 
al
ulations for the other 
omponents are ar
hived at the web page of this

paper, http://www.math.umass.edu/~sottile/pages/2l2s.html and its mirrors main-

tained by the other authors.
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