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Chapter 1

Discrete Markov chains

1.1 Random paths; stochastic and Markovian dy-
namics

Recall: An S-valued random variable X (where S is a space of possible outcomes)
models the random choice of an element in S. We will focus on the case where S
consists of paths x = (xt) in some state space S0. Here, xt is the state at time t,
and time may be modelled either as discrete or continuouos.

A stochastic process is thus a random variable taking its values in a path space S.
In later chapters, we will turn to continuous time and look e.g. at continuous

real-valued paths. In the present chapter we will concentrate on discrete time and
discrete state space { many important concepts will become clear already in this
case. Thus, in this chapter our path space will be of the form S = SN00 , with S0
some �nite or countable set.

In order to specify the distribution of our random path X = (X0; X1; : : : ) within
some probability model, we will have to agree, for a reasonably rich class of subsets
B of S, on the probability of the event fX 2 Bg (read \X falls in B"). A reasonable
and intuitive procedure for this is to tell how to start and how to proceed. In other
words, we are going to specify an initial distribution and a stochastic dynamics.
Now then!

Let � be a probability measure on S0 (given by the nonnegative probabil-
ity weights �(x0); x0 2 S0), and let, for each n 2 N0 and x0; : : : ; xn�1 2 S0,
Pn((x0; : : : ; xn�1); :) be probability weights on S0.

Imagining that Pn((x0; : : : ; xn�1); xn) should be the conditional probability of
the event fXn = xng, given f(X0; : : : ; Xn�1) = (x0; : : : ; xn�1)g, it makes perfect
sense in view of the multiplication rule to de�ne

P[(X0; : : : ; Xn) = (x0; : : : ; xn)] := �(x0)P1(x0; x1) : : : Pn((x0; : : : ; xn�1); xn)(1.1)

The l.h.s. of (1.1) can be written as P[X 2 Bx0;::: ;xn ], where

Bx0;::: ;xn = f(x0; : : :xn)g � S
fn+1;n+2;:::g
0 � S (1.2)

A theorem due to Ionescu-Tulcea tells us that (1.1) uniquely extends to a probability
measure B 7! P[X 2 B], B 2 S, where S is the �-algebra generated by all sets of
the form (1.2).

Little can be said on interesting properties ofX on this level of generality. There
is, however, a rich theory for time homogeneous, Markovian stochastic dynamics,
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CHAPTER 1. DISCRETE MARKOV CHAINS 4

where

Pn((x0; : : : ; xn�1); xn) = P (xn�1; xn) (1.3)

for a stochastic matrix P = P (y; z); y; z 2 S0, i.e. a matrix with nonnegative entries
and each of whose rows sums to one.

In the following, we will consider a time-homogenousMarkovian dynamics (given
by a stochastic matrix P on S0) as �xed, and vary the initial distribution �, which
we wrte as a subscript to P:

P�[(X0; : : : ; Xn) = (x0; : : : ; xn)] := �(x0)P (x0; x1) : : :P (xn�1; xn): (1.4)

We call a random path X with distribution given by (1.4) a Markov chain with
transition matrix P and initial distribution � (or Markov-(�; P )- for short).

For a deterministic start in z 2 S0, i.e. � = Æz, we write PÆz =: Pz for short.
It is elementary to verify the so called Markov property: For all z0; : : : ; zn 2 S0

with P�[(X0; : : : ; Xn) = (z0; : : : ; zn)] > 0

P�[(Xn; : : : ; Xn+h) = (x0; : : :xh) j (X0; : : :Xn) = (z0; : : : zn)]

= Pzn [(X0; : : : ; Xh) = (x0; : : :xh)]: (1.5)

This extends to

P�[(Xn; Xn+1; : : : ) 2 B j (X0; : : :Xn) = (z0; : : : zn)] = Pzn [(X0; X1; : : : ) 2 B]

for all B 2 S. In other words, conditional on fXn = zg, (Xn+k)k�0 is Markov-
(Æz ; P ) and independent of (X0; : : :Xn).

1.2 Excursions from a state; recurrence and tran-
sience

The path of a Markov chain \starts a new life" (independent of its past) given its
present state not only at a �xed time n, but also at certain random times read o�
from the path, e.g. at the so called return times to a �xed state z.

For z 2 S0, we put Rz := R1
z := inffn > 0 : Xn = zg, and call it the �rst passage

time of X to z. For paths starting in z, we speak also of the (�rst) return time to z.
Using the convention that the in�mum of the empty set is 1, we observe that the
event fRz =1g equals the event thatX never returns to z. WriteXz := (Xk)k<Rz

;
in case X0 = z, we call it (the �rst) excursion of X from z. We say that Xz escapes
from z if Rz =1.

Now let Xz;1; Xz;2; : : : be independent, identically distributed (\i.i.d") copies
of Xz under Pz, and let L be the smallest integer for which Xz;L escapes from
z (we put L = 1 if all of the Xz;k return to z). By \piecing together" the
Xz;1; Xz;2; : : : ; Xz;L in case L is �nite, and all the Xz;1; Xz;2; : : : in case L is
in�nite, we arrive at a random path Y whose distribution is the same as that of X
under Pz.

Obviously, L can be viewed as the waiting time to the �rst success in a coin
tossing experiment with success probability Pz[Rz = 1]. Such a waiting time is
�nite i� the success probability is strictly positive. In this case, i.e. if Pz[Rz =
1] > 0, we call the state z transient. Otherwise, i.e. if Pz[Rz < 1] = 1, we call
the state z recurrent.

In a coin tossing experiment with success probability p, the expected waiting
time to the �rst success is 1=p (check!), hence it is �nite i� p > 0. This, in turn, is
the case i� the (random) waiting time to the �rst success is �nite a.s.
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Coming back to our picture of excursions from z, and writing

V (z) := #fn � 0 : Xn = zg =
1X
n=0

IfXn=zg

for the number of visits in the state z of the path X, we see that we have proved

Proposition 1.2.1 : Let z be a state in S0.
(i) z is recurrent , Pz[V (z) =1] = 1 , Ez [V (z)] =1.
(ii)z is transient , Pz[V (z) <1] = 1 , Ez[V (z)] <1.

Can it happen that some state is transient, whereas another one is recurrent?
Yes, as the following simple example shows:

S0 = f0; 1g; P (0; 0) = P (1; 0) = 1:

Here, state 1 ist transient and state 0 is recurrent. Note however, that state 1
\cannot be reached" from state 1. Let`s make precise what we mean by this.

De�nition 1.2.1 For two states y; z 2 S0 we say that z can be reached from y if,
for some n � 0, Pn(y; z) > 0.

Here, Pn denotes the n-th power of the stochastic matrix P , de�ned inductively by
P 0(y; z) := Æy;z, P

1 := P , Pn(y; z) :=
P
x
Pn�1(y; x)P (x; z).

Remark 1.2.1 For y 6= z, z can be reached from y i� Py[Rz < 1] > 0: Indeed,
for n > 1,

Pn(y; z) = Py[Xn = z] � Py[Rz � n] � Py[Rz <1];

and conversely,

Py[Rz <1] = Py[Xn = z for some n > 0] �
X
n>0

Pn(y; z):

The next lemma states that no transient state can be reached from a recurrent
one, and that reachability is in fact an equivalence relation on the recurrent states.

Lemma 1.2.1 Assume y 2 S0 is recurrent, and z 2 S0 can be reached from y.
Then

a) Py[V (z) =1] = 1
b) y can be reached from z
c) z is recurrent.

Proof. a) The random path X visits z in every excursion from y with positive
probability, and, since y is recurrent, there are in�nitely many trials.

b) Assume y cannot be reached from z. Then, starting from y, X would reach
z with positive probability and afterwards never return to y, which contradicts the
recurrence of y.

c) Starting from z, X hits y with positive probability, and from there it has, in
each of its in�tely many independent excursions, the same positive probability to
visit z. Hence Pz[V (z) =1] > 0, and z is recurrent. 2

The previous lemma implies that S0 can be partitioned into its subset of tran-
sient states and an at most countable number of so-called irreducible recurrent
components, all of which consist of mutually reachable recurrent states.

De�nition 1.2.2 We call S0 (or, more exactly, P ), irreducible recurrent if any
two states can be reached from each other, and one (and hence any) state in S0 is
recurrent. (In other words, S0 is irreducible recurrent if it consists of exactly one
irreducible recurrent component.)
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1.3 Renewal chains

The following class of examples will be basic for what follows.
Take N as the set of states, and consider a transition matrix p = (pi;j)i;j2Non

N with the property pi;i�1 = 1 (i > 1). The dynamics of the corresponding Markov
chain Y can be described as follows:

Y moves down to 1 \at unit speed"; after having reached 1, it jumps to k with
probability p1;k. Think of Y as the residual lifetime of a certain device. When it
expires, the device is replaced by a new one; all the lifetimes are independent copies
of the return time R1 under P1 (note also that P1[R1 = k] = p1;k; k � 1). Having
this picture in mind, we call Y a renewal chain (with lifetime distribution (p1;k)).

Obviously, the state 1 is always recurrent. What about all the other states? If
there are arbitrarily large k 2 N such that p1;k > 0, then p is irreducible recurrent.
If, on the other hand, K := supfk : p1;k > 0g <1g, then all k > K are transient.
However, in this case (pi;j)1�i;j�K is an irreducible recurrent stochastic matrix.

1.4 Equilibrium distributions

De�nition 1.4.1 A probability measure � on S0 is called an equilibrium distribu-
tion for P if

�P = �:

This is equivalent to the distribution of X under P� being time-stationary (or
invariant under time shift):

P�[(X0; X1; : : : ) 2 �] = P�[(Xn; Xn; : : : ) 2 �]; ; n 2 N:
Does there exist an equilibrium distribution, �, say, for the renewal chain with
transition matrix p as described in Subsection 1.3? This amounts to require

�i = �i+1 + �1p1;i; i = 1; 2; : : : (1.6)

Summing this from i = 1 to i = k � 1 we get

��k + �1 = �1

k�1X
i=1

p1;i

or equivalently

�k = �1

1X
i=k

p1;i = �1P[R � k]; (1.7)

where R is a random variable with P[R = j] := p1;j; j = 1; 2 : : :
Summing this from k = 1 to 1, we arrive at

1 = �1

1X
k=1

P[R � k] = �1

1X
k=1

X
j�k

P[R = j] = �1

1X
j=1

X
k�j

P[R = j]

= �1

1X
j=1

jP[R = j] = �1ER

This can be satis�ed i� ER <1, i.e. if the expected return time to 0 is �nite when
starting from 0. In this case we have the fundamental identity

�1 =
1

ER
(1.8)
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which has a very intuitive interpretation:
In a renewal chain, the equilibrium weight of state 1 is the inverse of the expected

duration of an excursion from 1.
We will soon see how (1.8) extends to general discrete state spaces: all we have

to require is, apart from irreducibility, that the expected return times are �nite.
To prepare this, let us state a simple

Proposition 1.4.1 a) If z is transient, then Ey[V (z)] <1 for all y 2 S0.
b) If � is an equilibrium distribution and �(z) > 0, then z is recurrent.

Proof. a) We may assume y 6= z. Then

Ey[V (z)] = Py[Rz <1] �Ez [V (z)] <1:

b) Assume z were transient. Then, because of a),

1X
n=0

Pn(y; z) <1 for all y 2 S0:

A fortiori, Pn(y; z) ! 0 for all y 2 S0: Because of dominated convergence (see
Lemma 1.4.1 below), X

y2S0
�(y)Pn(y; z)! 0: (1.9)

But the l.h.s. of (1.9) is for all n 2 N equal to �(z)>0, which is a contradiction. 2
We have to append

Lemma 1.4.1 (Dominated convergence, discrete case) Let m be a measure on S0
(given by the nonnegative weights m(y), y 2 S0), and let g : S0 ! R+ be m-
integrable, i.e.

P
y2S0

g(y)m(y) < 1. In addition, let fn be a sequence of real-valued

functions on S0 which is dominated by g (in the sense that jfnj � g for all n) and
which converges pointwise to some f . ThenX

y2S0
jfn(y) � f(y)jm(y) ! 0

and a fortiori X
y2S0

fn(y)m(y) !
X
y2S0

f(y)m(y):

Proof. For given " choose a �nite K � S0 such that
P
y=2K

g(y) < ". Then

lim sup
X
y2S0

jfn(y) � f(y)jm(y) � lim sup
X
y2K

jfn(y) � f(y)jm(y) + 2" = 2":

2

Remark 1.4.1 Let � be an equilibrium distribution on S0, and let C1; C2; : : : be the
irrudicible recurrent components of S0. If, for some i, �(Ci) > 0, then also �(:jCi) is
an equilibrium distribution (check!), and � has the so-called ergodic decomposition

� =
X

i:�(Ci)>0

�(Ci)�(:jCi)

We say that � is ergodic if it is concentrated on a single irreducible recurrent com-
ponent.
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Theorem 1.4.1 For an ergodic equilibrium distribution � and any state z such
that �(z) > 0,

�(z) =
1

Ez(Rz)
:

Proof. First note that by the assumed ergodicity of � and because of Lemma
1.2.1.a), P�-almost all paths X visit z in�nitely many often. For such paths, de�ne
Tz;k as the time of the k-th visit to z, and put Yn := inffTz;k � n : Tz;k > n; k �
1g: Then under P�, Y = (Yn) is a time stationary renewal chain whose lifetime
distribution equals the distribution of Rz under Pz. Since �(z) = P�[X = z] =
P�[X0 = z] = P�[Y0 = 0], the assertion follows from (1.8). 2

Corollary 1.4.1 An irreducible recurrent Markov chain has at most one equilib-
rium distribution. If it has one, then all states z are positive recurrent, that is
Ez[Rz] <1.

What about existence of an equilibrium distribution in the positive recurrent case?
The situation is as nice as it can be: for �xed z, the expected number of visits in
y in an excursion from z, divided by the expected duration of the excursion, is an
equilibrium distribution! (Because of Corollary 1.4.1, this is then the equilibrium
distribution.)

Well then! For �xed z 2 S0, we put

mz(y) := Ez [
RzX
n=1

IfXn=yg]: (1.10)

This de�nes a measure on S0 whose total mass mz(S0) = Ez[Rz] is �nite i� z is
positive recurrent.

Theorem 1.4.2 Assume z 2 S0 is recurrent. Then mz is a P -invariant measure,
that is, for all y 2 S0 X

x2S0
mz(x)P (x; y) = mz(y): (1.11)

In particular, if z is positive recurrent, then 1
mz(S0)

mz =: � is the unique equi-

librium distribution, and for all �-integrable f : S0 ! R, that is, for all f withP jf(y)j�(y) <1 we have

Ez

"
RzX
n=1

f(Xn)

#
= Ez [Rz]

X
y2S0

f(y)�(y): (1.12)

Proof. Since z is recurrent, under Pz we have Rz < 1 and X0 = XRz
= z with

probability one. Therefore, it makes no di�erence if we count the visit to z at the
end or at the beginning of the excursion, and so we have for all x 2 S0

mz(x) = Ez[
RzX
n=1

IfXn�1=xg] =
1X
n=1

Pz[Xn�1 = x; n � Rz]:

Noting that the event fRz � ng depends only on X0; : : : ; Xn�1, we observe, using
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the Markov property at time n� 1,

X
x

mz(x)P (x; y) =
X
x

1X
n=1

Pz[Xn�1 = x; n � Rz]P (x; y)

=
X
x

1X
n=1

Pz[Xn�1 = x;Xn = y; n � Rz]

=
1X
n=1

Pz[Xn = y; n � Rz]

= Ez

"
RzX
n=1

IfXn=yg

#
= mz(y):

Thus, mz de�ned by (1.10) obeys (1.11). If z is positive recurrent, then mz(S0) =
Ez[Rz] < 1. Hence, because of Corollary 1.4.1, 1

mz(S0)
mz =: � is the equilibrium

distribution. For f := 1fxg; x 2 S0, (1.12) is clear; for general �-integrable f , (1.12)
follows by linearity. 2

1.5 The ergodic theorem for Markov chains

The next result is intimately connected with the law of large numbers which we
recall �rst.

Theorem 1.5.1 (Strong law of large numbers) Let Z1; Z2; : : : be i.i.d. real-valued
random variables with �nite expectation �. Then

1

k

kX
j=1

Zj ! � almost surely as k!1:

In words: The \empirical mean" (i.e. the arithmetic mean of Z1; : : :Zk) con-
verges (as k!1) with probability 1 to the \theoretical mean" (i.e. the expectation
�).

Theorem 1.5.2 Assume P is irreducible and positive recurrent, and denote by � its
equilibrium distribution. Let f : S0 ! R be �-integrable, that is

P
y jf(y)j�(y) <1.

Then for all z 2 S0;

1

n

n�1X
i=0

f(Xi)
n!1�!

X
y

f(y)�(y) Pz almost surely.

In words: For any (reasonable) real-valued function f de�ned on the state space,
the \time average" (i.e. the arithmetical mean of f(X0); : : : ; f(Xn�1)) along the
path converges a.s. to the \space average", i.e. the expectation of f(y) with respect
to the equilibriumdistribution concentrated on the respective component { provided
this equilibrium distribution exists.

Proof: It suÆces to consider the case f � 0 (write f as the di�erence of its
positive part f+ := sup(f; 0) and its negative part f� := � inf(f; 0)). We �rst
consider the random sequence T1; T2; : : : of the �rst, second, : : : return time to z

and put T0 := 0. Then
Tk�1P
i=0

f(Xi) is the sum of k i.i.d. random variables, each with
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expectation Ez [Rz]
P

y f(y)�(y) (by theorem 1.4.2), Thus we obtain by the law of
large numbers

1

k

Tk�1X
i=0

f(Xi) �! Ez [Rz]
X
y

f(y)�(y) Pz a.s. as k !1:

On the other hand, also Tk is, under Pz, the sum of k i.i.d. random variables, each
with expectation Ez [Rz]. Hence, again by the strong law of large numbers,

Tk
k
�! E[Rz] Pz a.s. as k !1; (1.13)

and therefore

1

Tk

Tk�1X
i=0

f(Xi) �!
X
y

f(y)�(y) Pz a.s. as k!1: (1.14)

Put K(n) := maxfk : Tk � ng, that is, K(n) is the number of returns up to

(and including) time n (note also that K(n) =
nP
i=1

IfXi=zg). Obviously we have

TK(n) � n < TK(n)+1 and

K(n)!1 Pz a.s. as n!1 (1.15)

because of the assumed recurrence.
We then have

1

TK(n)+1

TK(n)�1X
i=0

f(Xi) � 1

n

n�1X
i=0

f(Xi) � 1

TK(n)

TK(n)+1�1X
i=0

f(Xi):

Noting that TK(n)=TK(n)+1 �! 1 Pz a.s. as n!1 because of (1.15) and (1.13),
we infer from (1.14) that both the the l.h.s. and the r.h.s. converge to

P
y f(y)�(dy)

Pz a.s. Hence the claim follows. 2

1.6 Convergence to equilibrium

If � is an equilibrium distribution, does Pz[Xn = x] = Pn(z; x) converge to �(x) as
n!1 for arbitrary initial states z ?
There are simple counterexamples. Perhaps the simplest is

S0 = f0; 1g; P (0; 1) = P (1; 0) = 1:

Then �(0) = �(1) = 1
2 ; P 2n(0; 0) = 1; P 2n+1(0; 0) = 0: But in fact this kind of

periodicity is all what can cause troubles.
A state z is called aperiodic for P if Pn(z; z) > 0 for some n 2 N and if the greatest
common divisor of fn 2 N : Pn(z; z) > 0g is 1. A transition matrix P is called
aperiodic if all states have this property. Let us state the following elementary
lemma from the realm of \discrete mathematics". We leave its proof as an exercise
(see, e.g. Appendix 1 of P. Bremaud, Markov Chains, Springer 1999)

Lemma 1.6.1 Let K be a nonempty set of positive integers which is closed under
addition. Then the greatest common divisor of K is 1 i� N nK is �nite.

Corollary 1.6.1 : a) z is aperiodic i� Pn(z; z) > 0 for all suÆciently large n.
b) If S0 is irreducible and some z 2 S0 is aperiodic, then all states in S0 are

aperiodic.
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Proof: a) Put K := fn 2 N j Pn(z; z) > 0g and note that K is closed under
addition.

b) For some k; l, and all suÆciently large n we have

P k+l+n(y; y) � P k(y; z) � Pn(z; z) � P l(z; y) > 0: 2

Theorem 1.6.1 Let P be irreducible and aperiodic, and suppose that P has an
equilibrium distribution �. Let � be any distribution. Then P�[Xn = x] �! �(x)
as n!1 for all x. In particular,

Pn(z; x) �! �(x) for all z; x:

Proof: We follow the book of J.R. Norris (Markov Chains, Cambridge University
Press 1997). The proof uses the idea of coupling, which goes back to Wolfgang
Doeblin, who died as a soldier in World War II in his twenties. Intuitively, the trick
is as follows: Take a chain Y which starts in equilibrium � and is independent of X.
First followX, wait until X and Y meet, and from this time proceed with Y instead
of X. Then the distance from the distribution of Xn to � can be estimated by the
probability that X and Y haven't met by time n. To make things still simpler, let
us wait till X and Y meet at some predescribed state b, i.e. we put

T := inffn � 1 : Xn = Yn = bg

We claim that P[T < 1] = 1. Indeed, the process Wn = (Xn; Yn) is a Markov
chain on S0 � S0 with transition matrix

~P ((x; y); (u; v)) := P (x; u)P (y; v)

and initial distribution
~�(x; y) := �(x)�(y):

Since P is aperiodic, for all states x; y; u; v we have

~Pn((x; y); (u; v)) = Pn(x; u)Pn(y; v) > 0

for all suÆciently large n, so ~P is irreducible. Also, ~P has an invariant distribution
given by

~�(x; y) := �(x)�(y)

(check!) so by Corollary 1.4.1, ~P is positive recurrent, and the claim follows.
Let us now put

Zn =

�
Xn if n < T
Yn if n � T

It is rather clear that Z is (�; P )-Markov. Here is a formal argument. For j > k,

P[(Z0; : : : ; Zk) = (x0; : : : ; xk);T = j] = P[(X0; : : : ; Xk) = (x0; : : : ; xk);T = j]

and for j � k,

P[(Z0; : : : ; Zk) = (x0; : : : ; xk);T = j]

= P[(X0; : : : ; Xj) = (x0; : : : ; xj); (Yj ; : : : ; Yk) = (xj; : : : ; xk);T = j]

= P[(X0; : : : ; Xj) = (x0; : : : ; xj);T = j]P (xj; xj+1) : : :P (xk�1; xk)

= P[(X0; : : : ; Xk) = (x0; : : : ; xk);T = j]:

Now sum over j to see that (X0; : : :Xk) and (Z0; : : :Zk) have the same distribution.
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We therefore have for all B � S0

j P[Xn 2 B]� �(B) j = j P[Zn 2 B]� P[Yn 2 B] j
= j P[Xn 2 B;n < T ] +P[Yn 2 B; n � T ]�P[Yn 2 B] j
= j P[Xn 2 B;n < T ]�P[Yn 2 B;n < T ] j
� P[n < T ] �! 0 as n!1;

since T <1 P a.s

2

1.7 Optimal Stopping

Let f be a nonnegative function on S0, and think of f(x); x 2 S0 as the state-
dependent payo� you receive when stopping in x. You are allowed to specify
your stopping rule, in terms of some �nite stopping time T . Recall that this is
a Z+-valued random variable T = T (X) such that fT = ng depends only on
(X0; X1; : : : ; Xn) for all n.
The expected payo� when using T and starting in x is Ex[f(XT )]. The task is to
maximize this. Question: What is the value

v(x) := sup
T
Ex[f(XT )] (1.16)

where sup
T

extends over all �nite stopping times T . And what about the best

stopping rule ?
Clearly, v � f , since T � 0 is a stopping rule. Intuitively, we would expect that

a best stopping rule, whenever it exists, should be of the form

T = TC ;

where C is some subset of S0, and TC is the �rst hitting time to C, i.e.

TC := inffn � 0 : Xn 2 Cg:

Assume that v(x) = Ex[f(XTC )], for some C � S0. Then a "�rst-step decomposi-
tion" shows that, for all x =2 C,

v(x) =
X
y2S0

P (x; y)v(y) =: Pv(x):

Moreover, we claim that

v � Pv on S0 (1.17)

(we say that v is superharmonic on S0).
Indeed, let us consider the stopping rule \�rst go one step according to P and

only afterwards stop when reaching C". This cannot be better than TC , hence

v(x) � Ex[f(X1+TC ((X1;X2;::: )))] = Ex[EX1 [f(XTC )]] = Ex[v(X1)] = Pv(x):

Recalling that v � f , v � Pv and

v(x) = f(x) for x 2 C (in other words, C � fy : v(y) = f(y)g)
v(x) = Pv(x) for x =2 C;
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we observe that
v = max(Pv; f);

In particular,

v = Pv on fv > fg (1.18)

(we say that v is harmonic on fv > fg).
Because of C � fv = fg, the path enters fv = fg not later than it enters C,

and as soon as we are in fv = fg, we can't do better than stopping immediately.
So why not try Tfv=fg, the �rst hitting time of fy : v(y) = f(y)g, as a stopping
rule ? All we have to show for this to work is

v(x) = Ex[v(XTfv=fg )]; x 2 S0: (1.19)

What will help us is (1.18), saying that v is P -harmonic outside of fv = fg:
Put Yn := v(Xn). Because of the Markov property we have

Ex[Yn+1 j (X0; X1; : : : ; Xn) = (x0; ::; xn)] =
X
y

P (xn; y)v(y):

Hence, using (1.17) we have

Ex[Yn+1 j (X0; : : : ; Xn) = (x0; : : : ; xn)] � v(xn)

This we write briey as

Ex[Yn+1 j (X0; : : : ; Xn)] � v(Xn) = Yn

We say that Y = (Yn) is an X-supermartingale: Y is "adapted to the past of X"
(here in fact even to the present), and the conditional expectation of Yn+1, given
the past of X up to time n, is less or equal Yn. Now let us "stop" Y at Tfv=fg,
putting

Mn := Yn^Tfv=fg :

By considering separately the events fTfv=fg � ng and fTfv=fg > ng and using
(1.18), it is easy to verify that

Ex[Mn+1 j (X0; : : :Xn)] =Mn

We say that M = (Mn) is a martingale. Later we will treat martingales more
systematically, and we will prove the important "stopping theorem":
Let � be an a.s. �nite stopping time. Then

a) For any non-negative supermartingale ~Y ,

E[ ~Y� ] � E[ ~Y0]

b) For any bounded martingale ~M ,

E[ ~M� ] = E[ ~M0]:

Putting � := Tfv=fg and ~Mn :=Mn, b) translates into (1.19).

All we did henceforth was starting from the hypothesis of a best stopping rule of
the form T = TC . Let us now, without this hypothesis, deduce the following result
on v given by (1.16)
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Theorem 1.7.1 :

a) v is the smallest superharmonic majorant of f

b) v = limvn ; where v0 := f; vn+1 := max(vn; P vn)

c) v = max(Pv; f) (and in particular, v is harmonic on fv > fg.

Proof:

a) (i) Any superharmonic g � f is even � v. Indeed, for any stopping time T ,
by the stopping theorem:

g(x) � Ex[g(XT )] � Ex[f(XT )]

Now take sup
T

on the r.h.s

(ii) v is superharmonic:
Let Tn be a sequence of stopping times such that for all x

Ex[f(XTn )] " v(x) as n!1

Consider the stopping time ~Tn := 1 + Tn((X1; X2; : : : )) Then

v(x) � Ex[f(X ~Tn )] = Ex[f(X1+Tn ((X1;X2;::: )))]

= Ex[EX1 [f(XTn )]] " Ex[v(X1)]

by monotone convergence. The r.h.s., however, equals Pv(x).

b) Let us show that ~v := limvn is the smallest superharmonic majorant of f :

i) ~v exists since vn "
ii) ~v is superharmonic, since by monotone convergence

P ~v = lim
n!1Pvn � lim

n!1vn+1 = ~v:

iii) Let f � g and g be superharmonic. We show vn � g by induction. This
holds for n = 0, since v0 = f . The induction hypothesis vn � g implies
Pvn � Pg � g , since g is superharmonic. Hence vn+1 = max(vn; P vn) �
g. Letting n tend to 1, we obtain ~v � g.

c) By induction we show
vn = max(f; Pvn�1) :

n = 1 : v1 = max(f; Pv0) = max(v0; P v0)
n! n+ 1 : vn+1 = max(vn; P vn) = max(f; Pvn�1; P vn) = max(f; Pvn)
Letting n!1 , we obtain from b): v = ~v = max(f; P ~v) = max(f; Pv):

2

Let us now assume that

Tfv=fg <1 Px a.s. (1.20)

and that f is bounded.
Then also v is bounded, and the stopping theorem for martingales implies

v(x) = Ex[v(XTfv=fg )] = Ex[f(XTfv=fg )];
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hence Tfv=fg is an optimal stopping rule. Moreover, if there is any optimal stop-
ping rule T , then (1.20) is automatic. Indeed, in this case we have, since v is a
superharmonic majorant of f :

v(x) � Ex[v(XT )] � Ex[f(XT )] = v(x):

Hence Ex[v(XT )] = Ex[f(XT )]. Together with v(XT ) � f(XT ) this implies

v(XT ) = f(XT ) Px a.s.

Hence XT 2 fv = fg Px a.s., or in other words

Tfv=fg � T Px a.s.

Thus, Tfv=fg is the smallest optimal stopping time.

1.8 Renewal chains revisited

Let us recall our picture of renewal chains. We �x a probability distribution % on N
and imagine a path moving down the nonnegative integers one by one. Whenever
the path hits state 0, God throws a die whose outcome R has distribution %, and
resets the state in the next step as R. In this way we obtain an N-valued Markov
chain with transition matrix (pi;j) given by

pi;i�1 = 1 i > 1
p1;j = %j j = 1; 2; : : :

Let us now keep track not only of the current state y but also of the length of the
excursion we are curently in. What is its equilibrium (resp. limiting) distribution?
The stochastic dynamics which describes the joint evolution of the current total
excursion length ` and the residual lifetime j is given by�

(`; y) �! (`; y � 1) with prob. 1 (1 < y � `)
(k; 1) �! (`; `) with prob. p1;` (k; ` � 1)

(1.21)

With a similar proviso as in Subsection 1.3, this dynamics is irreducible recurrent.
The conditions on the weights �(`; y) of an invariant measure � are

8<: �(`; `) =
1P
k=1

�(k; 1)p1;` ; ` � 1

�(`; y) = �(`; y + 1) ; 1 � y < `
(1.22)

The condition that � has total mass 1 is

1 =
X
`�1

X
1�y�`

�(`; y) =
X
`�1

`�(`; `) (1.23)

=
X
`�1

`p1;`

1X
k=0

�(k; 1) (1.24)

Recalling that p1;` = %`; ` = 1; 2; : : : ; and writingER :=
P
j�1

j%j for the expected

value of %, we arrive at

�1 :=
1X
k=1

�(k; 1) =
1

ER
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which is consistent with Subsection 1.4. For all ` � 1; 1 � y � ` we have the
following chain of equalities:

�(`; y) = �(`; `) = �1p1;` =
1

ER
%` =

1

`

`

ER
%` : (1.25)

Let us de�ne the size-biased distribution %̂ obtained from % by putting

%̂k :=
k

ER
%k: (1.26)

With this, (1.25) can be written as

�(`; y) =
1

`
%̂`; ` � 1; 1 � y � `:

We have proved:

Proposition 1.8.1 Assume ER <1.

Then the equilibrium distribution for the stochastic dynamics (1.21) is the distrib-
ution of the pair

(R̂; U [1; : : : ; R̂])

where R̂ has the size-biased distribution �̂ given by (1.26), and given R̂,
U [1; : : : ; R̂] is uniform on f1; : : : ; R̂g.
Remark 1.8.1 (cf. (1.7) and (1.8)) From (1.25) we obtain

�y :=
X
k�y

�(k; y) =
X
k�y

�(k; k) =
1

ER

X
k�y

%k =
1

ER
P[R � y]:

Remark 1.8.2 If we assume in addition that the greatest common divisor of fk :
%k > 0g is 1, then the stochastic dynamics (1.21) is aperiodic, and we have conver-
gence to equilibrium in the sense of Theorem 1.6.1.



Chapter 2

Renewal processes

2.1 The renewal points and the residual lifetime
process

We are going to parallel the picture of subsections 1.3 and 1.8, but now in continuous
time. For the whole chapter we �x the following framework: Let % be a distribution
on R+ = [0;1); and R;R1; R2; : : : be i.i.d with distribution %: Assume � := ER 2
(0;1): Let Y = (Yt) be an R+-valued stochastic process constructed as follows:
Starting from some Y0 in (0;1); Y moves down the positive half axis at unit speed.
When reaching 0; i.e. at time � := Y0; Y is set equal to R1 (so that Y�� = 0,
Y� = R1) and from there continues to move down at unit speed. At time Y0+R1; Y
is set equal to R2 and so on. In this way we get the renewal points

(T1; T2; : : : ) := (Y0; Y0 + R1; Y0 + R1 + R2; : : : ):

For t � 0 we de�ne N (t) to be the number of renewals up to and including time t:
In other words, putting T0 := 0; we have

N (t) = maxfn : Tn � tg: (2.1)

The strong law of large numbers gives

Tn
n
�! � a.s., (2.2)

hence with probability one only �nitely many renewals happen before t. Let us also
observe that, because of (2.2),

N (t) �!1 a.s. as t �!1: (2.3)

Note that
TN(t) � t < TN(t)+1

and
Yt = TN(t)+1 � t:

Proposition 2.1.1 lim
t!1

N(t)
t = 1

� a.s.

Proof: Compare to previous and next renewal times:

TN(t)

N (t)
� t

N (t)
� TN(t)+1

N (t) + 1

N (t) + 1

N (t)
:

Now use (2.2) and (2.3). 2
Almost sure convergence does not imply convergence of expectations. However,

in our case we have

17
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Proposition 2.1.2 (\Elementary Renewal Theorem")

lim
t!1

E[N (t)]

t
=

1

�

provided that EY0 <1:

Those who are interested in a proof can �nd it e.g. in the course notes "Applied
Stochastic Processes" by Russel Lyons which are based on Sheldon Ross' book
\Stochastic processes", 2nd ed., Wiley 1996, and are downloadable from Russel
Lyons' homepage: http://php.ucs.indiana.edu/~ rdlyons/home.html. The proof of
Proposition 2.1.2 given there uses Wald's identity, which is of interest in its own
right - we'll come back to this later.

2.2 Stationary renewal processes

Proposition 2.2.1 If Y0 has distribution density

g(y) :=
1

�
P[R � y] =

1

�
%((y;1)) (2.4)

then for all t > 0 , also Yt has distribution density g:

Before giving a clean (and still beautiful) proof of this proposition, we present a
quick, a bit dirty and still nice \di�erential" argument that the equilibrium density
of Y must be given by (2.4): The di�erential analogue of (1.6) in Subsection 1.4 is

g(r) = g(r + dr) + g(0)%(dr) (2.5)

Integrating this over r 2 [0; y) gives

�g(y) + g(0) = g(0) %([0; y));

or equivalently

g(y) = g(0)

Z
1fr�yg%(dr):

Integrating this from y = 0 to y = 1 and using the interchangeability of integrals
with nonnegative integrands, we arrive at

1 = g(0)

Z 1

0

r �(dr):

Although this argument, which parallels the derivation of (1.7) and (1.8) in
Subsection (1.4), is appealing and easy to remember, a direct rigorous derivation
of the di�erential equation (2.5) seems tricky. Let's therefore have another go and
prepare our rigorous proof of Proposition 2.2.1 with the following

Lemma 2.2.1 Assume Y0 has distribution density g given by (2.4).
a) P[T1 2 dt] = (1�P[R < t])dt=�
b) For all n � 2,

P[Tn 2 dt] = (P[R1+ : : :+Rn�1 < t]�P[R+R1 + : : :+Rn�1 < t]) dt=�:

c)
1P
n=1

P[Tn 2 dt] = dt=�
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Proof: a) P[T1 2 dt] = P[Y0 2 dt] = g(t)dt = (1�P[R < t])dt=�:

b) P[Tn 2 dt] =

Z
1[0;t)(s)P[R1 + : : :+Rn�1 2 ds]P[Y0 + s 2 dt]

=

Z
1[0;t)(s)P[R1 + : : :+Rn�1 2 ds] 1

�
(1� P[R < t� s])dt

= (P[R1+ : : :+ Rn�1 < t]�P[R1 + : : :+Rn�1 + R < t])dt=�:

c) follows by telescope summation. 2

In words, Lemma 2.2.1 says that the expected number of renewal points in a
set B � R+, when starting with Y0 in density g, is 1

� � Lebesgue measure of B. In

other words, the expected number of renewal points per time unit (the so called
renewal density) then is a constant (namely 1

� ), which clearly should be crucial for
stationarity.

Proof of Proposition 2.2.1:

P[Yt � b] =
1X
n=0

P[Yt � b;Nt = n]

= P[Y0 � t + b] +
1X
n=1

Z t

0

P[Tn 2 ds;Rn � t� s + b]

= P[Y0 � t + b] +
1X
n=1

Z t

0

P[Tn 2 ds]P[R � t � s + b]

=

Z 1

t+b

1

�
P[R � s]ds +

Z t

0

1

�
dsP[R � t � s + b]

=

Z 1

b

1

�
P[R � s]ds = P[Y0 � b]: 2

Like in subsection 1.8 we de�ne the size-biased lifetime distribution %̂ by

%̂(dr) :=
1

�
r%(dr)

and denote by R̂ a random variable with distribution %̂: Further, let U be a random
variable which is uniformly distributed on [0; 1] and independent of R̂.

Lemma 2.2.2 (compare to Remark 1.8.1 and Proposition 1.8.1)

g(r) =
1

E
RP[R > r]

is the distribution density of UR̂, where R̂ has distribution %̂ and U is uniform on
[0; 1] and independent of R̂.

Proof: Let h : R+ �! R+ be measurable

E[h(UR̂)] =

Z
E[h(Ur)]%̂(dr)

=
1

�

Z
rE[h(Ur)]%(dr)

=
1

�

Z
r
1

r

Z r

0

h(t)dt %(dr)

=
1

�

Z
R+

Z
R+

h(t)1ft�rgdt %(dr)

=
1

�

Z
R+

%([t;1))h(t)dt =

Z
g(t)h(t) dt: 2
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Paralleling subsection 1.8, we describe the dynamics which keeps track not only
of the residual lifetime Yt, but also of the current total lifetime Lt: The �rst compo-
nent of (Lt; Yt) remains constant while the second component decreases with unit
speed till it hits 0: Then both components jump to (R;R); where R has distribution
% and is independent of what happened before. In view of the previous results and
Proposition 2.2.1, the following proposition should not be mysterious any more.

Proposition 2.2.2 If (L0; Y0) equals in distribution (R̂; UR̂) , then (Lt; Yt) has the
same distribution for all t � 0:

For a proof, see e.g. S. Asmussen, Applied Probability and Queues, Wiley 1987,
p.116/117.

This proposition gives us a neat way to construct a time-stationary process of
renewal points on the real line:

Let R1; R2; : : : ; R�1; R�2; : : : be i.i.d. copies of R, and independent of R̂ and
U . Put

Tn := UR̂+ R1 + : : :+ Rn�1; T�n := �(1� U )R̂�R�1 � : : :�R�(n�1);

and
� :=

X
i2Znf0g

ÆTi :

� is a counting measure on R: for B � R,
�(B) := #fi : Ti 2 Bg

counts the number of renewal points falling int B. Because of Proposition 2.2.2,
the distribution of � is invariant w.r.to time shift, i.e. � =

P
i2Znf0g

ÆTi and �t� :=P
i2Znf0g

ÆTi+t have the same distribution. Thus, it makes sense to call � a stationary

renewal point process with lifetime distribution %.

2.3 Convergence to equilibrium

In view of subsection 1.6, it is not too astonishing that, in order to guarantee
convergence to equilibrium, we need something like an aperiodicity condition.

De�nition 2.3.1 We say that % is non-lattice if there does not exist any d > 0
s.th.

%(f0; d; 2d; 3d; : : :g) = 1:

The next theorem, which we won't prove, is in the spirit of the convergence theorem
Thm. 1.6.1.

Theorem 2.3.1 (Key Renewal Theorem) Assume that % is non-lattice. Then, ir-
respective of the distribution of Y0 = T1;
(TN(t)+1 � TN(t); TN(t)+1 � t) converges in distribution to (R̂; UR̂) as t �!1:

The next theorem, which we won't prove either, states that in the non-lattice
case the expected number of renewals in a late time interval of lenght a is approxi-
mately a=�:

Theorem 2.3.2 (Blackwell's Renewal Theorem) Assume that % is non-lattice and
E[T1] <1: Then for all a > 0,

E[N (t+ a)� N (t)] �! a=� as t!1:
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2.4 Homogeneous Poisson processes on the line

We specialize to the important case

% := exponential distribution (with parameter �)

i.e. %(dr) = �e��rdr: Note that P[R > r] = e��r; which immediately shows that
R has no memory in the following sense

P[R > t + hjR > t] = P[R > h]:

This explains why % coincides with the equilibrium distribution of the residual
lifetime. Indeed, since � = ER = 1

� ;

1

�
P[R > r] = �e��r

Moreover, R̂ has density �2re��r . We claim that this is the density of the sum of
two independent, exponential (�) distributed random variables X1; X2. Indeed,

P[X1 +X2 2 [r; r+ dr]] = dr

Z r

0

�e��s�e��(r�s)ds = dr�2re��r:

Thus the following de�nition makes sense.

De�nition 2.4.1 Let R0; R
�
0 ; R1; R2 : : : ; R�1; R�2 : : : be independent, exponen-

tial(�) distributed random variables, put

Tn := R0 +
n�1X
i=1

Ri; T�n := �R�0 �
n�1X
i=1

R�i; n = 1; 2; : : :

Then � =
P

i2Znf0g
ÆTi is called a stationary (or homogeneous) Poisson point process

with intensity �.

The name "Poisson process" is explained by the following

Proposition 2.4.1 In the context of De�nition 2.4.1, N (1) = #fi j 0 � Ti � 1g is
Poisson (�)-distributed, and given N (1) = n, (T1; : : :Tn) is distributed like the order
statistics (i.e. the increasing reordering) (U(1); : : :U(n)) of independent uniform (on
[0; 1]) random variables U1; : : : ; Un:

Proof: Let B � f(t1; : : :tn) : 0 � t1 � : : : � tn � 1g and put

~B := f(r0; : : : ; rn�1) j ri � 0; (r0; r0 + r1; : : :r1 + : : :+ rn�1) 2 Bg:
We then have

P[N (1) = n; (T1; : : : ; Tn) 2 B]
= P[R0+ : : :+ Rn > 1; (R0; : : : ; Rn�1) 2 ~B]

=

Z
r0+:::+rn>1;(r0; ::: ;rn�1)2 ~B

�n+1e��r0 : : : e��rndr0 : : : :drn

Using the 1-1 transformation ti = r0+ : : :+ ri�1; i = 1; : : :n+ 1; we can write this
as Z

(t1;::: ;tn)2B; tn+1>1

�n+1e��tn+1dt1 : : :dtn+1

= e���n�n(B) = e��
�n

n!
n!�n(B)

= Pois�(n) �P[(U(1); : : : :; U(n)) 2 B]:
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2

Since the random counting measures
nP
i=1

ÆU(i)
and

nP
i=1

ÆUi obviously have the same

distribution, we obtain from the previous proposition the following

Corollary 2.4.1 : Let Z be Poisson(�)-distributed, and U1; U2; : : : be independent,
uniform [0; 1] (and independent of Z).

Let 0 < T1 < T2 < : : : be the random time points of a stationary Poisson (�)

process. Then
N(1)P
i=1

ÆTi and
ZP
i=1

ÆUi have the same distribution.



Chapter 3

Poisson processes

3.1 Heuristics

In the previous chapter, we have made acquaintance with homogeneous Poisson
processes on the real line. Recall the intuition that in each small time interval of
length dr, the probability of a point landing there is � � dr, independently of every-
thing else.

This latter intuition carries beyond the line. Think of an arbitrary measurable
space (E; E); and let m be a �-�nite measure on E (where �-�niteness means that
m(Bn) < 1 for some B1 � B2 � : : : with [Bn = E). For the moment let us also
assume that m(fzg) = 0 for all z 2 E.

Imagine throwing a con�guration of points randomly into E, assuming that for
each small volume element dy

P[a point lands in dy] = m(dy);

and these events are independent for disjoint dy1; dy2; : : : :
With some good sense of humor we can write:

P[no point lands in B] =
Y
y2B

(1�m(dy))

=
Y
y2B

e�m(dy) = e�
R
B
m(dy) = e�m(B)

This \taboo probability" is perfectly compatible with what we saw in the previous
chapter. What is the distribution of the total number of points landing in B ?

We recall the Poisson limit law: The total number of successes for many inde-
pendent trials whose (small) success probabilities sum up to � is asymptotically
Pois(�)-distributed.
Thus, we guess that

P[k points land in B] = Poism(B)(k)

= e�m(B)m(B)k

k!

3.2 Characterization

Let's now leave the realm of heuristics. Let E be a non-empty set, E be a �-algebra
on E, n 2 [f1g, and (xi)i=1;::: ;n be a (�nite or in�nite) sequence in E. The

23
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measure

' =
nX
i=1

Æxi (�)

counts how many points of the sequence (xi) fall into the various subsets of E. That
is:

'(B) := #fi jxi 2 Bg; B � E: (3.1)

Note that ' forgets about the ordering (but not about possible multiplicities) of
(xi). Literally the only thing that counts is the number of points of (xi) falling into
the set B.

Measures of the form (3.1) are called point measures or counting measures. The
simplest of that kind are the Dirac measures Æx; x 2 E, that is, n = 1 in (�). The
de�nition (��) then turns into

Æx(B) = 1 if x 2 B; and = 0 if x =2 B:
Integration of functions with respect to point measures is particularly simple. For
' =

Pn
i=1 Æxi and f : E ! R+,Z

f(x)'(dx) =
nX
i=1

f(xi):

For the special case n = 1 this is just the de�nition (3.1).

Lemma 3.2.1 a) The distribution of a random point con�guration � is uniquely
determined by the distribution of

((�(B1); : : : ;�(Bn)) ; n 2 N; Bi 2 E :
b) The distribution of an Rn

+-valued random variable Z = (Z1; : : : ; Zn) is uniquely
determined by all the expectations Ee�<�;Z>; � = (�1; : : : ; �n) 2 G, where G is
some non-empty open subset of Rn

+:

Proof: a) see O. Kallenberg, Foundations of Modern Probability, Springer 1997,
Thm 4.3.
b) see loc.cit. Prop.2.2, and O. Kallenberg, Random measures, 4th ed., Akademie-
Verlag and Academic Press 1986, p. 167 2

Note that (3.2.1), viewed as a function of �, is called the Laplace transform of (the
distribution of) Z.

De�nition 3.2.1 For a random point con�guration �, the measure B 7�! E�(B); B 2
E ; is called the intensity measure of �.

Proposition 3.2.1 The distribution of a random point con�guration � is uniquely
determined by the expectations

E exp(�
Z
f(z)�(dz)); f : E ! R+ measurable (3.2)

Proof: Fix B1; : : : ; Bn 2 E and consider the Rn
+-valued random variable

Z = (Z1; : : : ; Zn) = (�(B1); : : : ;�(Bn)):

For � = (�1; : : : ; �n) 2 Rn
+, we have, putting f :=

nP
i=1

�i1Bi
,

Ee�<�;Z> = E exp(�
Z
f(z)�(dz)) (3.3)
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Thus, by Lemma 3.1 c), the expectations (3.2) determine the distribution of the
random variables Z. These, in turn, determine the distribution of � by Lemma
3.1a). 2

De�nition 3.2.2 A random point con�guration � is called a Poisson point process
(PPP) on E if, for all disjoint B1; B2; : : : 2 E ;

�(B1); : : : ;�(Bn)

are independent and Poisson-distributed.

We do not exclude the case that �(Bi) � 1 a.s. for some Bi, in this case we say
�(Bi) is Poisson(1)-distributed. Next, we identify the \Laplace transform" of a
PPP.

Proposition 3.2.2 For a PPP � with intensity measure m, and f : E ! R+

measurable,

E exp(�
Z
f(z)�(dz)) = exp(�

Z
(1� e�f(z))m(dz)) (3.4)

Proof: a) Let N be Pois�-distributed, � > 0. Then

E exp(��N ) = exp
��(1� e��)�

�
(check!)

b) For disjoint B1; : : : ; Bn 2 E ; and �1; : : : ; �n > 0;

E exp(�
nX
i=1

�i�(Bi)) =
nY
i=1

E exp(��i�(Bi))

=
nY
i=1

exp
��(1� e�i)m(Bi)

�
= exp

 
�

nX
i=1

(1� e��i)m(Bi)

!

For f :=
nP
i=1

�i1Bi
, this translates into (3.4).

c) Since any nonnegative measurable f is the pointwise limit of functions in b) ,
the assertion follows by dominated convergence (the continuous analogue of Lemma
1.4.1, cf. Kallenberg Thm 1.21).

Immediate from Propositions 3.1 and 3.2 is

Corollary 3.2.1 a) A random point con�guration � is a PPP with intensity mea-
sure m if (3.4) holds.
b) Two PPP with the same intensity measure have the same distribution.

3.3 Construction

What about existence of a PPP for a given intensity measure m ? We will give a
simple and useful construction, �rst in the special case of �nite m.

Proposition 3.3.1 Let m be a �nite measure on E. Let N be a Poisson(m(E))-
distributed r.v., and U1; U2; : : : : be independent with distribution m=m(E).

Then � :=
NP
i=1

ÆUi is a PPP with intensity measure m.
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Proof: Let B1; : : : ; Bn 2 E be disjoint, and put

Bn+1 := En(B1 [ : : :[Bn):
For k1; : : : ; kn+1 2 N0; k := k1 + : : :+ kn+1, we have

P[�(B1) = k1; : : : ;�(Bn+1) = kn+1]

= P[N = k]

�
k

k1; : : : ; kn+1

��
m(B1)

m(E)

�k1
: : :

�
m(Bk+1)

m(E)

�kn+1

=
e�m(E)

k!
(m(E))k

k!

k1! : : :kn+1!

m(B1)
k1 : : :m(Bk+1)

kn+1

m(E)k

=
n+1Y
i=1

e�m(Bi)

ki!
(m(Bi))

ki

Hence we see that the �(Bi) are independent and Poisson (m(Bi)) distributed. 2

The next result states that the independent superposition of PPP's is again a
PPP, and the intensity measures add up.

Lemma 3.3.1 Let �1;�2; : : : : be independent PPP's with intensity measuresm1;m2; : : : :

Then � :=
1P
i=1

�i is a PPP with intensity measure m :=
1P
i=1

mi.

Proof: We use Corollary 3.2.1:

E exp

�
�
Z
f(z)(

X
�i)(dz)

�
=

Y
i

E exp

�
�
Z
f(z)�i(dz)

�
=

Y
i

exp

�
�
Z
(1� e�f(z))mi(dz)

�
= exp

�
�
Z
(1� e�f(z))(

X
mi)(dz)

�
: 2

Corollary 3.3.1 Let m be a �-�nite measure on E, that is, there exist B1 � B2 �
: : : such that

S
Bn = E and m(Bn) <1 for all n. Then there exist �nite measures

mi (even concentrated on disjoint sets) such that m =
P
mi. Now construct a PPP

�i with intensity measure mi as in Proposition 3.4. Then � :=
P
i
�i is a PPP with

intensity measure m.

3.4 Independent labelling and thinning

Let � =
P
ÆYi be a PPP. Attach to every point Yi a label Li whose distribution

may depend on Yi but is independent of all the other Yj and all the other labels.
We claim that 	 :=

P
Æ(Yi;Li) then is a PPP on the product space of positions and

labels. To formalize this, let us specify a space (L;L) of labels, and a transition
probability P (y; d`) from E to L (that is, for all y 2 E;P (y; :) is a probability
measure on L, and for alll G 2 L; y 7! P (y;G) is measurable.)

Proposition 3.4.1 Let � be a PPP with �-�nite intensity measure m. Given
� =

P
i
Æyi , let (Li) be independent, and Li have distribution P (yi; :). Then 	 :=P

i
Æ(Yi;Li) is a PPP on E�Lwith intensity measure (m
P )(dy; d`) := m(dy)P (y; d`):
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Proof: Proceeding like in Lemma 3.1 and Corollary 3.2, it suÆces to consider the
case m(E) < 1. Use the construction of � given in Proposition 3.3. If U has
distribution m=m(E); and given U = u; L has distribution P (u; :); then (U;L) has

distribution m
m(E)
P . Thus, 	 arises as

NP
i=1

Æ(Ui;Li) , where N is Poisson distributed

with parameter m(E) = (m 
 P )(E � L), and the (Ui; Li) are independent with
distribution (m 
 P )=(m 
 P )(E � L). This identi�es � as a PPP with intensity
measure m
 P: 2

Corollary 3.4.1 Let � be a PPP on E with �-�nite intensity measure m , and
p : E ! [0; 1] be measurable. Given � =

P
Æyi , for each i throw an independent coin

with success probability p(yi), thus arriving at the labelled con�guration
P
Æ(yi;Li);

where Li 2 f0; 1g and P[Li = 1] = p(yi).
Then � :=

P
i:Li=1

ÆYi is a PPP with intensity measure

mp(B) :=

Z
B

p(y)m(dy):

(Indeed, because of Proposition 3.3.1 	 :=
P
Æ(Yi;Li) is a PPP on E � f0; 1g with

intensity measure m(dy)(p(y)Æ1 + (1� p(y))Æ0) and therefore
P

i:Li=1
Æ(Yi;1) is a PPP

on E � f1g with intensity measure m(dy)p(y)Æ1). We call � a p-thinning of �.

Example (Minimum of independent exponentially distributed random variables)
Let �1; �2; : : : > 0 with

P
�` =: � < 1: Let W`; ` = 1; 2; : : : ; be independent

and Exp(�`)-distributed. We claim that H := minWj is Exp(�)-distributed, and
P[H =W`] =

�`
� .

Indeed, consider a homogeneous Poisson(�) process (T1; T2; : : : ). Do an independent
labelling

P[Li = `] =
�`
�
:

The resulting point processes (T
(`)
1 ; T

(`)
2 ; : : : ) are Poisson(�`) and independent.

Obviously,

T1 = min
j
T
(j)
1

L(T1) = Exp(�)

L(T (l)
1 ) = Exp(�l)

P[T1 = T
(`)
1 ] = �`=�; ` = 1; 2; : : :

2

3.5 Poisson integrals, subordinators
and L�evy processes

Let � be a PPP with �-�nite intensity measure m, and f : E �! Rbe measurable.

Lemma 3.5.1 a) For f � 0 or
R j f j dm <1;

E

Z
f(z)�(dz) =

Z
f(z)m(dz) (3.5)
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b) For
R j f j dm <1;

Var

Z
f(z)�(dz) =

Z
f2(z)m(dz): (3.6)

Proof: a) is clear from monotone convergence.

b) Again, we can restrict to �nite m. For functions f =
nP
i=1

�i1Bi
; Bi pairwise

disjoint �i � 0, (3.6) is clear from independence and the fact that Var Z = � for
a Poisson(�)-distributed Z (check!) Hence, for all such f , the second moment ofR
f(z)�(dz) is

E[(

Z
f(z)�(dz))2] =

Z
f2dm+

Z
fdm: (3.7)

Monotone convergence gives (3.7) for all measurable f � 0, and hence also (3.6)
provided that

R
fdm < 1. Finally, split E into ff � 0g and ff < 0g, and use

independence. 2

As a preparation for the Poisson representation of L�evy processes, we show two
nice little lemmata.

Lemma 3.5.2 Let � be a PPP with intensity measure m, and f : E ! R+ be
measurable.
a) If f � 1, then Z

f(z)�(dz) <1 a:s:, m(E) <1

b) If f � 1, then Z
f(z)�(dz) <1 a:s:,

Z
f(z)m(dz) <1

Proof: a) This is clear since both is equivalent to �(E) <1 a.s.
b) \) ": From E exp(� R f(dz)�(dz)) > 0 and Proposition 3.2.2 we haveZ

(1� e�f(z))m(dz) <1:

Since f � 1, there exists a c > 0 such that cf � 1� e�f , hence
R
f(z)m(dz) <1.

\( ": By dominated convergence, we have

lim
c!0

E exp(�c
Z
f(z)�(dz)) = P[

Z
f(z)�(dz) <1]:

On the other hand, since by assumption

1 >

Z
f(z)m(dz) �

Z
(1� e�f(z))m(dz);

we get again by dominated convergence

lim
c!0

exp(�
Z
(1� e�cf(z))m(dz)) = exp(0) = 1

Hence, together with Proposition 3.2 the assertion follows. 2

Example (Poisson representation of the Gamma distribution)
Fix k > 0, and let � be a PPP on R+ with intensity measure m given by

�(dh) := k
1

h
e�hdh (3.8)
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Consider the Poisson integral (or \`Poissonian superposition")

Z :=

Z
h�(dh) (3.9)

We claim that
Ee��Z = (1 + �)�k; � > 0:

Indeed, because of Proposition 3.2.2 and the well known fact that
R
R+

hne�hdh =

n!; n 2 N; we have for all � 2 [0; 1]

Ee��Z = exp

0B@� Z
R+

(1 � e��h)k
1

h
e�hdh

1CA
= exp

0B@�k Z
R+

(�
1X
j=1

(��h)j
j!

)
1

h
e�hdh

1CA
= exp

0B@k 1X
j=1

(��)j 1
j!

Z
R+

hj�1e�hdh

1CA
= exp

0@�k 1X
j=1

(�1)j�1�
j

j!
(j � 1)!

1A
= exp

0@�k 1X
j=1

(�1)j�1�j
1

j

1A
= exp (�k ln(1 + �)) = (1 + �)�k:

Recall that for k 2 R+, the Gamma-distribution with form parameter k (and scale
parameter 1) (or Gamma(k)-distribution for short) has density

gk(y) :=
1

�(k)
yk�1e�y; y > 0;

where

�(k) :=

1Z
0

yk�1e�ydy; k 2 R+;

denotes the �-function. For a Gamma(k)-distributed Y we have

Ee��Y =
1

(1 + �)k
; � > 0

(check!) So, because of Lemma 3.2.1b) we conclude that the \`Poissonian superpo-
sition" (3.9) represents a Gamma(k)-distributed random variable. 2

Example Let � be a measure on R+, withZ
y �(dy) <1: (3.10)

Let � =
P

i Æ(Si;Yi) be a PPP on R+�(Rnf0g) with intensity measure m(d(s; y)) =
ds � �(dy), and put

Xt :=

Z t

0

Z
R+

y�(dy) =
X
Si�t

Yi: (3.11)
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Then X has homogeneous independent nonnegative increments, that is:
(i) L(Xt �Xr) depends only on t� r,
(ii) Xt1 �Xt0 ; : : : ; Xtn �Xtn�1 are independent if t0 < t1 < : : : < tn,
(iii) Xt �Xr � 0 if t � r.

A process X with the properties (i)-(iii) is called a subordinator. Perhaps the
most prominent subordinator is the Gamma process. It is of the form (3.11) where
� is given by (3.8).

Notably, any subordinator is of the form

Zt = c+ bt+Xt;

where b � 0 and X is of the form (3.11) for some � meeting the requirement (3.10)
((see O. Kallenberg, Foundations of Modern Probability, p. 290 (in the 2nd ed)).

Let us now come back to Poisson integrals. If we look, instead of the random
point measure �, on the compensated (signed) random measure � �m, we might
hope that this integrates a larger class of functions f . Indeed, we will show that
we can make sense out of

R
f(z)(� � m)(dz) through a suitable limit procedure,

provided that j f j � 1 and
R
f2dm <1.

Lemma 3.5.3 Let jf j � 1 andZ
f2(z)m(dz) <1 (3.12)

a) Let B1 � B2 � : : : ;
S
Bn = E, and assume �(Bn) <1 8n. Then

In := In(f) :=

Z
f(z)1Bn

(z)(� �m)(dz)

converges, as n!1, in L2 (or mean-square) to a random variable

I(f) :=

Z
f(z)(� �m)(dz):

b) The special choice of (Bn) doesn't matter so much:
Assume C1 � C2 � : : : ;

S
Cn = E, �(Cn) <1 8n, and assume further that each

Cn is contained in some Bk, k � n. Then

Jn :=

Z
f(z)1Cn (z)(� �m)(dz)! I(f) in L2:

Proof: a) For n � k, because of Lemma 3.5.1 b) and dominated convergence,

E[(In � Ik)
2] =

Z
BnnBk

f2(z)m(dz) �
Z

EnBk

f2(z)m(dz) �! 0 as k!1 as k!1:

Thus, (In) is a Cauchy sequence in the sense of mean square (or L2-) convergence
and hence converges in L2 towards some random variable J (cf. Kallenberg, Lemma
1.31).

b) For all n 2 N let k = k(n) � n be such that Cn � Bk. Then

E[(Jn � Ik)
2] =

Z
BknCn

f2(z)m(dz) �
Z

EnCn

f2(z)m(dz) ! 0 as n!1;

hence also (Jn) converges in L2 to I(f). 2
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Example Let � be a measure on Rn f0g, withZ
(y2 ^ 1) �(dy) <1: (3.13)

Let � be a PPP on Rn f0g with intensity measure m(d(s; y)) = ds � �(dy), and put

Xt :=

Z t

0

Z
jyj�1

y (��m)(d(s; y)) +

Z t

0

Z
jyj>1

y �(d(s; y)); (3.14)

where the �rst integral is de�ned according to Lemma 3.5.3, with Bn := [0; t] �
([�1; 1] n [�1=n; 1=n]). Then X has homogeneous independent increments, that is:
(i) L(Xt �Xr) depends only on t� r,
(ii) Xt1 �Xt0 ; : : : ; Xtn �Xtn�1 are independent if t0 < t1 < : : : < tn.

A process X with the properties (i) and (ii) is called a L�evy process. Notably,
any L�evy process is of the form

Zt = c+ bt+ �Wt +Xt;

where W is a standard Wiener process (we'll come back to this later), � � 0, and X
is of the form (3.14) for some � meeting the requirement (3.13) (see O. Kallenberg,
Foundations of Modern Probability, p. 290 (in the 2nd ed)).



Chapter 4

Markov chains in continuous

time

4.1 Jump rates

Like in the �rst lesson, we start by considering a �nite or countable set S0, and a
stochastic matrix � on S0. Other than in chapter 1, however, time is now thought
to be continuous. Moreover, we introduce state-dependent rates �x; x 2 S0 (having
in mind that in di�erent states, time may pass in di�erent speed). We think of �x as
the parameter of an exponential distribution: when starting in x, our process keeps
waiting there for an Exp(�x)-distributed time, then moves to y with probability
�(x; y), then keeps waiting there for an independent Exp(�y)-distributed waiting
time, and so on.
Question: What is the distribution of the time at which our process, when starting
in x, jumps for the �rst time away from x (the so-called holding time in x)? The
\jumping away" happens already after the �rst Exp(�x)-distributed waiting time
with probability p := 1� �(x; x). With probability �(x; x), however, there follows
another independent Exp(�x)-distributed waiting time, and so on. Overall, we are
faced with a p-thinning of a Poisson(�x)-process. Thus, the holding time in x has
an exponential distribution with parameter

qx := �xp = �x(1 ��(x; x)):

At this time, the process jumps to y (6= x) with probability

J(x; y) :=
�(x; y)

1��(x; x)
:

(Here, we assume that �(x; x) < 1 ; otherwise, qx would be zero and the process
would remain in x forever.)
Let us forget about � and �, and �x q and J as our basic ingredients.
qx � 0; x 2 S0 are called the jump rates,
J(x; y) � 0; x 6= y 2 S0; with the propertyX

y2S0nfxg
J(x; y) = 1;

is called the jump matrix.
We now de�ne a random path (Xt)t�0 starting in x 2 S0. After an Exp(qx)-
distributed time H0, jump to y with probability J(x; y).
Then after an Exp (qy)-distributed time H1 (independent of H0), jump to z with

32
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probabiltiy J(y; z), and so on.
The process (Xt) starting in x can be de�ned in the following way (check !):
Let (Y0; Y1 : : : ) be a discrete time Markov chain starting in x with transition ma-
trix J . Given (Y0; Y1; : : : ) = (y0; y1; : : :); let Hi be independent and Exp (qyi)-
distributed. Put

Xt := x for x � t < H0

Xt := yi for H0 + : : : :+Hi�1 � t < H0 + : : : :+Hi; i � 1

4.2 The minimal process and its transition semi-
group

Does for given q and J the construction in section 4.1 de�ne the random path (Xt)
for all times t � 0? Yes, if the time axis [0;1) is exhausted by the sum of the
holding times.
Note: The construction de�nes Xt only for t < H0 +H1 + : : : : =; �
If � <1, we say that X explodes, and call � the explosion time.

Here is an example for explosion:

S0 = N; qk = k2; J(k; k + 1) = 1:

Starting in x = 1 we have

E[�] =
1X
k=1

1

k2
<1:

Let us now extend the construction (4.1) extend beyond ther time �.

De�nition 4.2.1 : Let � be an element not belonging to S0 and put S4 := S0 [
f�g.
The minimal process X following the dynamics (q; J) is constructed as above for
t < �, and set equal to � for t � �. Thus, X = (Xt)t�0 is a random variable taking
its values in the right-continuous S�-valued paths which never return from �.
By construction, our X obeys the Markov property:

Px[Xs+t = z j Xs1 = y1; : : : ; Xs = y] = Py[Xt = z] (4.1)

(s1 � : : : � s; t > 0; x; y1; : : : ; y; z 2 S�) (4.2)

We put

P�
t (x; y) := Px[Xt = y]; x; y 2 S� (4.3)

and

Pt(x; y) := Px[Xt = y]; x; y 2 S0: (4.4)

Note that Pt(x; S0) = 1 is guaranteed only if Px[� > t] = 1: In general, we have

Pt(x; S0) � 1 (4.5)

and consequently call Pt a substochastic matrix.
The law of total probability and the non-returning from � gives

Ps+t(x; y) =
X
z2S0

Ps(x; z)Pt(z; y) =: (PsPt)(x; y); x; y 2 S0 (4.6)
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We say that (Pt) satis�es the Chapman-Kolmogorov equations (or, that it is a
semigroup of substochastic matrices). For short, we call (Pt) the transition semi-
group of (Xt). There is a formal analogy between the relation

Ps+t = PsPt; s; t � 0; P0 = I := identity matrix (4.7)

and the relation

f(s + t) = f(s) � f(t); s; t � 0; f(0) = 1: (4.8)

Equations(4.8) are satis�ed by f(t) := e�t; � 2 R, which obeys the di�erential
equation

d

dt
f(t) = �f(t) (4.9)

and

d

dt
f(t) jt=0= �: (4.10)

We'll explore the counterpart of (4.10) for our semigroup (Pt). To this end, let's
analyze (Pt) near t = 0 , and start with some heuristics. Neglecting the e�ect of
multiple jumps in small time intervals (which in fact can be justi�ed) we have

Ph(x; x) = e�qxh + o(h) = 1� qx � h+ o(h); Ph(x; y) = hqxJ(x; y) + o(h); x 6= y
(4.11)

which can be written compactly as

Ph = I + hQ+ o(h); (4.12)

where I denotes the identity matrix on S0 , and

Q(x; y) :=

� �qx x = y
qxJ(x; y) x 6= y

(4.13)

is the so-called Q-matrix associated with q and J . Since

P0(x; y) = Px[X0 = y] = Æxy = I(x; y);

(4.12) translates into
d

dt
Pt jt=0= Q:

4.3 Backward and forward equations

We have seen in the previous section that the semigroup property of (Pt) is inti-
mately connected with the law of total probability. We can now apply the \total
probability decomposition" near time 0 or near time t. This will give us two sys-
tems of di�erential equations for Pt, called the backward and the forward euqations,
respectively. In a nutshell, the argument is as follows:

Ph+t � Pt = PhPt � Pt = (Ph � I)Pt; (4.14)

thus (assuming that limits and summations can be interchanged)

d

dt
Pt = QPt (4.15)
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On the other hand

Pt+h � Pt = PtPh � Pt = Pt(Ph � I); (4.16)

thus (again assuming that limits and summations can be interchanged)

d

dt
Pt = PtQ: (4.17)

(4.15) and (4.17) are called the backward and forward equations. We'll agree to
understand them component-wise. Written more explicitly, (4.15) reads as

d

dt
Pt(x; y) =

X
z2S0

Q(x; z)Pt(z; y) (x; y 2 S0) (4.18)

and (4.17) reads as

d

dt
Pt(x; y) =

X
z2S0

Pt(x; z)Q(z; y) x; y 2 S0: (4.19)

Thus, for �xed y 2 S0, the backward equations (4.18) are a system of di�erential
equations for the Pt(x; y); x 2 S0, and for �xed x 2 S0, the forward equations (4.19)
are a system of di�erential equations for the Pt(x; y); y 2 S0.
Let us illustrate this point still more. Take a real valued function f = f(y) , and a
probability meausre � = �(x). How do the expectations Ex[f(Xt)] =: u(t; x) and
the probabilties P�[Xt = y] =: �t(y) evolve in time ? We have

u(t; x) =
X
y

Pt(x; y)f(y) =: Ptf(x)

�t(y) =
X
x

�(x)Pt(x; y) =: �Pt(y)

Again assuming that limits and summations interchange, we get that u satis�es
the backward equations

@

@t
u(t; x) =

X
y

X
z

Q(x; z)Pt(z; y)f(y)

=
X
z

Q(x; z)u(t; z) =: (Qu(t; :))(x)

and � satis�es the forward equation

@

@t
�t(y) =

X
x

�(x)
X
z

Pt(x; z)Q(z; y)

=
X
z

�t(z)Q(z; y) =: (�tQ)(y)

We are now going to prove that Pt de�ned by (4.4) satis�es the backward equation
(4.15). This will be achieved by establishing an integral equation equivalent to
(4.15) through a \�rst jump decomposition".

Proposition 4.3.1 Consider jump rates qx and a jump matrix J , and de�ne the
matrix Q as in (4.13). Let (Xt) be the minimal process constructed in section 4.2,
and Pt its transition semigroup de�ned by (4.4). Then (Pt) satis�es the backward
equations (4.18).



CHAPTER 4. MARKOV CHAINS IN CONTINUOUS TIME 36

Proof: Following the strategy of a \�rst jump decomposition", we obtain

Pt(x; y) = Px[H0 > t;Xt = y] +
X
z 6=x

Px[H0 � t;XH0 = z;Xt = y]

= e�qxtÆxy +
X
z 6=x

tZ
0

qxe
�qx�sds J(x; z)Pt�s(z; y)

= e�qxtÆxy +
X
z 6=y

tZ
0

qxe
�qx(t�u)du J(x; z)Pu(z; y)

Multiplying by eqxt we arrive at

eqxtPt(x; y) = Æxy +

tZ
0

X
z 6=x

qxe
qxuduJ(x; z)Pu(z; y):

Hence, taking the derivative with respect to t,

eqxt[qxPt(x; y) +
d

dt
Pt(x; y)] = eqxt

X
z 6=x

qxJ(x; z)Pt(z; y)

or in other words

d

dt
Pt(x; y) = (QPt)(x; y):

2

The proof of the next proposition is similar in spirit but slightly more involved
than the previous one: Here one decomposes according to the last jump before t,
and uses a time reversal argument. We won't give the details, but refer to J.R.
Norris, Markov Chains, CUP, 1997, p 100-103.

Proposition 4.3.2 Let Q and Pt be as in Proposition 4.3.1. Then (Pt) satis�es
also the forward equations (4.17).

The previous two propositions describe how to construct, starting from a given Q
as in (4.13), a \probabilistic" solution to Kolmogorov's equations (4.18) and (4.19)
in terms of the minimal process. The next proposition states that this solution is
in fact the minimal one.

Proposition 4.3.3 The transition probabilities Px[Xt = y] are the minimal non-
negative solutions both of the backward equations (4.18) and the forward equations
(4.19), always with initial condition P0(x; y) = Æxy.

Proof: see Norris, loc.cit., p.98 and p.100.

We conclude the subsection with a statement on the equivalence of the di�eren-
tial and the integral form of the backward and forward equation, respectively. For
this, let Q = Q(x; y) be a matrix with non-negative entries o� the diagonal, andX

y 6=x
Q(x; y) � �Q(x; x) =: qx <1; x 2 S0:

(So Q may be of a slightly more general form than in (4.13).)
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Proposition 4.3.4 a) Pt(x; y); x; y 2 S0, satis�es the backward di�erential equa-
tion (4.18) i� it satis�es the backward integral equation

Pt(x; y) = Æxye
�qxt +

Z t

0

e�qxs
X
z 6=x

Q(x; z)Pt�s(z; y)ds; t � 0; x; y 2 S0:(4.20)

b) Pt(x; y); x; y 2 S0, satis�es the forward di�erential equation (4.19) i� it satis�es
the forward integral equation

Pt(x; y) = Æxye
�qxt +

Z t

0

e�qys
X
z 6=y

Pt�s(x; z)Q(z; y)ds; t � 0; x; y 2 S0:(4.21)

Proof: see e.g. W.J. Anderson, Continuous Time Markov Chains, Springer 1981,
Propositions 2.1.1 and 2.1.2. 2

4.4 Revival after explosion

We saw in the previous sections how to construct, for a given Q-matrix as in (4.13),
an S�-valued Markov chain (Xt) (the minimal process) whose transition semigroup
(Pt) obeyed

d

dt
Pt jt=0= Q (4.22)

If starting from x, an explosion in �nite time happens with positive probability
then we have for some t > 0

Pt(x; S0) < 1

(and we say that (Pt) is non-conservative). Can we modify (Xt) such that

Px[Xt 2 S0] = Pt(x; S0) = 1 for all t and x;

and still (4.22) is valid ? Indeed, we can, and even in many ways:
Let � be an arbitrary probability distribution on S0, and let the process, instead of
remaining in � for t � �, jump back at time � into S0, arriving at z with probability
�(z). After the next explosion, apply the same procedure independently, and so on.

The transition semigroup (Pt) of our new Markov chain (Xt) then has the fol-
lowing properties:

Pt is a stochastic matrix on S0; t � 0; (4.23)

P0 = I; (4.24)

Ps+t = PsPt; s; t � 0; (4.25)

lim
t#0

Pt(x; x) = 1: (4.26)

4.5 Standard transition semigroups and their Q-
matrices

Let's turn the tables and start from a family (Pt) satisfying (4.23) to (4.26). Such
a family is sometimes called a standard transition semigroup.
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Proposition 4.5.1 :

lim
h!0

1

h
(Ph � I)(x; y) =: Q(x; y) (4.27)

exists in R[ f�1g:
(i) For x = y; Q(x; x) 2 [�1; 0]
(ii) For x 6= y; Q(x; y) 2 [0;1)
(iii) For all x;

P
y 6=x

Q(x; y) � �Q(x; x):

Proof: see S. Karlin, H.M. Taylor: A second course in stochastic processes, Acad-
emic press 1981, p.139-142.

De�nition 4.5.1 a) A matrix Q with the above stated properties (i), (ii), (iii) is
called a Q-matrix.
b) Q as de�ned in (4.27) is called the Q-matrix of the semigroup (Pt).

De�nition 4.5.2 Let Q be the Q-matrix of a standard semigroup (Pt). A state x
is called

- instantaneous if Q(x; x) = �1
- stable if Q(x; x) > �1
- conservative if it is stable and

P
y
Q(x; y) = 0:

What is the probabilistic meaning of an instantaneous state x ? The process
should jump away immediately from x, but because of (4.26) should for small times
be in x with probability close to 1. Is such a thing possible ?
And what is the probabilistic meaning of a stable non-conservative state x ? Because
of X

y 6=x

1

qx
Q(x; y) < 1;

the process should get lost from S0 for a moment with positive probability (at the
random time when it jumps away from x), but because of (4.23) should return im-
mediately to S0.

These two e�ects are illustrated by two nice examples due to Kolmogorov, now
known as K1 and K2 (cf W.J. Anderson, loc.cit, p.28-32, and K.L. Chung, Markov
chains with stationary transition probabilities, 2nd ed., Springer 1967, p.275 �)
We will outline them briey, starting with K2.

Example K2
Consider S0 := N0, and the Q-matrix

Q =

0BBBBBB@
�1 0 0 0 0 : : :
0 0 0 0 0 : : :
0 4 �4 0 0 : : :
0 0 9 �9 0 : : :
0 0 0 16 �16 : : :
� � � � � : : :

1CCCCCCA
Construct (Xt) as follows: Starting from x = k � 1, things are simple: with
Exp(n2)� distributed holding times, the process jumps down to state 1 where it
remains forever. Starting from the stable but non-conservative state x = 0, the
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process jumps \ to 1" after an Exp(1)-distributed holding time, and from there
performs an immediate \implosion" until it comes to eternal rest in state 1.
For this, let Wn; n = 1; 2; : : : be independent and Exp(n2)-distributed, and put

Xt :=

8>>>><>>>>:
0 if 0 � t < W1

n if W1 +
1P

k=n+1
Wk � t < W1 +

1P
k=n

Wk; n > 1

1 if
1P
k=1

Wk � t

(Note that
1P
k=1

Wk <1 a.s., since E[
1P
k=1

Wk] =
1P
k=1

1
k2 <1:)

Example K1
Consider S0 := N0, and the Q-matrix

Q =

0BBBB@
�1 1 1 1 : : :

1 �1 0 0 : : :
4 0 �4 0 : : :
9 0 0 �9 : : :
� � � � : : :

1CCCCA
The intuition about Q-matrices, which we developed in the previous sections,

seems to leave us in the lurch. How should it be possible to jump away from the
instantaneous state x = 0 immediately and uniformly to 1; 2; : : : , and still be back
to state 0 after a short time with high probabiltiy ?
Things clear up if one �rst considers, for M 2 N, the Q-matrix

QM� =

0BBBBB@
�M 1 1 : : : 1

1 �1 0 : : : 0
4 0 �4 : : : 0
...

M2 0 0 : : : �M2

1CCCCCA
on SM := f0; 1; : : : ;Mg.

A path starting in 0 remains there for an Exp(M )-distributed time, then chooses
uniformly a k 2 f1; : : : ;Mg where it stays for an Exp(k2)-distributed time, then
jumps back to state 0, where it remains for another (independent) Exp(M )-distributed
waiting time and so on.
A crucial idea is now to sum up all the holding times in 0 along a time axis which
counts only the time spent in 0 (the so called \local time" in 0).
We can now construct a random path X(M) following the QM -dynamics:
Let �(M) =

P
i

Æ(Li;Ki) be a Poissson process on R+� f1; 2; : : : ;Mg; homogeneous

with unit intensity on all R+ � fkg;K = 1; : : :M: Every point in � stands for an
excursion from state 0; a point (Li;Ki) means that at local time Li the process
jumps to state Ki:
Given the points (Li;Ki); attach independent Exp(K2

i )-distributed time spans Wi

(the duration of excursion no. i). Excursion no. i starts at real time

Ti := Li +
X

j:Lj<Li

Wj (4.28)

and ends at real time Ti +Wi; during the time interval [Ti; Ti +Wi) the process is
in state Ki.
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Thus,

X
(M)
t :=

X
i

Ki1[Ti;Ti+Wi)(t) (4.29)

de�nes an f0; : : : ;Mg-valued random walk following the QM -dynamics.
The same construction can be carried out for the \full picture":
Let � :=

P
i

Æ(Li;Ki) be a Poisson process onR+�N, homogeneous with unit intensity

on all the R+� fkg; k 2 N: Again, attach independent, Exp(K2
i ) distributed labels

Wi:
The crucial observation is that, although in�nitely many excursions from 0 happen
up to a positive local time l > 0; the total time Al spent outside of state 0 up to
local time l remains �nite. Indeed, we compute its expectations as

E[Al] = E[
X

j:Lj<l

Wj ]

=
1X
k=1

E[
X

j:Lj<l;

Kj=k

Wj]

=
1X
k=1

1

k2
E#fj : Lj < l;Kj = k]

= l �
1X
k=1

1

k2
<1:

We de�ne Ti as in (4.28), but now in terms of � (instead of �(M)). Noting that
Ti <1 a.s. because of the previous estimate, we can de�ne Xt as in (4.29).

Is it indeed true that (4.26) is met, i.e. that P0[Xt = 0]! 1 as t! 0? Yes! we
won't give a formal proof, but content ourselves with an observation which hits the
core of the mattter.
Claim: For small l, the process stays with high probability only for a short fraction
of time outside of 0.
(Intuition: there were so much more very short excursions than long ones.)
Claim reformulated: For all " > 0

P[Al � "l] � 1� " for l suÆciently small.

Proof: Write Al =
1P
k=1

Al;k; where

Al;k :=
X

j:Lj<l;Kj=k

Wj

We have:

E[Al;k] = l
1

k2

Choose M so big that
1P

k=M+1

1
k2
< "2

2 : Let l be so small that

P[� has a point in [0; l]� f1; : : : ;Mg] < "

2
:
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Then, by Markov's inequality (P[Z > c] � 1
c
E[Z]);

P[Al > "l] � P[
MX
k=1

Ak;l > 0 or
1X

k=M+1

Ak;l > " � l]

� "

2
+

1

"l
� l "

2

2
� ":

2



Chapter 5

Conditional Expectation

Let Z be an �R-valued random variable which is non-negative or obeys E[jZj] <1
(in the latter case Z is called integrable). For an event A with P[A] > 0 we call

E[ZjA] := E[ZIA]

P[A]
(5.1)

the conditional expectation of Z , given A.

Now assume we are interested in events A = fX = xg; x 2 S, where S is some
discrete space and X is an S valued random variable.
Writing

'(x) := E[Z j fX = xg] (5.2)

for all x 2 S with P[X = x] > 0, we have found a random variable Y := '(X)
which for all B � S obeys

E[ZIfX2Bg ] = E['(X)IfX2Bg :] (5.3)

Indeed,

E[ZIfX2Bg] =
X

x2B:P[X=x]>0

E[ZIfX=xg]

=
X

x2B:P[X=x]>0

'(x)P[X = x] = E['(X)IfX2Bg ]:

In view of (5.3), it makes sense to call the random variable Y := '(X) the condi-
tional expectation of Z given X.
Now let us turn to the case of uncountable S. Then typically P[X = x] = 0, and
we are in trouble with (5.2). However, it still makes sense to require (5.3).

De�nition 5.0.3 Let Z be an �R-valued random variable. Assume Z � 0 or EjZj <
1. In addition, let X be an S-valued random variable, where (S;S) is some mea-
surable space. We call a random variable '(X) conditional expectation of Z given
X if

E[ZIfX2Bg ] = E['(X)IfX2Bg ] (5.4)

for all B 2 S.
The conditional expectation of Z given X is a.s. unique. This is a corollary of

the following

42
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Lemma 5.0.1 Assume that '1 and '2 obey

E['1(X)IfX2Bg ] � E['2(X)IfX2Bg ] for all B 2 S (5.5)

Then

'1(X) � '2(X) a.s. (5.6)

Proof: Put B := fx j '1(x) > '2(x)g:Then 0 � E[('1(X)�'2(X))If'1(X)>'2(X)g].
On the other hand, Y := ('1(X) � '2(X))If'1(X) > '2(X)g � 0: Together, this
implies that Y = 0 a.s., which enforces (5.6). 2

Notation: If '(X) meets (5.4), we write '(X) = E[ZjX] a.s. What about existence
of conditional expectations ?
There is a beautiful geometrical picture which gives this existence (almost) for free.
To begin with, let Z be square integrable, i.e.

EZ2 <1:

Look for a random variable '(X) which, among all those of the form  (X), mini-
mizes the mean square distance E[( (X) � Z)2]: We claim that '(X) = E[Z j X]
a.s.
(This is not too astonishing if one remembers that E[Z] is that constant, which
among all constants c, minimizes E[(c � Z)2]:)
It remains to make sure that
a) the problem \minimze E[( (X) � Z)2]" indeed has a solution
b) the solution obeys (5.4).

We won't go into every detail, but just state that the space L2 of square in-
tegrable random variables (more precisely, the space of L2 of equivalence classes
of square integrable random variables being almost surely equal) carries a scalar
product given by

< Y1; Y2 >:= E[Y1Y2];

generating the norm jj Y jj:= E[Y 2]1=2. This norm is complete (i.e. every Cauchy
sequence has an a.s. limit in L2); and the subspace L2(X) of all square integrable
random variables of the form  (X) is complete as well. Let '(X) be the orthogonal
projection of Z on L2(X). Then Z � '(X) is orthogonal to all Y 2 L2(X), in
particular also to 1B(X) = IfX2Bg . That is

< Z; IfX2Bg >= < '(X); IfX2Bg > for all B 2 S;
which is nothing but (5.4). This guarantees already the existence of E[ZjX] for
Z 2 L2:
For an arbitrary random variable Z � 0, put Zn := min(Z; n) and, noting that
Zn 2 L2; put 'n(X) := E[ZnjX]. Because of Lemma 5.2 we have 'n(X) " a.s.
Writing '(X) for the a.s. limit of 'n(X), we obtain from monotone convergence
for all B 2 S

E[ZIfX2Bg ] = lim
n
E[ZnIfX2Bg ]

= lim
n
E['n(X)IfX2Bg ] = E['(X)IfX2Bg ];

which is (5.4).
This guarantees existence of E[ZjX] for any non-negative random variable Z. Fi-
nally, for a real-valued random variable Z with E[jZj] < 1, decompose Z in its
positive and negative part (Z = Z+ � Z�) and put

E[ZjX] := E[Z+jX]�E[Z�jX]:

Overall, we have proved:
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Theorem 5.0.1 Let Z and X be as in De�nition 5.0.3. Then E[ZjX] exists and
is a.s. unique.

We now show that (5.4) extends from the indicator functions to all bounded mea-
surable f : S ! R.

Proposition 5.0.2 Let Z and X be as in De�nition 5.0.3 and '(X) := E[ZjX].
Then

E[Zf(X)] = E['(X)f(X)] (5.7)

for all bounded measurable f : S ! R:

Proof: For non-negative f , approximate f from below by functions of the formP
ck1Bk

and obtain (5.7), using (5.4) , linearity of the expectation and monotone
convergence. For general f , write f = f+ � f� and again use linearity 2

Let us now collect some important properties of conditional expectations.
Fact 5.1: (Law of total probability)

E[E[ZjX]] = E[Z]

(put B := S in (5.4))
Fact 5.2: (Respect what you completely depend on)
If Z depends completely on X, i.e. Z = g(X) for some g : S ! R;then

E[g(X)jX] = g(X) a.s.

(since (5.4) is clearly satis�ed with Z = g(X) = '(X))
Fact 5.3: (Ignore what you are independent of)
If Z and X are independent, then

E[ZjX] = E[Z] a.s.

(since E[ZIfX2Bg ] = E[Z]P[X 2 B] = E[E[Z]IfX2Bg ])
Fact 5.4: (Linearity of conditional expectation)

E[�Z1 + �Z2 j X] = �E[Z1 j X] + �E[Z2 j X] a.s.

(check!)
Fact 5.5: (Monotonicity of conditional expectation)

Z1 � Z2 a.s =) E[Z1jX] � E[Z2jX] a.s.

Lemma 5.0.2 (Monotone convergence of conditional expectations)
If 0 � Zn " Z a.s., then

E[ZnjX] " E[ZjX] a.s.

Proof: Let 'n(X) = E[ZnjX] a.s.
Then by Fact 5.5, 'n(X) " '(X) -a.s. Put ' := lim sup

n
'n. Then by monotone

convergence

E[ZIfX2Bg ] = lim
n
E[ZnIfX2Bg ] = lim

n
E['n(X)IfX2Bg ] = E['(X)IfX2Bg ]:

2
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Lemma 5.0.3 (Projection property of conditional expectations)
Let Y be X-measurable, i.e. Y = g(X) for some y. Then

E[E[ZjX]jY ] = E[ZjY ]
Proof: Since both sides are Y -measurable, it suÆces to show (cf. Lemma 5.0.1)

E[E[ZjX] � IfY 2Bg] = E[ZIfY 2Bg]

This, however, is true since fY 2 Bg = fX 2 g�1(B)g: 2

Lemma 5.0.4 (Taking out what is known) Assume g(X) bounded, E[jZj] <1:
Then E[g(X)ZjX] = g(X)E[ZjX] a.s.

Proof: Because of linearity and monotone convergence, it suÆces to assume Z and
g as non-negative and bounded. Since the r.h.s. is X-measurable, it suÆces to show

E[Zg(X)IfX2Bg ] = E[E[ZjX]g(X)IfX2Bg ]:

This, however , is valid because of Proposition 5.0.2, 2

Lemma 5.0.5 (\Integrating out independent stu�") Let X be an S-valued random
variable, and Y be an S0-valued random variable independent of X. Also, let h :
S � S0 ! Rwith Ejh(X;Y )j <1: Then

E[h(X;Y )jX] =

Z
h(X; y)�Y (dy);

where �Y is the distribution of Y .

Proof: For B 2 S;

E[h(X;Y )1B(X)] =

Z
h(x; y)1B(x)�X 
 �Y (d(x; y))

=

Z
(

Z
h(x; y)�Y (dy))1B(x)�X (dx)

= E[

Z
h(X; y)�Y (dy)1B(X)] 2

Recall: g : R! R is convex: ()
X
i

g(zi)�(zi) � g

 X
i

zi�(zi)

!

8z1; : : : ; zn 2 R and probability weights �(z1) : : : ; �(zn):

Lemma 5.0.6 If g is convex and EjZj <1; then

E[g(Z)] � g(E[Z])

and, more generally,
E[g(Z)jX] � g(E[ZjX]) a.s.

Proof: We use the well-known fact that g is the countable supremum of straight
lines (see e.g D. Williams, Probability of Martingales, Cambridge University Press
1991, p.61): There exist sequences (an) and (bn) in R such that

g(z) = sup
n
(anz + bn); z 2 R:
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For all n, we have because of monotonicity and linearity of the conditional expec-
tation:

E[g(Z)jX] � E[anZ + bnjX] = anE[ZjX] + bn a.s

and hence
E[g(Z)jX] � sup

n
(anE[ZjX] + bn] = g(E[ZjX]) a.s

2

Remark 5.0.1 Let A(X) := ffX 2 Bg; B 2 Sg be the �-�eld of events generated
by X: Then one also writes E[ZjA(X)] instead of E[ZjX]:

By the way, we could also consider, as our given information, a \�-�eld of events"
F instead of a random variable X.

De�nition 5.0.4 F is called a �-�eld of events : ()

(i) F contains two events
V

and
W

called impossible and certain.

(ii) For all events A1; A2; : : : in F , also the event[
An := \A1 or A2 or : : :" belongs to F

(iii) For each event A in F , also the event Ac := \ not A" belongs to F :
De�nition 5.0.5 An S-valued random variable Y is F-adapted :() all the events
fY 2 Cg; C 2 S, belong to F :
De�nition 5.0.6 An F-adapted R-valued random variable Y is called conditional
expectation of Z given F :() for all events A in F ;

E[Y IA] = E[ZIA]:

In this case, we write
Y = E[ZjF ] a.s :

All results which we proved for E[ZjX] (existence, uniqueness, linearity, monotonic-
ity, : : : ) can easily be carried over to this framework. The \way back" from De�ni-
tion 5.0.6 to De�nition 5.0.3 in case F = A(X) is provided by the following

Lemma 5.0.7 An �R-valued random variable Y is A(X)-adapted i� there exists a
measurable ' : S ! �R with Y = '(X)

Proof:
a) We �rst prove the assertion in case Y takes only �nitely many values y1; : : : yk:
By assumption, there exist B1; : : :Bk 2 S such that

fY = yig = fX 2 Big ; i = 1; : : : ; k

Since for i 6= j; the event

fX 2 Bi \Bjg = fX 2 Big \ fX 2 Bjg = fY = yig \ fY = yjg
is impossible, we can rede�ne the Bn such that they are pairwise disjoint.
Now put

'(x) :=

�
yi for x 2 Bi ; i = 1; : : : ; k
0 otherwise
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We then have for all i = 1; : : : ; k

'(X)IfY =yig = '(X)IfX2Big = yiIfX2Big = yiIfY=yig:

Summing over i, we arrrive at '(X) = Y:
b) Now we turn to the general case. Without loss of generality we can assume
Y � 0:
Let Yn be random variables each taking �nitely many values, such that Yn " Y:
Let 'n be such that 'n(X) = Yn; and put

C := fx 2 S : lim
n!1'n(x)existsg

Since the event fX 2 Cg is certain,

' := lim
n!1'n1C

ful�lls '(X) = Y: 2



Chapter 6

Martingales

6.1 Basic concepts

A martingale is a real-valued stochastic process whose conditional expectation at a
future time point, given the overall information at present time, equals its present
value.
We have to specify what we mean by the overall information at present time.

De�nition 6.1.1 a) A family F := (Fn)n=0;1;::: of �-�elds of events is called a
�ltration if it is increasing, i.e.

Fn � Fn+1 ; n = 0; 1; : : :

b) A stochastic process Z = (Zn)n=0;1;::: is called F-adapted if each Zn is Fn-
adapted, n = 0; 1; 2; : : : :
(cf. De�nition 5.0.5)

Remark 6.1.1 Think of a stochastic process X = (X0; X1; : : : ), where X0:::n :=
(X0; : : : ; Xn) describes the states of the world (or at least all what you observe about
them) up to time n. Then Fn := A(X0:::n) de�nes a �ltration F and (see Lemma
5.0.7) an R-valued process Z = (Zn) is F-adapted i�

Zn = gn(X0:::n) ; n = 0; 1; : : :

for some measurable gn:

For the rest of the chapter, let (Fn) = F be a �ltration.

De�nition 6.1.2 An F-adapted sequence Z = (Zn) of integrable random variables
is called an F-martingale if

E[Zn+1jFn] = Zn a.s.

Z is called F-supermartingale if

E[Zn+1jFn] � Zn a.s. ;

and submartingale if (�Zn) is a supermartingale.

Remark 6.1.2 If Z is an F-martingale, then

E[Zn+1j(Z0; : : : ; Zn)] = Zn a.s.

48
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Indeed, Zn is A(Z0; : : : ; Zn)-adapted, and each event A 2 A(Z0; : : : ; Zn) also be-
longs to Fn: Hence, for all, A 2 A(Z0; : : : ; Zn);

E[Zn+1IA] = E[ZnIA]:

De�nition 6.1.3 A sequence (�n)n�1 of random variables is called F-previsible :
() �n is Fn�1-adapted for all n � 1:

Lemma 6.1.1 let � be a real-valued, F-previsible process, and

Gn :=
nX

k=1

�k(Zk � Zk�1)

be integrable (n = 1; 2; : : :):

a) If (Zn) is a martingale, then also (Gn) is one.
b) If (Zn)is a supermartingale and �n is non-negative, n � 1; then also (Gn) is a
supermartingale.

Proof:

E[Gn+1jFn]� Gn = E[Gn+1 �GnjFn] = E[�n+1(Zn+1 � Zn)jFn]
= �n+1E[Zn+1 � ZnjF ]

�
= 0 a.s. in a)
� 0 a.s. in b)

(check which of the facts on conditional expectation we have used !)

6.2 The supermartingale convergence theorem

How often does a supermartingale (Zn) transverse an interval [a; b] from below to
above? In any case, the tendency of (Zn) is not to go upwards. The proof of
the following estimate, which is due to Doob, relies on a simple idea: bet on the
upcrossings, and estimate the gain frombelow in terms of the number of upcrossings.
Since the gain process is a supermartingale (whose expectation is � 0 since it starts
in 0), this gives - under a mild additional assumption - a uniform upper bound for
the expected number of upcrossings.
Let (Zn) be a supermartingale, and �x a < b 2 R: Think of (Zn) as the price of
some asset. Trade one unit of the asset (by betting on increasing Z) as soon as Z
has fallen below a, and do this as long as Z has risen above b:

�1 := IfZ0<ag
�n := IfZn�1<ag[fZn�1�b;�n�1=1g

Gn :=
nX

k=1

�k(Zk � Zk�1)

Let Un denote the number of upcrossings of [a; b] till time n: Obviously, with x� :=
�min(x; 0);

Gn � (b� a)Un � (Zn � a)�

� (b� a)Un � (Zn � jaj)�
� (b� a)Un � (Z�n + jaj);

that is,
(b� a)Un � Gn + jaj+ Z�n :

Since EGn � 0 (see Lemma 6.1.1) we have
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Lemma 6.2.1 (Doob's upcrossing inequality)

(b� a)EUn � jaj+EZ�n � jaj+ sup
k
EZ�k

If, moreover, supkEZ
�
k <1; then monotone convergence implies

EU1 <1; where U1 := lim
n
Un

Theorem 6.2.1 (Supermartingale convergence theorem)
Let (Zn) be a supermartingale with sup

n
EZ�n <1: Then (Zn) converges a.s. to an

integrable random variable Z1:

Proof: For all a < b 2 R; Lemma 6.2.1 yields

P[liminf Zn < a; limsupZn > b] � P[U1 =1] = 0:

Hence

P[liminf Zn < limsupZn] = P[
[
a<b

a;b;2Q

fliminf Zn < a; limsupZn > bg]

�
X
a<b

a;b2Q

P[liminf Zn < a; limsupZn > b] = 0:

This implies
Zn ! Z1 := limsupXn a.s.

Finally, Fatou's lemma (see Lemma 6.2.2 below) yields

EjZ1j = E[liminf jZnj] � liminfE[jZnj]
= lim

n
infE[Zn + 2Z�n ]

� EZ0 + 2 sup
n
EZ�n <1: 2

We have to append

Lemma 6.2.2 (Fatou's lemma)
Let Yn be non-negative random variables. Then

E[lim inf
n

Yn] � lim inf
n

E[Yn]

Proof: Since lim inf
n

Yn = limn infm�n Yn; we have by monotone convergence

E[lim inf
n

Yn] = lim
n
E[ inf

m�n
Ym]

= lim inf
n

E[ inf
m�n

Ym] � lim inf
n

E[Yn]

2

6.3 Doob's submartingale inequalities

Let (Zn) be a non-negative submartingale. (As a prominent example, think of
Zn := jMnj; for a martingale (Mn): Indeed, by Jensen's inequality

E[jMn+1j jFn] � jE[Mn+1jFn]j = jMnj a.s )
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Put
Z�n := max

0�k�n
Zk

(the \`current maximum" of the path up to time n).
Since Zn has an upward tendency, there is some hope for a \stochastic estimate"
of Z�n by Zn.
Because of

cIfZ�n�cg � Z�nIfZ�n�cg;

we have

cP[Z�n � c] � E[Z�nIfZ�n�cg] (6.1)

It turns out that in the r.h.s. one can replace Z�n by Zn: This is

Proposition 6.3.1 (Doob's �rst submartingale inequality)
For c > 0;

cP[Z�n � c] � E[ZnIfZ�n�cg]: (6.2)

Proof: Put Fk := fZ exceeds the level c for the �rst time at time kg
In other words,

F0 = fZ0 � cg
Fk = fZ�k�1 < c; Zk � cg ; k = 1; : : : ; n

Because of the submartingale property we have

E[ZnIFk ] � E[ZkIFk ] � cP[Fk]:

Since IfZ�n�cg =
nP

k=0
IFk ; the claim follows by summation. 2

The assertion (6.2) can be rephrased as follows:

For all c � 0; E[ZnjfZ�n � cg] � c:

It turns out that this provides an estimate of the 2nd moment of Zn in terms of
that of Z�n:

Lemma 6.3.1 Let X and Y be non-negative random variables with

cP[X � c] � E[Y IfX�cg]; c > 0: (6.3)

Then

E[X2] � 4E[Y 2]: (6.4)

Proof: Without loss of generality, 0 < EX; and EY <1: First we observe:

P[X =1] = lim
c!1P[X � c] � lim

c!1
1

c
E[Y ] = 0:

Next we state a useful formula for the 2nd moment:

EX2 =

1Z
0

2cP[X � c]dc (6.5)



CHAPTER 6. MARTINGALES 52

Indeed, writing �X for the distribution of X and using Fubini's lemma) we have

1Z
0

2c�X([c;1))dc =

1Z
0

1Z
0

2c1fx�cg�X(dx)dc

=

1Z
0

1Z
0

2c1fx�cgdc �X(dx)

=

1Z
0

x2�X(dx) = EX2 :

Writing �(X;Y ) for the joint distribution of X and Y , and using successively (6.5),
(6.3), once again Fubini, and the Cauchy-Schwarz inequality, we arrive at

EX2 =

1Z
0

2cP[X � c] �
1Z
0

2E[Y IfX�cg] dc

=

1Z
0

Z
R2+

2 1fX�cgy �(X;Y )(d(x; y)) dc

=

Z
R2+

2xy �(X;Y )(d(x; y)) = 2E[XY ] � 2
p
EX2

p
EY 2

Dividing by
p
EX2 and squaring yields this assertion. 2

It is now easy to prove

Theorem 6.3.1 (Doob's L2-inequality):
If (Zn) is a non-negative, L2-bounded submartingale, then

E[(sup
k
Zk)

2] � 4 sup
k
EZ2

k (6.6)

Moreover, (Zk) converges not only a.s. but also in L2:

Proof: Doob's �rst submartingale inequality together with Lemma 6.4 implies
(with Z�n := sup

0�k�n
Zn)

E(Z�n)
2 � 4EZ2

n � 4 sup
k>0

EZ2
k

Since Z�n " Z� := sup
k
Zk (= sup

k
Z�k ); (6.6) follows by monotne convergence. Because

of EjZnj � EZ2
n, (�Zn) is an L1-bounded supermartingale. Hence the martingale

convergence theorem tells us that Zn converges a.s. to a randam variable Z1:
Because of

jZn � Z1j � 2Z� a.s. ;

and because E(Z�)2 = supE(Z�n)
2 < 1, the L2-convergence of Zn to Z1 follows

by dominated convergence. 2

We have to append

Lemma 6.3.2 (Lebesgue's dominated convergence theorem)
If Xn ! X in probability, and jXnj � Y for some integrable Y; then EjXn�Xj ! 0
(and a fortiori EXn ! EX):
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This is a consequence of the observation

lim
c!1 sup

n
E[jXnjIfjXnj�cg] � lim

c!1E[Y IfY�cg]

= lim
c!1E[Y ]� lim

c!1E[Y IfY <cg] = 0

(monotone convergence!) and the stronger

Lemma 6.3.3 If Xn ! X in probability, and

lim
c!1 sup

n
E[jXnj IfjXnj>cg] = 0; (6.7)

then X is integrable, and EjXn �Xj ! 0:

Proof: Let us write E[Z;A] := E[ZIA]:

1) First we claim that (6.7) implies

sup
n
EjXnj <1:

Indeed, choose c so large that

sup
n
E[jXnj; fjXnj > c] � 1:

Then

EjXnj = E[jXnj; fjXnj � cg] +E[jXnj; fjXnj > cg] � c+ 1:

2) Convergence in probability implies convergence of a suitable subsequence Xnk .
Hence by Fatou

EjXj = E lim inf jXnk j � lim infEjXnk j <1:

3) For given " let c be so large that

E[jXnj; fjXnj > cg] < "; n 2 N:
and

E[jXj; fjXj < cg] > ":

Then

EjXn �Xj � E[jXn �Xj; jXn �Xj � "]

+ E[jXnj; jXn�Xj � "; jXnj > c]

+ E[jXj; jXn �Xj � "; jXj > c]

+ E[jXnj; jXn�Xj � "; jXnj � c]

+ E[jXnj; jXn�Xj � "; jXj � c]

� 3"+ 2cP[jXn �Xj � "]

! 3" as n!1:

Since " was arbitrary, EjXn �Xj ! 0: 2

Property (6.7) is important enough to be given a name.

De�nition 6.3.1 A family (Xi)i2I of �R-valued random variables is called uni-
formly integrable if

lim
c!1 sup

i2I
E[jXi j IfjXij>cg] = 0:
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Remark 6.3.1 The �rst step in the proof of Lemma 6.3.3 shows that uniform in-
tegrability implies boundedness in L1:

Lemma 6.3.4 rephrased: Convergence in probability and uniform integrability
imply L1- convergence.

(In fact, also the converse is true, see D. Williams, loc.cit, Theorem 13.7)

6.4 Stopping times

Let F = (Fn) be a �ltration, and F1 be the smallest �-�eld of events containing
all the Fn:
De�nition 6.4.1 An N0 [ f1g-valued random variable T is called an F-stopping
time: ()

fT � ng 2 Fn ; n 2 N0: (6.8)

Remark 6.4.1 a) (6.8) () fT = ng 2 Fn 8n 2 N0;
since

fT � ng =
n[

k=0

fT = kg; and fT = ng = fT � ng \ fT � n � 1gc:

b) Every constant in N0 [ f1g is a stopping time.
c) Together with T; T 0 , also maxfT; T 0g and minfT; T 0g are stopping times (check!)

In the sequel let T be an F-stopping time.

De�nition 6.4.2

FT := fA 2 F1 : A \ fT � ng 2 Fn 8ng

is called the (�-�eld of) T -past.

De�nition 6.4.3 For F-adapted (Xn) and F1-adapted X1 we de�ne

XT :=
X

k2N0[f1g
XkIfT=kg:

Remark 6.4.2 XT is FT -adapted, since

fXT 2 Bg \ fT � ng =
n[

k=0

(fXT 2 Bg \ fT = kg)

=
n[

k=0

(fXk 2 Bg \ fT = kg| {z }
2Fk

) 2 Fk:

(In particular putting Xn := n, we see that T is FT -adapted.)

6.5 Stopped supermartingales

Let F be a �ltration, (Xn) be an F-supermartingale, and T be an F-stopping time.

Proposition 6.5.1 (XT^n) is an F-supermartingale as well.
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Proof:

XT^n = X0 +
T^nX
j=1

(Xj �Xj�1)

= X0 +
nX
j=1

IfT�jg(Xj �Xj�1)

Since fT � ng = fT � n � 1gc 2 Fn�1; �n := IfT�ng is a previsible process
and the claim follows from Lemma 6.1.1 b). 2

Proposition 6.5.2 (Stopping theorem, baby version)
Let S; T be F-stopping times with S � T � n for some n 2 N: Then

XS � E[XT jFS] a.s.

(and in particular EXS � EXT ):

Proof: XS is FS-adapted. Hence it suÆces to show

E[XT ;G] � E[XS ;G]; G 2 FS : (6.9)

Put Gk := G\fS = kg; k = 0; : : : ; n: Recalling that Gk 2 Fk and using Proposition
6.5.1, we infer

E[XT ;Gk] = [XT^n;Gk] � E[XT^k;Gk]

= E[XT^S ;Gk] = E[XS ;Gk]:

Summation over k yields (6.9). 2

Theorem 6.5.1 (Stopping theorem, adult version) Let (Xn) be a uniformly inte-
grable supermartingale, S and T be stopping times with S � T: Then

E[XS ] � E[XT ] (6.10)

(where we put X1 := limsupXn):

Proof:
a) (XT^n) is a supermartingale ful�lling the requirement

sup
n
EX�

n^T <1 (6.11)

in the supermartingale convergence theorem 6.2.1. Indeed, since '(x) := �x� is
concave and increasing, (�X�

n^T )n�0 is again a supermartingale (check !)
Hence, because of the baby version of the stopping theorem,

E[�X�
n^T ] � E[�X�

n ] � �EjXnj:
Together with Remark 6.3.1 this implies (6.11)
b) Because of a) and the supermartingale convergence theorem 6.2.1, limn!1Xn^T
exists a.s. and is integrable. On fT <1g,

lim
n!1Xn^T = XT ;

and on fT <1g,
lim
n!1Xn^T = lim sup

n
= X1 = XT a.s.
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Hence limn!1Xn^T = XT a.s., and XT is integrable.
c) Replacing T by S in a) and b) we see that limn!1Xn^S = XS a.s., and XT is
integrable.
d) We know from Proposition 6.5.1 and the baby version of the stopping theorem
that

E[XS^n] � E[XT^n]; n = 0; 1; : : : (6.12)

It remains to check that (XS^n) and (XT^n) are uniformly integrable (the assertion
(6.10) then follows from (6.12) together with Lemma 6.6). Indeed,

E[jXn^T j; jXn^T j > c]

= E[jXT j; jXT j > c;T � n] +E[jXnj; jXnj > c;T > n]

� E[jXT j; jXT j > c] +E[jXnj; jXnj > c] �! 0 as c! 0;

since XT is integrable by part a), and (Xn) is uniformly integrable by
assumption. 2

Example: How long does it take till in a fair coin tossing game the pattern
T HT H occurs for the �rst time ?
Consider the following fair game: Before the �rst toss, a gambler enters the casino
and bets 1 Euro on tail. If she loses, she goes home, with a loss of 1 Euro. If she
wins, she bets two Euro on head. If she loses in the second toss, she goes home,
with a total loss of 1 Euro. If she wins in the second toss, she bets 4 Euro on tail.
If she then loses in the third toss, she goes home with a total loss of 1 Euro. If she
wins in the 3rd toss, she bets 8 Euro on head. If she loses in the 4th toss, she goes
home with a total loss of one Euro. If she wins in the 4th toss, the game is stopped,
and she goes home gaining 15 Euro.
Now imagine that before any new loss, a new gambler enters the casino, following
exactly the same strategy (ie. starting to bet one Euro on tail, and playing at most
4 rounds). The game is stopped when the pattern T HT H occurs for the �rst time,
i.e. at the �rst time when one of the gamblers wins 15 Euro.
Denote by Xn the total gain of all the gamblers (having entered so far) at time n:
Obviously (Xn) is a martingale, and jXnj � const � n: Hence

jXn^T j � const � (n ^ T ) � const � T:
Since P[T � m] � K�cm for some K;C; we have ET < 1, and consequently
(Xn^T ) is uniformly integrable. Since by Proposition 6.5.1 Xn^T is a martingale,
we obtain from the stopping theorem

EXT = EX0 = 0

However,
XT = 15� 1 + 3� 1� (T � 4) = 20� T:

Hence
ET = 20:

Finally, let us consider the pattern T T HH (instead of T HT H). Then
Xt = 15� 1� 1� 1� (T � 4) = 16� T;

hence
ET = 16

Thus, although for each of the two patterns and each �xed time point n, the
probability that the pattern starts at n is 2�4, the expected waiting time for the
pattern T HT H is larger than that for T T HH. An intuitive explanation for this
ist that the pattern T HT H tends to come in clumps like (T HT HT H), thus, by
poetic justice, the expected waiting times between clumps should be longer.



Chapter 7

The Wiener Process

7.1 Heuristics and basics

How to scale an ordinary random walk to get a \di�usion limit" ? Consider the
increments of an ordinary random walk:

Yk =

�
+1 with prob 1

2�1 with prob 1
2

Now consider n steps, and take each increment of size 1p
n
: The central limit theorem

tells us that

P[
nX
k=1

1p
n
Yk 2 [a; b]] �! 1p

2�

bZ
a

e�
x2

2 dx:

Next, de�ne

S
(n)
t :=

[nt]X
k=1

1p
n
Yk =

p
t

[nt]X
k=1

1p
nt
Yk| {z }

�!N (0;1)in distribution

Hence

S
(n)
t !N (0; t) in distribution

A candidate for a limit in distribution of Sn on the space of paths would be a
C(R+;R)-valued random variable W with the properties

(i) W (t+ h)�W (t) N (0; h)-distributed

(ii) W (t1 �W (t0); : : : ;W (tk)�W (tk�1) independent for t0 � t1 � : : : � tk

(iii) W (0) = 0 a.s.

A continuous random path W with these properties is called a standard Wiener
process.
Since joint normal (or Gaussian) distributions on Rd are determined by their mean
vector and covariance matrix, the following is equivalent to (i) - (iii):
(W (t1); : : : ; (W (tn)) has a joint normal distribution with mean zero and covariance

EW (ti)W (tj) = min(ti; tj)

57
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7.2 L�evy's construction of W

Basic observation: If W is a standard Wiener process, then
Y := Yt1;t2 := W ( t1+t22 ) � 1

2 (W (t1) + W (t2)) is N (0; 14(t2 � t2)) distributed and
independent of W (t1) and W (t2). Indeed,

E[Y �W (t1)] = t1 � 1

2
t1 � 1

2
t1 = 0;

E[Y �W (t2)] =
t1 + t2

2
� 1

2
t1 � 1

2
t2 = 0;

E[Y 2] =
1

4
t1 +

1

4
t2 � t1 +

1

2
t1

=
1

4
(t2 � t1):

Successive construction of W ( k2n ); 0 < k < 2n, k odd (inductive over n): Let
W (1) and Z2n;k be independent standard normal random variables. Put

W (
1

2
) :=

1

2
W (1) +

1

2
Z20;1

This de�nes W ( 0
21 );W ( 0

21 );W ( 0
21 ). Proceed inductively by

W (
k

2n
) :=

1

2
(W (

k � 1

2n
) +W (

k + 1

2n
)) +

1

2
n+1
2

Z2n;k:

Put Wn := linear interpolation of the W ( k2n ); 0 < k < 2n; k odd. This de�nes a
sequence of C([0; 1];R)-valued random variables.
Let us now estimate the distance between Wn�1 and Wn:

sup
0�t�1

jWn(t) �Wn�1(t) j� 2�
n+1
2 maxfjZ2n;kj : 0 < k < 2ng

Since P[jZ2n;kj > n] � 2 1p
2�

1R
n

xe�
x2

2 dx =
q

2
�
e�

n2

2 ; we conclude that

1X
n=1

2nX
k=1

P[jZ2n;kj � n] �
1X
n=1

2ne�
n2

2 <1;

and hence
1P
n=1

P[9k : jZ2n;kj � n] <1:

Using Borel-Cantelli, we get

P[9n0 8n � n0 : sup
0�t�1

jWn(t)�Wn�1(t) j< 2�
n+1
2 ng = 1:

Therefore: a.s. , (Wn) is a Cauchy sequence w.r.to uniform convergence.
Put W := a.s. limit of W (w.r. to uniform convergence in C[0; 1];R):
Claim: For all k 2 N and t1 < : : : < tk; (W (t1); : : : ;W (tk)) is jointly normal with
expectation 0 and covariances E[W (ti)W (tj)] = min(ti; tj):
Indeed: approximate ti by dyadic rationals tn;i: Then, because of the a.s. uniform
convergence and the continuity of Wn;

(Wn(tn;1); : : : :Wn(tn;k)) �! (W (t1); : : : ;W (tk)) a.s.

The claim about the joint distribution of (W (t1); : : :W (tk)) then follows e.g. by
using characteristic functions (O.Kallenberg, Foundations of modern probability,
Springer 97, Thm.4.4).
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7.3 Quadratic variation of Wiener paths

Proposition 7.3.1 Let W be a standard Wiener process. Then

Qn :=
X
k
n
�t

�
W (

k

n
)�W (

k � 1

n
)

�2

�! t in probability :

Proof:

EQn =
X�

k

n
� k � 1

n

�
= max

�
k

n
:
k

n
� t

�
�! t:

Since the W ( k
n
) �W (k�1

n
); k = 1; 2; : : : are independent and distributed as 1p

n
Z;

where Z is a standard normal random variable, we have

VarQn = [nt] �Var
�
W (

1

n
)

�2

= [nt] �Var( 1p
n
Z)2

= [nt]
1

n2
VarZ2 n!1�! 0:

The assertion now follows by Tschebyshev's inequality. 2

Corollary 7.3.1 W has a.s. \in�nite total variation" on [0; t]; since

X
k
n
�t
jW (

k

n
)�W (

k � 1

n
) j � 1

sup
k
jW ( kn) �W (k�1

n )j
X�

W (
k

n
)�W (

k � 1

n
)

�2

:

The �rst factor on the r.h.s. converges to1 by (uniform) continuity of W on [0; t];
the second factor converges to t along a subsequence (n0):

The corollary indicates that it won't be possible to de�ne an integral
tR
0

�sdWs

naively �a la Riemann-Stieltjes. Indeed, the following classical example of It�o (1942)
illustrates this with

R
WsdWs:

Example 7.3.1

I1 :=
X
k
n
�t
W (

k � 1

n
)

�
W (

k

n
) �W (

k � 1

n
)

�

I2 :=
X
k
n
�t
W (

k

n
)

�
W (

k

n
)�W (

k � 1

n
)

�

We then have

I2 + I1 = W 2
[nt]
n

�W 2
0 �!W 2

t

I2 � I1 =
X
k
n
�t

�
W (

k

n
) �W (

k � 1

n
)

�2

�! t in probability

and consequently

I1
n!1�! 1

2
W 2
t �

t

2
in probability;

I2
n!1�! 1

2
W 2
t +

t

2
in probability:
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7.4 Intermezzo: Filtrations and stopping in con-
tinuous time

De�nition 7.4.1 An increasing family F = (Ft)t�0 of �-�elds is called a �ltration
(in continuous time).

We put Ft+ :=
T
s>t

Ft; F+ := (Ft+)t�0;

F1 := the smallest �-�eld containing all the Ft:
An �R-valued random variable is called an F-stopping time: ()

() f� < tg 2 Ft; t > 0:

Lemma 7.4.1 � is an F-stopping time () f� � tg 2 Ft+ 8t:
Proof: \=)" for all s > t;

f� � tg =
\

n:t+ 1
n
<s

f� < t+
1

n
g 2 Fs

Hence f� � tg 2 Ft+:
\(=" f� < tg = Snf� � t � 1

ng 2 Ft: 2

De�nition 7.4.2 For a stopping time � , we put

F�+ := fA 2 F1 : A \ f� < tg 2 Ft; t > 0g
and call it the �-�eld of pre-� events.

Typical example: Let X be a process with continuous paths in Rd; Ft be
the �-�eld generated by (Xs)0�s�t, B;C some (open or closed) sets in Rd: Consider
the stopping time

� := infft � 0jXt 2 Bg
(the �rst hitting time of B).
Then the event A := fX hits C before it hits Bg belongs to F�+:
Remark 7.4.1 For � = a constant time s, the de�nition of F�+ is consistent with
that of Fs+ (check!)

De�nition 7.4.3 a) A process X is callled F-adapted if Xt is Ft� adapted 8t. We
say that X is continuous if it has continuous paths.
b) An F-adapted process X with EjXtj <1 is called an F-martingale if

E[Xt+hjFt] = Xt a.s. ; t; h � 0:

c) A Wiener process W is called an F-Wiener process if it is F-adapted and the
increments Wt+h �Wt are independent of Ft for all t � 0: (In particular, W then
is an F-martingale.)

Proposition 7.4.1 (Strong Markov property of the Wiener process, Ka. 11.11)1

Let W be an F-Wiener process and � be an a.s. �nite F-stopping time. Then
(W�+t �W� )t�0 is again a standard Wiener process, independent of F�+:
Corollary 7.4.1 An F-Wiener process is also an F+-Wiener process.

Henceforth, we will always assume that our �ltration F is right continuous (i.e.
obeys F = F+).

1Here and below, the citation Ka XX.YY will refer to the book O. Kallenberg, Foundations of

Modern Probability, 2nd ed, Springer 2002.
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7.5 The It�o-integral for simple integrands

De�nition 7.5.1 A random path H = (Hs) is called a simple integrand : ()

Hs =
m�1X
k=0

�k1(tk;tk+1](s)

for some 0 =: t0 < t1 < : : : < tm and Ftk-adapted �k:
De�nition 7.5.2

tZ
0

HsdWs :=
X
k

�k(Wt^tk+1 �Wt^tk):

Observation: Gt :=
tR
0

HsdWs =: (H �W )t is a continuous F-martingale, and

E[G2
t ] = E[

X
k

�2k(t ^ tk+1 � t ^ tk)] = E[

tZ
0

H2
sds]:

This so-called It�o-isometry allows to de�ne the \stochastic integral"
tR
0

HsdWs for a

much larger class of integrands H.
Idea: Let H = (Hs) be such that

(i) H is F-adapted

(ii) E[
tR
0

H2
sds] <1; t � 0:

Approximate H by simple integrands H(n) such that

E[

tZ
0

(Hs �H(n)
s )2ds] �! 0:

Then
tR
0

H
(n)
s dWs converges in L2. The limits - denoted by

tR
0

HsdWs - constitute

a continuous F-martingale. (For proving the continuity of paths, one uses Doob's
submartingale inequalities.)

One can even go beyond integrands obeying E[
tR
0

H2
sds] <1:

Assume

H is F-adapted and

P[
tR
0

H2
sds <1] = 1

9=; (�)

By introducing stopping times �n := infft :
tR
0

H2
sds � ng we can de�ne, with the

above recipe, the martingales

t^�nZ
0

HsdWs; t � 0
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and put
tR
0

HsdWs := lim
n

t^�nR
0

HsdWs:

This is not necessarily a martingale, but in any case a so called local martingale.

De�nition 7.5.3 (Mt)t�0 is called a local F-martingale: () there exists a se-
quence of F-stopping times �n with �n !1 a.s. and, for alll n = 0; 1; : : : ;
(Mt^�n �M0)t�0 is an F-martingale.

It turns out that - beside the classical integrands of bounded variation - the local
martingales are the right class of \`stochastic integrands". In this context, a fun-
damental role is played by the quadratic variation and covariation process of local
martingales.

7.6 Integrators of locally �nite variation

De�nition 7.6.1 A function a : R �! R is called of locally �nite variation:
() for all t > 0;

vt(a) := sup
(tk) partition of [0;t]

X
ja(tk+1)� a(tk)j <1

Note that t 7! vt(a) is increasing (and continuous if a is continuous). Every such a
can be uniquely written in the form

a = a(+) � a(�); with nondecreasing a(+) and a(�);

and
vt(a) = a

(+)
t + a

(�)
t :

Therefore, functions of locally �nite variation are just di�erences of incresasing
functions. But we know how to treat increasing functions as integrands, viewing
them as weight functions of measures. For measurable h : R+ �! Rwe de�ne

tZ
0

h(s)da(s) :=

tZ
0

h(s)da(+)(s) �
tZ

0

h(s)da(�)(s)

provided both terms on the r.h.s are �nite.

If
tR
0

jh(s)jdvt(s) <1 8t; we say that h is locally a-integrable.

Example (\Absolutely continuous functions") Consider

a(t) :=

tZ
0

b(s)ds

Then

vt(a) =

tZ
0

jb(s)jds; and
tZ

0

h(s)da(s) =

tZ
0

h(s)b(s)ds:

It turns out (and is not even diÆcult to prove) that there are no non-trivial
continuous local martingales of locally �nite variation.

Proposition 7.6.1 (Ka 17.2)
If M is a continuous local martingale of locally �nite variation, then M =M0 a.s.
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7.7 Continuous local martingales as integrators

The previous proposition suggests that in a calculus dealing with a local martingale
M; not only the increment dM but also the squared increment (dM )2 might play a
role.
An intuitive key to the understanding of (dM )2 is the follow easy

Remark 7.7.1 For a square integrable martingale M ,

E[(Mt+h �Mt)
2jFt] = E[M2

t+h � 2Mt+hMt +M2
t jFt]

= E[M2
t+h �M2

t jFt]
This says that the predicted squared increment of M is the predicted increment of
the square of M: Thus, it seems reasonable to relate (dM )2 to the \predictor" of
the submartingaleM2 (which would be an increasing process [M ] makingM2� [M ]
a martingale). Indeed, this is no vain hope.

Theorem 7.7.1 (quadratic variation and covariation of continuous local martin-
gales Ka 17.5)

a) For any continuous local martingale M there exists an a.s. unique continuous
increasing process [M ] with [M ]0 = 0 such that

M2 � [M ] is a local martingale.

[M ] is called the quadratic vatiation (process) of M .

b) For any continuous local martingales M and N ,

[M;N ] :=
1

4
([M + N ]� [M �N ])

is the a.s. unique continuous process of locally �nite variation and with
[M;N ]0 = 0 such that

MN � [M;N ] is a local martingale :

[M;N ] is called the covariation (process) of M and N .

The mapping (M;N ) �! [M;N ] is a.s. symmetric and bilinear, with

[M;N ] = [M �M0; N � N0] a:s:

Furthermore, for every stopping time � ,

[M � ; N ] = [M � ; N � ] = [M;N ]� a:s:

(where M �
t :=Mt^� ).

The following fact sheds light on the meaning of [M ] (and plays a role in the proof
of the previous theorem).

Proposition 7.7.1 (Ka 17.18) Let M be a continuous local martingale, �x any t
and consider a sequence of partitions (tnk ) of [0; t] with mesh size �! 0: ThenX

k

(Mtn
k+1

�Mtn
k
)2 �! [M ]t in probability, and (7.1)

X
k

(Mtn
k+1

�Mtn
k
)(Ntn

k+1
�Ntn

k
) �! [M;N ]t in probability.
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Corollary 7.7.1
j[X;Y ]jt �

p
[X]t

p
[Y ]t a.s

Remark 7.7.2 For a simple integrand H and a continuous local martingale M , we
de�ne

R �
0
HsdMs analogous to De�nition 7.5.2. This is again a local martingale,

and its quadratic variation is

[

Z �

0

HsdMs] =

Z �

0

H2
sd[M ]s:

Its covariation with a local martingale N is

[

Z �

0

HsdMs; N ] =

Z �

0

Hsd[M;N ]s]:

It is probably easier to recall the following di�erential mnemonics:

(Ht dMt)
2 = H2

t (dMt)
2

Ht dMt dNt = Ht dMt dNt

De�nition 7.7.1 For a continuous local martingale M; we put

L(M ) := fH : H F-adpated and
tR
0

H2
sd[M ]s <1 for all tg

(calling these H the locally M -integrable processes)

An elegant geometric approach to the stochastic integral is to characterize it in
terms of its covariation with all the other continuous local martingales:

Theorem 7.7.2 (stochastic integral, It�o, Kunita and Watanabe)(Ka 15.12)
For every continuous local martingale M and every process H 2 L(M ) there exists
an a.s. unique continuous local martingale H �M with (H �M )0 = 0 such that

[H �M;N ] =

Z �

0

Hsd[M;N ]s =: H � [M;N ] a.s.

for every continuous local martingale N .

Theorem 7.7.3 (Ka 15.23) The integral H �M is the a.s. unique linear extension
of the elementary stochastic integral such that for every t > 0 the convergence

(H2
n � [M ])t �! 0 in probability

implies
sup

0�s�t
(Hn �M )s �! 0 in probability

In particular we have in the setting of Proposition 7.7.1

X
k

Mtn
k
(Mtn

k+1
�Mtn

k
)!

Z t

0

MsdMs:

Together with (7.1) and the same reasoning as in Example 7.3.1 this shows:

Remark 7.7.3 For any continuous local martingale M ,

M2
t =M2

0 + 2

tZ
0

MsdMs + [M ]t:
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7.8 Stochastic calculus for continuous local semi-
martingales

De�nition 7.8.1 A continuous F-semimartingale X is the sum of a continuous lo-
cal F-martingale M and a continuous F-adapted process A of locally �nite variation.

By Proposition 7.6.1, the decomposition

X =M + A

is a.s. unique.
We put

L(X) := H : H is locallyM -integrable and locally A-integrableg

For H 2 L(X); we de�ne the stochastic integral H �X as

H �X := H �M +H �A:

For two semimartingales X = M +A, Y = N +B we put

[X;Y ] = [M;N ]:

In particular
[X] = [M ]:

Proposition 7.8.1 (chain rule, Ka 17.15) Let X be a contiunous semimartingale,
and H 2 L(X): Then J 2 L(H �X) i� J �H 2 L(X); in which case
J � (H �X) = (JH) �X:

Proposition 7.8.2 (stopping) For any continuous semimartingale X, any process
H 2 L(X) and stopping time � we have a.s.

(H �X)� = H �X� = (H1[0;� ]) �X:

The following gives one more interpretation of the covariation term [X;Y ] as
the \remainder term" in the integration by parts formula (compare with Remark
7.7.3)

Theorem 7.8.1 (Integration by parts, Ka ch. 17) For any continuous semimartin-
gale X;Y we have a.s.

XY = X0Y0 +X � Y + Y �X + [X;Y ]

Theorem 7.8.2 (substitution rule, It�o's formula, Ka 17.18)
a) Let X be a continuous semimartingale, f 2 C2(R),. Then

f(Xt) = f(X0) +

Z t

0
f 0(Xs)dXs +

1

2

Z t

0
f 00(Xs)d[X]s:

b) Let X1; : : : ; Xd be continuous semimartingales, f 2 C2(Rd), X = (X1; : : : ; Xd).
Then

f(X) = f(X0) +
dX
i=1

@

@xi
f(Xs)dX

i
s +

1

2

dX
i;j=1

@2

@xi@xj
f(Xs)d[X

i; Xj ]s a.s.
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A most prominent example is Xt = (Wt; t):

df(Wt; t) =
@

@x1
f(Wt; t)dWt +

@

@x2
f(Wt; t)dt+

1

2

@2

@x21
f(Wt; t)dt;

since Yt = t has locally �nite variation, hence [Y ] � 0 and (see Corollary 7.7.1)
[Y;W ] � 0.

It is suggestive to think of It�o's formula as a second order Taylor expansion:

df(X) =
X
i

f 0i(X)dXi +
1

2

X
i;j

f
00
ij(X)dXidXj

(where fi denotes
@
@xi

f .)

Example 7.8.1 For a standard Wiener process W , constant � and X0 > 0; con-
sider the strictly positive process

St := S0 exp(�Wt � 1

2
�2t): (7.2)

Writing f(z) := ez; Zt := �Wt � 1
2�

2t; we obtain from It�o's formula

dSt = XtdZt +
1

2
Xtd[Z]t (7.3)

= Xt(�dWt � 1

2
�2dt+

1

2
�2dt)

= Xt�dt:

Hence Xt is a local martingale. Indeed, an elementary calculation shows that

Ee�Wt =
1p
2�t

Z
e�

x2

2t e�xdx = e
1
2�

2t 1p
2�t

Z
e
�( xp

2t
��

p
tp
2
)2
dx = e

1
2�

2t:

Together with the independence of increments of W , this shows that X is even a
martingale (provided X0 is integrable). X is called geometric Brownian motion
with volatility � (and initial value X0.)

By the way, the solution to the \stochastic di�erential equation" (7.3) with initial
conditionX0 = x0 is a.s. unique. Indeed, consider some continuous local martingale
Y with Y0 = x0 and

dY = Y dW:

Then Zt :=
Yt
Xt

obeys, by It�o's formula, dZt = 0 (check!), hence Y = X a.s.

7.9 L�evy's characterisation of W

We saw in Subsection 7.3. and 7.4 that a standard F-Wiener process W is an F-
martingale with W0 = 0 and quadratic variation [W ]t = t a.s. We will now prove
that each continuous local martingale M with M0 = 0 and [M ]t = t is in fact a

Wiener process. This will be achieved by analysing the process exp(i�Mt +
�2

2 t),
which will turn out to be a complex-valued martingale, and will help to identify the
conditional distribution of the increment Mt �Ms, given Fs.
As a preparation, we state It�o's formula for complex-valued continuous semimartin-
gales.
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By a complex-valued continuous semimartingale we mean a process of the form
Z = X + iY; where X and Y are real continuous semimartingales. We put

[Z] := [Z;Z] := [X + iY;X + iY ] =

= [X] + i[X;Y ]� [Y ]:

For Z = X + iY;K = H + iJ ;H; J 2 L(X) \ L(Y ); we put

K � Z := H �X � J � Y + i(H � Y + J �X);

An easy consequence of Theorem 7.5 is

Corollary 7.9.1 (Ka 17.20) Let f : C ! C be di�erentiable, and Z be a complex-
valued continuous semimartingale. Then

f(Z) = f(Z0) + f 0(Z) � Z +
1

2
f 00(Z) � [Z] a.s :

Example 7.9.1 Let W be a standard Wiener Process. Put Xt := ei�Wt+
�2

2 t =:
eZt . Then [Z]t = ��2t; and by It�o's formula (with f(x) = ex)

dX = XdZ +
1

2
Xd[Z]

= X(i�dW +
�2

2
dt� 1

2
�2dt)

= Xi�dW:

Hence X is a local martingale, and since

sup
0�s�t

jXsj = exp(
�2

2
t) <1;

X is even a martingale (use dominated convergence!). Thus: Eei�Wt = e
�2

2 t:

Corollary 7.9.2 (Characteristic function of the normal distribution) For the nor-
mal distribution v with mean 0 and variance t,Z

R

ei�yv(dy) = e
�2

2 t; � 2 R:

Theorem 7.9.1 (L�evy's characterization of the Wiener process) Let M by a con-
tinuous local F-martingale with quadratic variation [M ]t = t ; t � 0; and M0 = 0:
Then M is a standard F-Wiener process.

Proof: Since a distribution on R is uniquely determined by its characteristic func-
tion (Ka 4.3), it suÆces to show

E[ei�(Mt�Ms)jF ] = e�
1
2�

2(t�s) a.s.

Or, in other words

E[ei�Mt+
1
2�

2tjFs] = ei�Ms+
1
2�

2s a.s. (7.4)

Putting Xt: = e�Mt+ �2

2 t; we infer exactly as in Example 7.1. that X is martingale,
which yields property (7.4). 2
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7.10 Reweighting the probability = changing the
drift

Up to now we always considered one single probability measure P on our �-�eld
of events. We will now consider another probability measure Q which s \locally
absolutely continuous" with respect to P in the sense of (7.5) below. If M is a con-
tinuous local martingale under P , it is not necessarily a continuous local martingale
under Q. Indeed, if the \density process" of Q with respect to P has a positive
covariance with M , passing from P to Q will generate a positive drift. However,
such a \change of measure" does not a�ect the quadratic variation process [M ].

Let's now make things precise. Let P and Q be two probability measures on
F1: Assume that for any t there exists a Zt such that

Q(F ) = E[IFZt] ; F 2 Ft: (7.5)

We then say that Q has density Zt with respect to P on Ft (writing Q = Zt �P on
Ft); and call (Zt) density process of Q w.r. to P .
Since Fs � Ft we have for all F 2 Ft

E[ZsIF ] = Q(F ) = E[ZtIF ]:

Hence (Zt) is a martingale.

Lemma 7.10.1 (Ka 18.25, 18.26, 18.17) Let Q = Zt �P on Ft for all t � 0: (That
is, assume that (7.5) holds.) Then Z is a P -martingale. Moreover, if Z is P -a.s.
continuous, then

a) an adapted continuous process X is a local Q-martingale i� X � Z is a local
P -martingale.

b) for all t > 0; inf
s�t

Zs > 0 Q a.s

Theorem 7.10.1 (transformation of drift, Ka 18.19) Let Q = ZtP on Ft for all
t � 0; and assume that Z is a.s continuous. Then for any continuous local P -
martingale M , the process

~M =M � 1

Z
� [M;Z]

is a local Q-martingale.

Sketch of proof:

a) If Z�1 is bounded, then ~M is a continuous P -semimartingale, and we get

d( ~MZ) = ~MdZ + Z � d ~M + d[ ~M;Z]

= ~MdZ + Z � dM � d[M;Z] + d[ ~M;Z]

However, since Mand ~M di�er only by a process of locally �nite variation,
the last two terms cancel. Hence ~MZ is a continuous local P -martingale,and,
by Lemma 7.2, ~M is a local Q-martingale.

b) In general, consider �n := infft � 0 : Zt <
1
n
g and argue as in a) that ~M �nZ

is a continuous local P -martingale. Hence every ~M �n ; and therefore also ~M;
is a local Q-martingale.
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2

Example 7.10.1 Let M be a continuous local martingale, and B 2 L(M ):
Then Z = exp(B �M � 1

2B
2 � [M ]) is a continuous local martingale. Indeed, by It�o's

formula (check!)
dZ = ZB dM:

Assume that, for a �xed t > 0;
(Zs)0�s�t is even a martingale
(equivalent to this is

EZt � 1 (\Girsanov's condition")

and suÆcient for this is

E[exp(
1

2

tZ
0

B2
sd[M ]s)] <1 ("Novikov's condition"))

Then, under Q := Zt � P;
~M :=M �B � [M ]

is a local martingale.
Indeed, by Theorem 7.10.1 it suÆces to check that

1

Z
� [M;Z] = B � [M ]

However,

[M;Z] = [M;ZB �M ]

= ZB � [M ]

(Again, the di�erential abbreviation is more suggestive:

1

Z
dMdZ =

1

Z
ZB(dM )2 = B(dM )2:)

Special case: Let W be a standard Wiener process under P . Put

Zs := exp

0@ sZ
0

BudWu � 1

2

sZ
0

B2
uds

1A
Assume EZt = 1: Then, under Q := Zt � P;
~Ws := Ws �

sR
0

Budu;

0 � s � t;

is a local martingale with quadratic variation process [ ~W ] = [W ]; hence ~W is a
standard Wiener process by L�evy's characterization!
This is the classical Girsanov theorem.

Remark 7.10.1 In the situation of Example 7.1, the density Zt of Q with respect
to P on Ft is strictly positive, and hence an event F 2 Ft has P -probability zero i�
it has Q-probability 0. We say in this case that P and Q are equivalent probability
measures on Ft.
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7.11 A strategy for (almost) all cases

Example 7.11.1

Consider a geometric Brownian motion X with volatility � > 0 and (possibly ran-
dom) initial value X0 (see Example 7.1). Let F be the �ltration generated by X,
and T > 0 be a �xed time.
Task: For given (integrable) f(XT ); look for adapted processes H and G such that

dGt = HtdXt

and
GT = f(XT )

or in other words,

f(XT ) = G0 +

TZ
0

Ht dXt a.s.

Thus we look for an initial value G0 and a \strategy" H that yields the �nal value
f(XT ) for almost all paths X.

Observe that (because of the projection property of conditional expectations)

Gt := E[f(XT )jFt]; t � 0

is a martingale.
On the other hand, Gt is of the form g(t;Xt): Indeed, since XT=Xt = exp(�(WT �
Wt)� 1

2�
2(T � t)) and W has independent increments,

Gt = E[f(XT )jFt] = E[f(Xt
XT

Xt
jFt] = g(t;Xt) a.s.

where

g(t; x) := E[f(x exp(�WT�t � �2

2
(T � t))]

By It�o's formula,

g(t;Xt)� g(0; X0) =

tZ
0

@

@x
g(s;Xs)dXs +At; (7.6)

where A is of locally �nite variation. Since all the other terms in (7.6) are continuous
martingales, so is A. Hence A vanishes by Proposition 7.2.
Since

g(T;XT ) = GT = E[f(XT )jFT ] = f(XT ) a.s.

and
g(0; X0) = G0 = E[f(XT )jX0] a.s.

we get from (7.6) (recalling that A � 0) the representation

f(XT ) = E[f(XT )jX0] +

Z t

0

@

@x
g(s;Xs)dXs a.s.

This gives a formula both for the required initial value

G0 = E[f(XT )jX0] = E[f(X0 exp(�WT � �2

2
T ))jX0]

and the hedging strategy

Hs =
@

@x
g(s;Xs):
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Example 7.11.2

Let W be a standard Wiener process, and S be a geometric Brownian motion with

dSt = St � dWt:

Let F be the �ltration generated by S, and �x a constant r > 0 (think of S as a
\stock price" and r as an \interest rate".) Let T > 0 be a �xed time.
Task: for given (integrable) h(ST ); look for adapted processes H and V such that

dVt = HtdSt + [Vt �HtSt] r dt (7.7)

and

VT = h(ST ): (7.8)

Think of (Vt) as the value process of a portfolio, and (Ht) as trading strategy: at
time t; one holds Ht units of the stock and puts an amount of Vt � HtSt on the
savings account. This leads to an increment dVt given by (7.7). Like in Example
7.4, we look for an initial value V0 and a strategy H that yields the �nal value h(ST )
for almost all paths S.
Consider the \discounted processes"

Xt := e�rtSt (7.9)

and

Gt := e�rtVt (7.10)

By It�o's formula we have

dXt = e�rt[dSt � Str dt] = e�rtSt[�dWt � r dt]

= Xt[�dWt � rdt] (7.11)

and

dGt = e�rt[dVt � Vtr dt]

= e�rt[HtdSt �HtStr dt]

= Hte
�rtSt[�dWt � r dt]

= HtdXt (7.12)

Let Q be a probability measure equivalent to P on FT and such that

dfW := dW � r

�
dt

de�nes a standard Wiener process under Q. Then (7.11) and 7.12) translate into

dXt = �dfWt: (7.13)

Moreover, the �nal condition for G is

GT = e�rTVT = e�rTh(ST ) = e�rTh(erTXT ): (7.14)

Putting
f(x) := e�rTh(erTx);

(7.14) writes as

GT = f(XT ): (7.15)
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Looking at example 7.11.1, we see that a solution to (7.13), (7.12), (7.15) is given
by

Gt = EQ[f(XT )jFt] = g(t;Xt);

where

g(t; x) = EQ[f(x exp(�fWT�t � �2

2
(T � t))];

and

Ht =
@

@x
g(t;Xt):

In particular,

V0 = G0 = g(0; X0) (7.16)

= EQ[f(X0 exp(�fWT � �2

2
T ))jX0]

= EQ[e
�rth(erTS0 exp(�fWT � �2

2
T ))jS0] a.s.

Example 7.11.3

Let the process S obey
dSt = St dYt

where Y is a continuous semimartingale with quadratic variation �2t:

dSt = �dWt + dAt

Task: for given h(ST ); �nd adapted processes H and V such that (7.7) and (7.8)
are valid.
For X and G de�ned by (7.9) and (7.10), we have (compare (7.11) and (7.12))

dXt = Xt[dYt � r dt] = Xt[�dWt + dAt � r dt]

and
dGt = HtdXt:

Let the probability measure Q (equivalent to P on FT ) be such that

dfW := dW +
1

�
(dAt � r dt)

de�nes a standard Wiener process under Q. Then (7.13) is valid again, and the
formula (7.16) for H and V also provide a solution to (7.7) and (7.8). This is a
variant of the celebrated Black-Scholes formula, giving the fair price V0 and the
\replication"

h(ST ) = V0 +

Z T

0

HtdSt +

Z T

0

(Vt �HtSt)r dt

of a claim h(ST ) via a self-�nacing trading strategy.


