On Galois sections for hyperbolic p-adic curves JAKOB STIX

(joint work with Florian Pop)

This note advocates a valuation theoretic point of view on Grothendieck's section conjecture in general, and for hyperbolic curves over *p*-adic fields in particular.

1. VALUATIVE POINT OF VIEW TOWARDS THE SECTION CONJECTURE

1.1. Packets of sections. Let X/k be a normal, geometrically irreducible variety with function field K. Let Gal_K be the absolute Galois group of K, and view the étale fundamental group $\pi_1(X)$ as its maximal quotient unramified over X:

$$\operatorname{Gal}_K \twoheadrightarrow \operatorname{Gal}(K/K) = \pi_1(X)$$

Let w be a Krull k-valuation of K with residue field $\kappa(w) = k$. The decomposition group $D_{\tilde{w}|w} \subseteq \pi_1(X)$ determined by a prolongation $\tilde{w} \mid w$ to \tilde{K} admits a natural projection $D_{\tilde{w}|w} \twoheadrightarrow \operatorname{Gal}_{\kappa(w)}$ that always has a splitting $\sigma : \operatorname{Gal}_{\kappa(w)} \to D_{\tilde{w}|w}$. We obtain a **Galois section**, i.e., a section of $\pi_1(X) \to \operatorname{Gal}_k$, as follows:

$$s_w : \operatorname{Gal}_k = \operatorname{Gal}_{\kappa(w)} \xrightarrow{\sigma} D_{\tilde{w}|w} \to \pi_1(X).$$

The section s_w depends on the choice of splitting σ and on the choice of \tilde{w} . The collection of all such s_w associated to w is the **packet** of sections at w.

1.2. The section conjecture. Recall that a hyperbolic curve is a smooth geometrically connected curve with non-abelian geometric étale fundamental group.

Conjecture 1 (Grothendieck's section conjecture [G83]). Let k be a number field and X/k a hyperbolic curve. Then every Galois section $s : \operatorname{Gal}_k \to \pi_1(X)$ is of the form s_w for a suitable choice of k-valuation w on the function field of X.

Remark 2. (1) Since the injectivity of the section map for hyperbolic curves

 $X(k) \to \{s : \operatorname{Gal}_k \to \pi_1(X) ; \operatorname{Galois section}\}, \quad a \mapsto s_a$

is well known, Conjecture 1 is equivalent to the original version from [G83].

(2) In fact, the valuation theoretic formulation of Conjecture 1 takes care of the necessary correction of the original statement, see already in [G83], due to cuspidal sections coming from rational points from the boundary of the compactification.

(3) With $\operatorname{Gal}_K \to \operatorname{Gal}_k$ instead of $\pi_1(X) \to \operatorname{Gal}_k$ we obtain a birational version of the section conjecture. This is in fact a theorem for the variant where k is a finite extension of \mathbb{Q}_p due to Koenigsmann [K03].

2. VALUATIONS ON *p*-ADIC FIELDS

2.1. The main theorem. We are now concerned with the *p*-adic version of Conjecture 1. From now on, let k/\mathbb{Q}_p be a finite extension with *p*-adic valuation *v*, ring of integers \mathfrak{o}_k , and residue field \mathbb{F} . The variety X/k will be a hyperbolic curve. We define

$$\operatorname{Val}_{v}(K) = \{w ; \text{ Krull valuation on } K \text{ extending } v \text{ on } k\}$$

and similarly $\operatorname{Val}_{v}(\tilde{K})$. Then the main result of [PS09] is the following.

Theorem 3. Let k/\mathbb{Q}_p be a finite extension and X/k a hyperbolic curve with function field K. Then for every Galois section $s : \operatorname{Gal}_k \to \pi_1(X) = \operatorname{Gal}(\tilde{K}/K)$ there is a valuation $\tilde{w} \in \operatorname{Val}_v(\tilde{K})$ such that with $w = \tilde{w}|_K$

$$s(\operatorname{Gal}_k) \subseteq D_{\tilde{w}|w} \subseteq \pi_1(X).$$

Remark 4. (1) Theorem 3 confirms a *p*-adic version of Conjecture 1: every Galois section is of the form s_w for a suitable valuation. Only the class of valuations has to take into account also the more "arithmetic" compactification by flat projective \mathfrak{o}_k -models of X, see below for the description of $\operatorname{Val}_v(\tilde{K})$. For an assertion towards the uniqueness of the valuation w in Theorem 3 we refer to [PS09].

(2) We set v_a for the k-valuation of K corresponding to the k-rational point $a \in X(k)$. The composition of valuations $w_a = v \circ v_a$ yields a map

$$X(k) \to \operatorname{Val}_v(K), \quad a \mapsto w_a$$

such that $D_{w_a} = s_a(\operatorname{Gal}_k)$ up to conjugation. The *p*-adic section conjecture follows from Theorem 3 if only valuations of the form w_a admit sections of $D_{\tilde{w}|w} \to \operatorname{Gal}_k$.

(3) If the *p*-adic section conjecture turns out to be wrong, then Theorem 3 yields the analogous correction with sections coming from valuations centered at infinity as in the case for affine curves with Grothendieck's original conjecture in [G83].

(4) There are conditional results due to Saïdi to lift Galois sections at least partially towards birational Galois sections, namely to the cuspidally abelian quotient of Gal_K relative X, with the idea in mind to reduce the *p*-adic section conjecture to Koenigsmann's Theorem recalled above. Further weaker but unconditional lifting results are obtained by Borne/Emsalem together with the author.

(5) Hoshi has shown that the geometrically pro-p version of the section conjecture fails in explicit examples where non-geometric sections exist.

(6) Mochizuki deals with an analogue regarding Galois sections for the tempered fundamental group of André, a group which is pro-discrete rather than pro-finite.

2.2. An application. Theorem 3 has the following consequence for Galois sections (trivial for Galois sections coming from k-rational points).

Theorem 5. Let k/\mathbb{Q}_p be a finite extension and X/k a proper hyperbolic curve with proper flat model $\mathscr{X} \to \operatorname{Spec}(\mathfrak{o}_k)$. Let $Y = \mathscr{X}_{\mathbb{F}}$ be the special fibre.

- (1) If there is a Galois section $s : \operatorname{Gal}_k \to \pi_1(X)$, then the geometric specialisation map $\overline{\operatorname{sp}} : \pi_1(X \otimes k^{\operatorname{alg}}) \twoheadrightarrow \pi_1(Y \otimes \mathbb{F}^{\operatorname{alg}})$ is surjective.
- (2) Every Galois section $s : \operatorname{Gal}_k \to \pi_1(X)$ specialises to a unique Galois section $t : \operatorname{Gal}_{\mathbb{F}} \to \pi_1(Y)$, i.e., there is a commutative diagram

$$\begin{array}{ccc} \pi_1(X) & \stackrel{\mathrm{sp}}{\longrightarrow} & \pi_1(Y) \\ s & & & & \downarrow & \uparrow \\ \mathrm{Gal}_k & \longrightarrow & \mathrm{Gal}_{\mathbb{F}} \,. \end{array}$$

2.3. The Riemann–Zariski space. The space of valuations $\operatorname{Val}_v(\tilde{K})$ can be more geometrically understood as the Riemann–Zariski pro-space of (the closed fibres of) all models. Let $X_H \to X$ be the finite étale cover corresponding to an open subgroup $H \subseteq \pi_1(X)$, and let \mathscr{X}_H be a proper flat \mathfrak{o}_k -model of X_H . Any $\tilde{w} \in \operatorname{Val}_v(\tilde{K})$ has a unique center in the special fibre $\mathscr{X}_{H,\mathbb{F}}$ by the valuative criterion of properness, i.e., a point $z_{\tilde{w}}$ such that the valuation ring of \tilde{w} dominates the local ring $\mathcal{O}_{\mathscr{X}, z_{\tilde{w}}}$. In fact, the map assigning the compatible system of centers

$$(\star) \qquad \operatorname{Val}_{v}(\tilde{K}) \xrightarrow{\sim} \varprojlim_{H, \mathscr{X}_{H}} \mathscr{X}_{H, \mathbb{F}}, \quad \tilde{w} \mapsto z_{\tilde{w}}$$

is a homeomorphism of pro-finite spaces (for the patch topology on the left and the constructible topology on the right).

2.4. Fixed points. The map (\star) is equivariant under $\pi_1(X) = \operatorname{Gal}(\check{K}/K)$ and $D_{\tilde{w}|w}$ is precisely the stabilizer of \tilde{w} . By the usual compactness argument with projective limits it suffices for Theorem 3 to show that $\Sigma = s(\operatorname{Gal}_k) \subset \pi_1(X)$ has a fixed point (generic or closed)

$$(\mathscr{X}_{H,\mathbb{F}})^{\Sigma} \neq \emptyset$$

for a cofinal set of open normal subgroups $H \triangleleft \pi_1(X)$ and equivariant models \mathscr{X}_H on which Σ acts via a finite subgroup of $\pi_1(X)/H$. Thus we first may assume \mathscr{X}_H is a regular semistable model. The fibres of the projection to the stable model

$$\mathscr{X}_H \to \mathscr{X}_{H,\text{stable}}$$

are trees of projective lines. Since a tree is a CAT(0)-space, any action by a finite group on a tree has fixed points. It follows that the fibre over a Σ -fixed point of $(\mathscr{X}_{H,\text{stable}})_{\mathbb{F}}$ again has a Σ -fixed point. We may therefore restrict to stable models.

3. The ℓ -adic Brauer group method

3.1. The locus of a Brauer class. Although it is counterintuitive that ℓ -adic methods actually are able to detect the arithmetic in a Galois section, we next fix a prime $\ell \neq p$. The Brauer group method going back to Neukirch in the study of absolute Galois groups of number fields is here based on the following.

The relative Brauer group ker(Br(k) \rightarrow Br(X)) is cyclic of order the index of X due to Roquette and Lichtenbaum. By [S10] the presence of a section implies that the index is in fact a power of p, so that the map on ℓ -torsion

$$\operatorname{Br}(k)[\ell] \hookrightarrow \operatorname{Br}(X)[\ell] \subseteq \operatorname{Br}(K)[\ell]$$

is injective. In the limit over all neighbourhoods of s, i.e., for the fixed field $M = \tilde{K}^{\Sigma}$, the map $\operatorname{Br}(k)[\ell] \hookrightarrow \operatorname{Br}(M)[\ell]$ remains injective. We now need a fine local-global principle for the Brauer group due to Pop:

Theorem 6 ([P88] Thm 4.5). Let k/\mathbb{Q}_p be a finite extension and M/k a function field of transcendence degree 1 over k. Then the restriction map

$$\operatorname{Br}(M) \hookrightarrow \prod_{\substack{w \in \operatorname{Val}_v(M) \\ 3}} \operatorname{Br}(M_w^h)$$

is injective. Here M_w^h denotes the henselisation of M in the valuation w.

It follows that there is a valuation $w_M \in \operatorname{Val}_v(M)$ such that $\operatorname{Br}(k)[\ell]$ survives in $\operatorname{Br}(M^{\mathrm{h}}_{w_M})$. Let \tilde{w} be an extension of w_M to \tilde{K} . Since $\operatorname{Gal}(\tilde{K}/M) = \Sigma \simeq \operatorname{Gal}_k$, all intermediate fields are composite with extensions k'/k of the same degree. It follows that $[(\tilde{K} \cap M^{\mathrm{h}}_{w_M}) : M]$ is prime to ℓ since otherwise $\operatorname{Br}(k)[\ell]$ would not survive. Therefore a suitable choice of ℓ -Sylow subgroup $\Sigma_{\ell} \subset \Sigma$ is contained in

$$(\star\star) \qquad \qquad \Sigma_{\ell} \subseteq \operatorname{Gal}(K/K \cap M_{w_M}^{\mathrm{h}}) = D_{\tilde{w}|w_M} \subseteq D_{\tilde{w}|w}$$

3.2. Inertia. Let $\Theta \subseteq \Sigma$ be the image under *s* of the inertia group $I_k \subseteq \text{Gal}_k$ and let $I_{\tilde{w}|w} \subseteq D_{\tilde{w}|w}$ denote the inertia group of \tilde{w} . Based on $(\star\star)$ with considerable more work for valuations \tilde{w} associated to generic points of components of the special fibre one may show the following.

Proposition 7. It is possible to choose \tilde{w} such that $\Theta_{\ell} \subseteq I_{\tilde{w}|w}$, where Θ_{ℓ} is a choice of ℓ -Sylow group of Θ .

4. Independence of ℓ -adic ramification

4.1. The kernel of specialisation. Let $H \triangleleft \pi_1(X)$ be an open normal subgroup such that X_H has a stable model $\mathscr{X}_{H,\text{stable}}$. We write $Y = \bigcup_{\alpha} Y_{\alpha}$ for the union of irreducible components of its reduced special fibre and may further assume that all Y_{α} are smooth and have genus ≥ 1 . We consider the kernel of specialisation

$$N_H := \ker \left(H = \pi_1(X_H) \twoheadrightarrow \pi_1(\mathscr{X}_H) \right)$$

which contains $I_{\tilde{w}|w} \cap H$ for every valuation $\tilde{w} \in \operatorname{Val}_{v}(\tilde{K})$. We further set

$$V_H = N_H^{\mathrm{ab}} \widehat{\otimes} \mathbb{Q}_\ell$$

and for each $\tilde{w} \in \operatorname{Val}_{v}(\tilde{K})$ we define a set of cardinality 1 or 2

 $A_{\tilde{w}} = \{ \alpha ; Y_{\alpha} \text{ contains the center of } \tilde{w} \text{ on } \mathscr{X}_{H, \text{stable}} \}.$

By ℓ -adic étale cohomology computations and logarithmic geometry we show the following statement on independence of ℓ -adic inertia. For simplicity of notation we denote the discrete rank 1 valuation of \tilde{K}^H associated to Y_{α} by α .

Proposition 8. (1) For any choice of prolongation $\tilde{\alpha} \in \operatorname{Val}_{v}(\tilde{K})$ of each α , the natural map

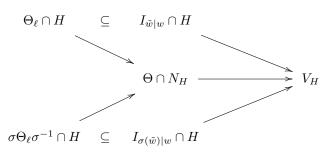
$$\bigoplus_{\alpha} I^{\rm ab}_{\tilde{\alpha}|\alpha} \otimes \mathbb{Q}_{\ell} \hookrightarrow V_H$$

is injective.

(2) For every $\tilde{w} \in \operatorname{Val}_{v}(\tilde{K})$ the map $I_{\tilde{w}|w} \cap H \to N_{H} \to V_{H}$ factors as

$$I_{\tilde{w}|w} \cap H \to \bigoplus_{\alpha \in A_{\tilde{w}}} I_{\tilde{\alpha}|\alpha}^{\mathrm{ab}} \otimes \mathbb{Q}_{\ell} \hookrightarrow V_{H}.$$

4.2. Sketch of proof for the existence of fixed points. Let $\sigma \in \Sigma = s(\operatorname{Gal}_k)$ be arbitrary. Since Θ is a normal subgroup in Σ we obtain a commutative diagram



Because s is a Galois section, the composition

$$\mathbb{Z}_{\ell}(1) \simeq \Theta_{\ell} \cap H \to V_H \to I_k^{\mathrm{ab}} \otimes \mathbb{Q}_{\ell} \simeq \mathbb{Q}_{\ell}(1)$$

is non-trivial. On the other hand, the image of $\Theta \cap N_H$ in V_H spans at most a 1-dimensional subspace, since any closed subgroup of I_k has pro- ℓ completion of rank at most 1. It follows from Proposition 8 that $\Theta \cap N_H$ maps to the subspace

$$\bigcup_{A_{\tilde{w}}\cap A_{\sigma(\tilde{w})}} I^{\mathrm{ab}}_{\tilde{\alpha}|\alpha} \otimes \mathbb{Q}_{\ell} \hookrightarrow V_{H}$$

whence $A_{\tilde{w}} \cap A_{\sigma(\tilde{w})} \neq \emptyset$. A combinatorial argument relying again on Proposition 8 shows that either an $\alpha \in A_{\tilde{w}}$ is fixed by Σ , or $A_{\tilde{w}}$ is fixed by Σ as a set and consists of two elements corresponding to components meeting in a unique node. In this way we have found a fixed point under Σ on $\mathscr{X}_{H,\text{stable}}$ and the sketch of the proof of Theorem 3 is complete.

References

- [G83] A. Grothendieck, Brief an Faltings (27/06/1983), in: Geometric Galois Action 1 (editors L. Schneps, P. Lochak), LMS Lecture Notes 242, Cambridge 1997, 49–58.
- [K03] J. Koenigsmann, On the 'section conjecture' in anabelian geometry, J. Reine Angew. Math. 588 (2005), 221–235.
- [P88] F. Pop, Galoissche Kennzeichnung p-adisch abgeschlossener Körper, J. Reine Angew. Math. 392 (1988), 145–175.
- [PS09] F. Pop, J. Stix, Arithmetic in the fundamental group of a p-adic curve: on the p-adic section conjecture for curves, arXiv:1111.1354v1[math.AG], December 2009.
- [S10] J. Stix, On the period-index problem in light of the section conjecture, American Journal of Mathematics 132 (2010), no. 1, 157–180.