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The talk delivered at the meeting and the report below contain a survey of the
results obtained by the author in [3].

1. Rational curves

In [2] Oort constructs non-constant maps P1(k) → Mg(k) for large, suitable g
by exploiting ‘Parshin’s trick’. Here k is an algebraically closed field and Mg is
the coarse moduli variety of smooth, projective, geometrically connected curves of
genus g. In contrast, the fine moduli stack Mg parametrising families of smooth,
projective, geometrically connected curves of genus g ≥ 2 does not contain rational
curves. In characteristic 0 this follows for example from the uniformisation of
(Mg)an by Teichmüller space which is a ball and the simply connectedness of P1.
Indeed, any map f : T → (Mg)an from a simply connected complex variety T
must lift to Teichmüller space and hence is forced to be constant if T is proper or
by Liouville for T the complex plane. The Brødy hyperbolicity of (Mg)an follows.

The moduli space of principally polarised abelian varieties Ag,1 behaves similar
at first sight. It is uniformised by the Siegel upper half plane. But, again in [2],
Oort constructs rational families of abelian varieties in positive characteristic, es-
sentially by using rational families of maps from αp to a given abelian variety with
p-rank exceeding 1. This raises the question of the existence of simply connected
subvarieties of Mg in positive characteristic and in particular of an algebraic rea-
soning.

2. Anabelian Geometry

Anabelian geometry deals with the arithmetical/geometrical content of the pro-
finite étale fundamental group of a variety. In homotopy theory, for X an Eilenberg-
MacLane K(π, 1) space, the fundamental group π1X = π determines all maps up
to homotopy from CW-spaces with target X. One consequence is that group co-
homology of π with coefficients in F computes the singular cohomology of X with
coefficients in the associated locally constant sheaf F .

We define an algebraic K(π, 1) space to be a variety over an algebraically
closed field, such that the canonical map

γ∗ : H∗(πét
1 X,F ) → H∗(Xét, F )

is an isomorphism for all finite F and associated F . In general, we call the
cohomology classes in the image of γ∗ group theoretic cohomology classes.

One difference between Mg and Ag,1 consists in the pro-finite properties of their
respective analytic fundamental groups: the Mapping class group is conjectured
to be good in the sense of Serre, whereas Sp2g(Z) is definitely not good. This
might explain why the ‘analytic K(π, 1) behaviour’ of Ag,1 does not carry over to
the algebraic and moreover positive characteristic setting.
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3. Constant maps

Theorem 1. Let k be an algebraically closed field and X/k a quasi-projective,
connected variety such that for some prime ` different from the characteristic and
for all n ∈ N all classes in H2(X,Z/`nZ) are group theoretic. Let f : T → X be
a regular map from a proper, reduced and connected variety T/k such that π1f is
the trivial map. Then f must be constant.

Proof: One just notices that f is constant if and only if it contracts all proper
curves in T , which is a numerical condition. The pullback of an ample numerical
class can be computed via group cohomology, hence vanishes, and we are done.

In order to apply Theorem 1 to the moduli space of smooth, projective curves
we either need to prove that the mapping class group is good in cohomological
degree 2 (announced by Boggi) or find different means. The alternative proof
deals only with some quotient of the fundamental group of Mg. Thus it yields
a much stronger theorem also strengthening the characteristic 0 case, which for
the full fundamental group follows from the analytic argument given above as the
mapping class group is residually finite.

Let X/S be a family of smooth, projective, geometrically connected curves of
genus g ≥ 2 with S connected. Let L be a set of primes invertible on S. Then one
can proof, see [3] and the comments in loc. cit., that the homotopy sequence

π1(fibre) → π1X → π1S → 1

yields an outer monodromy representation ρ : π1S → Out
(
πL

)
where πL is the

pro-L completion of the fundamental group of a geometric fibre of X/S. The
construction is compatible with pullback, hence comes by composition with the
characteristic map from the universal outer representation

ρuniv : π1

(
Mg ⊗ Z[

1
L

]
) → Out

(
πL

)
.

Theorem 1bis. Let T be a reduced, connected variety over an algebraically closed
field k. Let f : T → Mg, g ≥ 2, be a map such that for the associated curve
the outer pro-L representation ρ : π1T → Out

(
πL

)
is the trivial homomorphism

for one of the following collections of sets of prime numbers L and additional
conditions on k:

(A) L = {`} for some prime number ` and k is of characteristic 0, or
(B) L = {`1, `2} for all pairs of sufficiently large prime numbers `1, `2 invertible

in k and k is of positive characteristic.
Then f is constant in the sense that the corresponding T -curve X/T ∈ Mg(T )
comes by base extension from a curve in Mg

(
Spec(k)

)
.

The basic idea of the proof is to look at the corresponding family of Jacobians
which has constant L-primary torsion by the condition of the theorem. Then use
the Torelli theorem. This explains the easier condition in characteristic 0.

But this approach fails in positive characteristic. We only deduce that our
Jacobians all have the same p-rank. A construction of auxiliary covers following
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Tamagawa (after Raynaud) that has already been exploited by Säıdi allows nev-
ertheless to deduce the theorem. It is in the construction of the auxiliary covers
that condition (B) on the sets L comes up.

4. Monodromy controls good reduction

There are several known criteria for good reduction that ask for unramified Galois
action. Galois action is nothing but monodromy action in the arithmetic case.
The question of good reduction turns out to be the question of extendibility for
the representing map to the respective moduli space. Put together, these ideas
indicate that extending a map f : U → Mg from some open dense subscheme
U ⊂ S in the normal scheme S to a map f̃ : S → Mg is controlled by monodromy.

Theorem 2 (Moret-Bailly). The above f always extends uniquely for S regular
and S \ U of codimension at least 2.

This is the purity result for smooth, projective curves of Moret-Bailly in [1]. If
we combine Zariski–Nagata’s purity of the branch locus, Moret-Bailly’s theorem
above and the following criterion for good reduction from [4], Thm 5.3,

Theorem 3 (Oda–Tamagawa). Let S be the spectrum of a discrete valuation ring,
and U be the generic point. Then a curve of genus g ≥ 2 over U extends uniquely
over S iff the associated outer pro-` monodromy representation is unramified, i.e.,
factors over GalK = π1 Spec(K) → π1S, for some ` invertible in K.

we obtain the case of regular bases S of the following monodromy criterion of good
reduction of smooth, projective curves.

Theorem 4. Let U be a dense open subscheme of a normal, connected, excellent
scheme S. Let X/U be a U -curve in Mg(U) for some g ≥ 2. Then X/U extends
to an S-curve in Mg(S) if and only if the pro-L monodromy representation

ρ : π1

(
U ⊗ Z[

1
L

]
) → Out

(
πL

)

factors over π1

(
U ⊗ Z[ 1

L ]
) → π1

(
S ⊗ Z[ 1

L ]
)

for one of the following collections of
sets of prime numbers L and additional conditions on S:

(A) L = {`} for some prime number ` and S is of characteristic 0, or
(B) L = {`1, `2} for all pairs of sufficiently large prime numbers `1, `2 and no

additional conditions on S.

For the proof and details on the matter of this report see [3].
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